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    An upper bound on the spectral efficiency of a standard optical fiber 
model

 

–  this is the first upper bound on a “full” model;

–  the bound is tight at low SNR;

–  the bound is likely extremely loose at high SNR; 
but it’s better than an upper bound of ∞

Main Message
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η ≤ log 1+SNR( )   [bits/sec/Hz]

1) Introduction and Preliminaries



n  Entropy and Mutual Information: consider random variables X,Y with 
joint distribution PX,Y(.) 

n  Note: if X is a continuous random variable (e.g., Gaussian) then one 
calls H(X) a differential entropy and (usually) uses the notation h(X)

Preliminaries: Information Theory

H X( ) = E −log PX (X )[ ] =
discrete X

−
a:PX (a )≠0

∑ PX (a)log PX (a)

H X |Y( ) = E −log PX|Y X |Y( )$% &'

I X;Y( ) = H X( )−H X |Y( ) = H Y( )−H Y | X( )



n  Example: Suppose X,Y are jointly Gaussian. Then we have 

 

 

 

 

n  Var[X] is the variance of X

n  ρis the correlation coefficient of X and Y; instructive cases: ρ=0,±1
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Gaussian Random Variables



n  Capacity C of a channel PY|X(.) is the maximum I(X;Y) under 
constraints put on X,Y

n  Example: real-alphabet additive white Gaussian noise (AWGN) channel 
 
 
with Var[Z]=N and an input power constraint E[X2] ≤ P has

n  Complex alphabet AWGN channels: C = log(1+P/N)

n  For complex alphabets, N is usually taken as N0W where N0 is the 
(one-sided) noise PSD and W is the bandwidth

n  Spectral efficiency is η=C if one uses sinc-pulses of bandwidth W

Capacity

I X;Y( ) ≤ C =
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Y = X + Z



Capacity (continued)

Notes
- x-axis: energy per 
information bit 
- y-axis: capacity in 
bits per symbol 

- energy efficiency: 
slope of capacity 
- two regimes:
1) energy efficient 
2) high-rate 
 
- parallel channels 
(multi-mode) let one 
increase energy 
efficiency and rate



2) Fiber Communication
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Data traffic is growing at a faster pace than fiber capacity

Demand and Supply

Figure courtesy of R.-J. Essiambre



Questions
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n  There is much dark (unused) fiber, so what’s the problem?     $$
n  Cost increases in proportion to the data rate. 

Example: Want 100 Mbps rather current 10 Mbps? 
Pay 10x the money.

n  This may prevent further innovation

n  So what should we do? 
Improve the networks (perhaps the first step) 
and (ultimately) the fiber channel capacity



n  Single-Mode Fiber (SMF): a small core that carries one mode of light

n  Here one mode has 2 complex dimensions: two polarizations

n  Theory papers often consider one complex dimension; 
the general case is interesting too of course (see below)

n  In fact, a hot topic in the fiber community is MIMO fiber

3) Fiber Channel(s)

Single-mode 
fiber (SMF)

Multi-core 
fiber (MCF)

Multi-mode 
fiber (MMF)



SMF Pulse Propagation Equation

E :   Electromagnetic field, function of z and T
z:    Distance
T :   Retarded time t-β1z
α :   Fiber loss coefficient (~ 3 dB/15 km) 
β1 :  Inverse of group velocity 
β2 :  Fiber group velocity dispersion 
β3 :  Fiber dispersion slope (include if β2 small)
γ  :  Fiber nonlinear parameter (n2 ω)/(c Aeff)

Fiber
Loss/Gain

Dispersion
Slope

DispersionDistance
Evolution

Kerr
Nonlinearity

∂E
∂z

= −
α
2
E −

i
2
β2
∂2E
∂T 2

+
1
6
β3
∂3E
∂T 3

+ iγ E 2 E + n

Linear Nonlinear

• Maxwell’s equations and low-order approximations* result in a 
generalized nonlinear Schrödinger equation (GNSE):

n2 :   Fiber nonlinear coefficient
ω :   Angular frequency 
c :   Speed of light 
Aeff :  Fiber effective area

*See Ch. 2 in G.P. Agrawal, “Nonlinear Fiber Optics”, 3rd ed., 2001

Noise 
(Gaussian, 
Bandlimited)

Figure courtesy of R.-J. Essiambre



Fiber
Loss/Gain

Nonlinear

• To simulate, split the fiber length z* into K small steps (Δz) and the 
time T into L small steps (Δt)

• Split-step Fourier method at distance zk, k=0,1,...,K

Noise

DN

E(zk )

Linear

F
 DL
 F-1


•  Ideal Raman amplification: removes the loss and adds noise

• F = Fourier transform 

• DL = diagonal matrix with fixed entries of unit amplitude (all-pass filter)

• DN = diagonal matrix with unit amplitude entries; the (ℓ,ℓ)-entry phase 
shift is proportional to the magnitude-squared of the ℓth entry of EN(zk+1 )

th entry of EN(zk+1 )

E(zk+1 )
EN(zk+1 )

time signal: 
vector with L entries



• No analytic lower bounds exist for “full” models. All lower bounds are 
based on simulations or approximate models

• What quantity should we study?

1)  Capacity Problem: ∞ bandwidth so ∞ capacity!?

2)  Spectral Efficiency, i.e., capacity per Hertz 
Critique: why is Fourier bandwidth* (Hz) a good currency? 
Shouldn’t we use Shannon bandwidth* (# dimensions)?

3)  Capacity of realistic fiber 
i.e., use realistic loss/dispersion/nonlinearity vs. frequency 
Problem: seems very difficult to analyze

• We study spectral efficiency for ideal Raman amplification, but the 
capacity with realistic loss functions is ultimately most interesting

4) Lower Bounds on Spectral Efficiency

* Terminology borrowed from J.L. Massey (1995)



Fiber Network Model
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n  Of course, capacity depends strongly on the model under study

n  Optically-routed fiber-optic network model:

n  WDM signals interfere due to fiber nonlinearities

n  Signals co-propagate in a network environment

Reconfigurable 
Optical Add-Drop 
Multiplexer 
(ROADM)

Rx Rx

Tx 

Tx

Rx Rx

Figure courtesy of R.-J. Essiambre



Computed Lower Bounds

R.-J. Essiambre, et al., "Capacity limits of optical fiber networks,” 
IEEE/OSA J. Lightwave Technology, Feb. 2010.

Notes
-  curves for a WDM 

network with filters 
and per-channel 
receivers

-η may decrease 
with launch power

- low SNR: channel 
is almost linear

- new lower bounds 
by several groups 
(2013-)



n  Consider a complex column vector X = Xc + j Xs with covariance and 
pseudo-covariance matrices

n  For interest: X is called proper if its pseudo-covariance matrix is 0

n  Example: Consider a complex, zero-mean, scalar X = Xc + j Xs . 

X is proper if E[Xc
2]=E[Xs

2] and E[XcXs]=0. 

Note: circularly symmetric X are proper, but proper X are not 

necessarily circularly symmetric (e.g. QAM signal sets)

QX = E X − E X[ ]( ) X − E X[ ]( )†"
#

$
%

!QX = E X − E X[ ]( ) X − E X[ ]( )T"
#

$
%

But First More IT Preliminaries

5) Upper Bound



n  Maximum Entropy: consider the correlation matrix RX=E[X X†] where X 
has L entries. Then 
 
 
 
 
with equality if and only if X is Gaussian and proper (or circularly 
symmetric)

n  For a complex square matrix M we have 
 
 
 
In particular, if M is unitary then h( M X ) = h( X )

h X( ) ≤ log πe( )L det RX
"
#

$
%

h M X( ) = h X( )+ 2log det M( )

Maximum Entropy



n  Entropy Power: 

n  Entropy Power Inequality: for independent X and Y we have

n  Conditional version: for conditionally independent X and Y we have 

Entropy Power Inequality

V X( ) = eh(X ) L πe( )

V X +Y( ) ≥V X( )+V Y( )

V X U( ) = eh X U( ) L πe( )
V X +Y U( ) ≥V X U( )+V Y U( )



Main Observations

• The linear step conserves energy and entropy

• The non-linear step also conserves energy and entropy (the key result)

Nonlinear Noise

DN

E(zk )

Linear

F
 DL
 F-1
 E(zk+1 )
EN(zk+1 )

Energy and Entropy Conservation

h a e
jarg(a)+ jf ( a )!

"
#

$

%
& = h a ,arg(a)+ f ( a )( )+E log a'( )*

= h a( )+ h arg(a)+ f ( a ) a( )
h a ,arg(a)( )

! "##### $#####
+E log a'( )*= h(a)



• Energy after K steps: EnergyLaunch + KN . We thus have:

Nonlinear Noise

DN

E(zk )

Linear

F
 DL
 F-1
 E(zk+1 )
EN(zk+1 )

Energy Recursion

h E zK( )( ) ≤ log πe( )L det R E zK( )( )( )"
#

$
% … maximum entropy

≤ log πe Ri,i E zK( )( )"# $%
i=1

L

∑ … Hadamard's inequality

≤ L ⋅ log πe EnergyLaunch +KN( ) L"# $% … Jensen's inequality



• Entropy recursion:

• We thus have:

Nonlinear Noise

DN

E(zk )

Linear

F
 DL
 F-1
 E(zk+1 )
EN(zk+1 )

Entropy Recursion

V E zk+1( ) E z0( )( ) ≥V E zk( ) E z0( )( )+N L

V E zK( ) E z0( )( ) ≥ KN L

or h E zK( ) E z0( )( ) ≥ Llog πe KN L( )



*SNR = receiver signal-to-noise ratio

So for every step we have:

• Signal energy grows by the noise variance: can upper bound h( E(zK) )

• Entropy power grows by at least the noise variance: 
can lower bound h( E(zK) | E(z0) )

• Result*:

Nonlinear Noise

DN

E(zk )

Linear

F
 DL
 F-1
 E(zk+1 )
EN(zk+1 )

I E( z0 );E( zK )( ) = h E( zK )( )− h E( zK ) E( z0 )( )
≤ L ⋅ log 1+SNR( )



⇒
1

L
I E( z0 );E( zK

)( ) ≤ log 1+SNR( )

•  Let B = 1/Δt be the “bandwidth” of the simulation

• So L = T/Δt = TB is the time-bandwidth product

• The spectral efficiency is thus bounded by

η ≤ log 1+SNR( )   [bits/sec/Hz]



Q1: Why normalize by the simulation bandwidth B? 
The “real” bandwidth W can be smaller.

A1: B can be chosen (this is even desirable) as the smallest bandwidth 
for which simulations give accurate results

Q2: What about capacity?

A2: Any real fiber has a maximal bandwidth Bmax. 
A capacity upper bound follows by multiplying Bmax by log(1+SNR)

η ≤ log 1+SNR( )   [bits/sec/Hz]

6) Discussion



Q3: What about MIMO fiber? 
A3: If energy and entropy are preserved by the linear and non-linear 
steps, and the noise is AWGN then the bound remains valid per mode

Q4: What about frequency-dependent (or mode-dependent) loss?

A4: Open research!

η ≤ log 1+SNR( )   [bits/sec/Hz]

Discussion (continued)



7) Conclusions

1)  Spectral efficiency of (an idealized model of) SMF with linear 
polarization is ≤ log(1+SNR)

2)  Many extensions are possible:

–  lumped amplification, 3rd-order dispersion, delayed Kerr effect

–  uniform loss, linear filters (for capacity results)

–  MIMO fiber (MMF or MCF)

3)  More difficult:

–  better bounds and understanding at high SNR

–  frequency-dependent loss, dispersion, non-linearity 

4)  Multi-user information theory for fiber should be developed
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