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1) Introduction and Preliminaries

Main Message

An upper bound on the spectral efficiency of a standard optical fiber
model

n =<log(1+SNR) [bits/sec/Hz]

— this is the first upper bound on a “full” model;
- the bound is tight at low SNR;

- the bound is likely extremely loose at high SNR;
but it’s better than an upper bound of «




Preliminaries: Information Theory

= Entropy and Mutual Information: consider random variables X,Y with
joint distribution Py y(.)

H(X)=E[-logP(X)] = S -Pa)logPy(a)

a:Py (a)=0

H(X1Y)=E|-log Py, (X1Y)]
[(X;Y)=H(X)-H(X|Y)=H(Y)-H(Y | X)

= Note: if X is a continuous random variable (e.g., Gaussian) then one
calls H(X) a differential entropy and (usually) uses the notation h(X)




Gaussian Random Variables

s Example: Suppose X,Y are jointly Gaussian. Then we have

h(X) = %Iog(Zne Var[ X])

h(X|Y)= %Iog(Zne Var[X](1—p2))

I(X;Y)=%Iog(1_1p2)

= Var[X] is the variance of X
s 0 is the correlation coefficient of X and Y; instructive cases: p =0,+1




Capacity

Capacity C of a channel Pyj(.) is the maximum I(X;Y) under
constraints put on X,Y

Example: real-alphabet additive white Gaussian noise (AWGN) channel

Y=X+Z

with Var[Z]=N and an input power constraint E[X?] < P has
1 P
[(X;Y)=C=—log|1+—
(X:Y)=C - Jlog[ 141

Complex alphabet AWGN channels: C = log(1+P/N)

For complex alphabets, N is usually taken as N,W where N, is the
(one-sided) noise PSD and W is the bandwidth

Spectral efficiency is 1 =C if one uses sinc-pulses of bandwidth W




Capacity (continued) TLT

Notes

- X-axis: energy per
information bit

- y-axis: capacity in
bits per symbol

- energy efficiency:
slope of capacity

- two regimes:

1) energy efficient
2) high-rate

- parallel channels
(multi-mode) let one
increase energy
efficiency and rate
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2) Fiber Communication TLT
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Figure courtesy of R.-J. Essiambre




Demand and Supply T
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Questions

There is much dark (unused) fiber, so what’s the problem? $$

Cost increases in proportion to the data rate.
Example: Want 100 Mbps rather current 10 Mbps?
Pay 10x the money.

This may prevent further innovation

So what should we do?
Improve the networks (perhaps the first step)
and (ultimately) the fiber channel capacity
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3) Fiber Channel(s)

Single-Mode Fiber (SMF): a small core that carries one mode of light
Here one mode has 2 complex dimensions: two polarizations

Theory papers often consider one complex dimension;
the general case is interesting too of course (see below)

In fact, a hot topic in the fiber community is MIMO fiber

Single-mode Multi-mode Multi-core
fiber (SMF) fiber (MMF) fiber (MCF)




SMF Pulse Propagation Equation TUM

e Maxwell’s equations and low-order approximations™® result in a
generalized nonlinear Schrodinger equation (GNSE):

Linear Nonlinear
E oo i, dE
0Z 2 22972
Distance l Dispersion ] Kerr Noise
Evolution Nonlinearity (Gaussian,
Fiber Dispersion Bandlimited)
Loss/Gain Slope
E : Electromagnetic field, function of zand T n, : Fiber nonlinear coefficient
z: Distance w: Angular frequency
T: Retarded time t-f,z c: Speed of light
a

. Fiber loss coefficient (~ 3 dB/15 km)
B;: Inverse of group velocity
B, : Fiber group velocity dispersion
Bs: Fiber dispersion slope (include if B, small)
y : Fiber nonlinear parameter (n, w)/(c A

A, Fiber effective area

Figure courtesy of R.-J. Essiambre

*See Ch. 2 in G.P. Agrawal, “Nonlinear Fiber Optics”, 3rd ed., 2001
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e To simulate, split the fiber length z* into K small steps (Az) and the
time T into L small steps (At)

e Split-step Fourier method at distance z,, k=0,1,...,K ve Ctg:n vsitsr:gLnglr:\tries
o) EnZeiq) | é'( \
E(z, E\Zy 1
F > Dy | > FT L Dy D>
Fiber Linear Nonlinear N_OiSe
Loss/Gain

¢ |[deal Raman amplification: removes the loss and adds noise
e F = Fourier transform
e D, = diagonal matrix with fixed entries of unit amplitude (all-pass filter)

e D, = diagonal matrix with unit amplitude entries; the (¢,£)-entry phase
shift is proportional to the magnitude-squared of the £'" entry of E\(z,,+)
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4) Lower Bounds on Spectral Efficiency

e No analytic lower bounds exist for “full” models. All lower bounds are
based on simulations or approximate models

e \What quantity should we study?

1) Capacity Problem: « bandwidth so « capacity!?

2) Spectral Efficiency, i.e., capacity per Hertz
Critique: why is Fourier bandwidth* (Hz) a good currency?
Shouldn’t we use Shannon bandwidth* (# dimensions)?

3) Capacity of realistic fiber
l.e., use realistic loss/dispersion/nonlinearity vs. frequency
Problem: seems very difficult to analyze

¢ \We study spectral efficiency for ideal Raman amplification, but the
capacity with realistic loss functions is ultimately most interesting

* Terminology borrowed from J.L. Massey (1995)




Fiber Network Model TUTI

= Of course, capacity depends strongly on the model under study

= Optically-routed fiber-optic network model:

Reconfigurable
Optical Add-Drop
Multiplexer
(ROADM)

= WDM signals interfere due to fiber nonlinearities
= Signals co-propagate in a network environment

Figure courtesy of R.-J. Essiambre




Computed Lower Bounds TLT

Notes

- curves for a WDM
network with filters
and per-channel
receivers

- may decrease
with launch power

- low SNR: channel
Is almost linear

- new lower bounds

by several groups
(2013-)

Spectral efficiency (bits/s/Hz)
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R.-J. Essiambre, et al., "Capacity limits of optical fiber networks,”
IEEE/OSA J. Lightwave Technology, Feb. 2010.




5) Upper Bound TLT

But First More IT Preliminaries

= Consider a complex column vector X = X, + j X, with covariance and
pseudo-covariance matrices

Q, - E[(X-E[X))(x-E[X])"

X<
X<

~

Q, - E[(x-E[X))(x-E[X])"

s Forinterest: X is called proper if its pseudo-covariance matrix is 0
= Example: Consider a complex, zero-mean, scalar X = X_+ j X, .

X is proper if E[X 2]=E[X.?] and E[X_X.]=0.

Note: circularly symmetric X are proper, but proper X are not

necessarily circularly symmetric (e.g. QAM signal sets)
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Maximum Entropy

= Maximum Entropy: consider the correlation matrix Ry=E[X X'] where X
has L entries. Then -

h(X) < Iog[(ne)L det RK]

with equality if and only if X is Gaussian and proper (or circularly
symmetric)

s For a complex square matrix M we have
h(M X) = h(X)+2log|det(M)|

In particular, if M is unitary then h( M X) = h( X)




Entropy Power Inequality

= Entropy Power:

V(X) =" (ze)

= Entropy Power Inequality: for independent X and Y we have

V(X+Y)=V(X)+V(Y)

= Conditional version: for conditionally independent X and Y we have
V(X|U) = " /(e)
V(X+Y|U)=V(X|u)+V (YY)




Tum

Energy and Entropy Conservation

Ez) En(Zyiq) | E ( \

Z Z

— X F | D [ F! > Dy >® =
Linear Nonlinear Noise

Main Observations
e The linear step conserves energy and entropy
e The non-linear step also conserves energy and entropy (the key result)

jarg(a)+ jf(al)) _ h

h|lale a

,arg(a)+f(ja))) + E[log|a|]

- h(ja]) + h(arg(a) + () | [a)) + E [logla]] = h(a)
h(

a ,evlrg(a))




Energy Recursion

Ez) En(Zyiq) | E ( \

Z Z

— X F | D [ F! > Dy >® =
Linear Nonlinear Noise

* Energy after K steps: Energy, ,,ncn + KN . We thus have:

h(E(zK))sIog[(ne)L det(R(E(zK)))] ... maximum entropy

e R, (E(z«))] ... Hadamard's inequality

we(Energy, e + KN)/L| ... Jensen's inequality




Entropy Recursion

Ez) En(Zyiq) | E ( \

Z Z

— X F | D [ F! > Dy >® =
Linear Nonlinear Noise

e Entropy recursion:

V(E(2..)

E(2,)) =V (E(2,)|E(20))+ N/L
¢ \We thus have:

V(E(z z,))= KN/L
or h(E( )\E(zo)) = Llog(we KN/L)




£, ) En(Zii1) | Ez..)

Z Z

_—>k F > DL s F- = DN >® — >k+1
Linear Nonlinear Noise

So for every step we have:

* Signal energy grows by the noise variance: can upper bound h( E(zy) )

e Entropy power grows by at least the noise variance:
can lower bound h( E(zx) | E(zo) )

e Result™:

I(E(Zo);E(ZK)) = h(E(ZK)) - h(E(ZK)|E(Zo))
<L -log(1+ SNR)

*SNR = receiver signal-to-noise ratio



= %/(E(ZO);E(ZK)) <log(1+ SNR)

e | et B = 1/At be the “bandwidth” of the simulation
e So L =T/At = TB is the time-bandwidth product
¢ The spectral efficiency is thus bounded by

n <log(1+ SNR) [bits/sec/Hz]




6) Discussion

n <log(1+ SNR) [bits/sec/Hz]

Q1: Why normalize by the simulation bandwidth B?
The “real” bandwidth W can be smaller.

A1: B can be chosen (this is even desirable) as the smallest bandwidth
for which simulations give accurate results

Q2: What about capacity?

A2: Any real fiber has a maximal bandwidth B, ...
A capacity upper bound follows by multiplying B, ., by log(1+SNR)




Discussion (continued)

n <log(1+ SNR) [bits/sec/Hz]

Q3: What about MIMO fiber?
A3: If energy and entropy are preserved by the linear and non-linear
steps, and the noise is AWGN then the bound remains valid per mode

Q4: What about frequency-dependent (or mode-dependent) loss?
A4: Open research!




7) Conclusions

1) Spectral efficiency of (an idealized model of) SMF with linear
polarization is < log(1+SNR)

2) Many extensions are possible:
- lumped amplification, 3"9-order dispersion, delayed Kerr effect
— uniform loss, linear filters (for capacity results)
- MIMO fiber (MMF or MCF)
3) More difficult:
- better bounds and understanding at high SNR
- frequency-dependent loss, dispersion, non-linearity
4) Multi-user information theory for fiber should be developed
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