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Three Topics in Smart Grid:

- Game Theoretic Methods for Modeling Interactions

- Privacy-Utility Tradeoffs for Data Sources

- Distributed Algorithms for State Estimation
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Game Theoretic
Methods for Modeling
Interactions

Joint work with Walid Saad, et al.
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Introduction & Motivation

e Salient characteristics of smart grid:

Heterogeneity: in terms of node types (electric vehicles, smart meters, substations,
etc.) with each node having its own objective.

Large-scale interactions: spans large geographical areas and could incorporate
thousands if not millions of nodes.

Stochastic dynamics: time-varying features, in terms of demand, supply, node
dynamics (e.g., car mobility), etc.

Game Theoretic Methods for Modeling Interactions



Introduction & Motivation

e Salient characteristics of smart grid:

- Heterogeneity: in terms of node types (electric vehicles, smart meters, substations,
etc.) with each node having its own objective.

- Large-scale interactions: spans large geographical areas and could incorporate
thousands if not millions of nodes.

— Stochastic dynamics: time-varying features, in terms of demand, supply, node
dynamics (e.g., car mobility), etc.

e Need techniques that capture individual node objectives, large-scale
interactions, and dynamics/uncertainty

Game Theoretic Methods for Modeling Interactions



Introduction & Motivation

e Salient characteristics of smart grid:

- Heterogeneity: in terms of node types (electric vehicles, smart meters, substations,
etc.) with each node having its own objective.

- Large-scale interactions: spans large geographical areas and could incorporate
thousands if not millions of nodes.

— Stochastic dynamics: time-varying features, in terms of demand, supply, node
dynamics (e.g., car mobility), etc.

e Need techniques that capture individual node objectives, large-scale
interactions, and dynamics/uncertainty

e Useful framework - game theory in its two branches:
- Non-cooperative game theory

— Cooperative game theory

Game Theoretic Methods for Modeling Interactions



Introduction & Motivation

e Salient characteristics of smart grid:

- Heterogeneity: in terms of node types (electric vehicles, smart meters, substations,
etc.) with each node having its own objective.

- Large-scale interactions: spans large geographical areas and could incorporate
thousands if not millions of nodes.

— Stochastic dynamics: time-varying features, in terms of demand, supply, node
dynamics (e.g., car mobility), etc.

e Need techniques that capture individual node objectives, large-scale
interactions, and dynamics/uncertainty

e Useful framework - game theory in its two branches:

- Non-cooperative game theory

- Cooperative game theory

e Illustrate via two examples
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Ex. 1: Energy Trading for Plug-In Vehicles

« Groups of plug-in electric
vehicles can trade energy
with the main grid.
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« Groups of plug-in electric
vehicles can trade energy
with the main grid.

« Non-cooperative games can
model interactions among
such groups.
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Ex. 1: Energy Trading for Plug-In Vehicles

« Groups of plug-in electric
vehicles can trade energy
with the main grid.

« Non-cooperative games can
model interactions among
such groups.

« If the grid acts as a single
entity, a Stackelberg
(leader-follower) game
provides a good model.

Game Theoretic Methods for Modeling Interactions

-

q}(« D) % (@)
o _a" E
’ Q’gg E E City E

A
\‘ :
O ™
- @ Tﬂ!" T ((()))
\\ R

-
- ~
-

ﬁq\((ﬂp)) S _S_m art Grid PE\ G
PEVG”’ \
(N | ((‘ )
IR (@) :
WD = A PEVG
chool Shopping Mall




Ex. 1: Energy Trading for Plug-In Vehicles

« Groups of plug-in electric
vehicles can trade energy
with the main grid.

« Non-cooperative games can
model interactions among
such groups.

« If the grid acts as a single
entity, a Stackelberg
(leader-follower) game
provides a good model.

« If grid elements act
autonomously, a hybrid
auction/Nash game can be
used.
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Ex. 1: Energy Trading for Plug-In Vehicles

« Groups of plug-in electric
vehicles can trade energy
with the main grid.

« Non-cooperative games can
model interactions among
such groups.

« If the grid acts as a single
entity, a Stackelberg
(leader-follower) game
provides a good model.

« If grid elements act
autonomously, a hybrid
auction/Nash game can be
used. Consider this first,
with the EV groups selling ...

Game Theoretic Methods for Modeling Interactions
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Double Auction Market Model

[w/ Saad, Han, Basar — T-SG (submitted)]

e Double auction:
— Order buyers by decreasing bids supply

and sellers by increasing prices

price(p)

— Generate supply-demand curve Seller L

quantity(q)
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Double Auction Market Model

[w/ Saad, Han, Basar — T-SG (submitted)]

e Double auction: Buyer M

demand

— Order buyers by decreasing bids supply

and sellers by increasing prices

price(p)

— Generate supply-demand curve Seller L

— Intersection: the aggregate demand
and supply curve intersect at a point
which determines:

\/

quantity(q)

e The number and identity of the sellers and buyers that will trade;
assume L-1 sellers and M-1 buyers trade
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Double Auction Market Model

[w/ Saad, Han, Basar — T-SG (submitted)]

e Double auction: Buyer M

demand

— Order buyers by decreasing bids supply

and sellers by increasing prices

price(p)

— Generate supply-demand curve Seller L

— Intersection: the aggregate demand
and supply curve intersect at a point
which determines:

quantity(q)

e The number and identity of the sellers and buyers that will trade;
assume L-1 sellers and M-1 buyers trade

e The trading price is given by

pla) = s +bu a is the vector of energy put up for sale,
) s, and b, are the reservation bids of
seller L and buyer M
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A Non-Cooperative Game

[w/ Saad, Han, Basar — T-SG (submitted)]

= The strategy of a vehicle group i is to choose the maximum amount g;
of energy to sell.
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A Non-Cooperative Game

[w/ Saad, Han, Basar — T-SG (submitted)]

s The strategy of a vehicle group i is to choose the maximum amount g,
of energy to sell.

= Vehicle group i chooses its strategy to maximize its utility:

Ui(ai.a—;) = (pla) — s)Qi(a) — 7:Q7 (a)

Tradil_wg price Quantity sold Pricing factor
(auction outcome) (auction outcome)
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A Non-Cooperative Game

[w/ Saad, Han, Basar — T-SG (submitted)]

s The strategy of a vehicle group i is to choose the maximum amount g,
of energy to sell.

= Vehicle group i chooses its strategy to maximize its utility:

Ui(aia—;) = (p(a) — 5:)Qi(a) — 1iQ%(a)

Tradil_wg price Quantity sold Pricing factor
(auction outcome) (auction outcome)

= How to solve the game and find the Nash equilibrium?
= Auction introduces a discontinuity => difficult analytically

= Algorithmic approach (based on best-response)
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Typical Simulation Results
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A Stackelberg Model

[w/ Tushar, Saad, Smith - T-SG"12]
Consider now the grid acting as a single entity (and selling to the
vehicle groups).

Then we have a powerful leader (the grid) and less powerful (and
competing) followers (the vehicle groups) - a Stackelberg game

The utilities of the vehicle groups are still linear-quadratic in their
strategies (i.e., how much they buy).

But, the price is set by the leader.
The leader’s utility is bi-linear = price X total quantity sold.

Leads to a Stackelberg equilibrium.
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Typical Simulation Results

Stackelberg price (US$ per MWh)
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Ex. 2: Micro-grid Interaction

[w/ Saad, Han- ICC'11]

u Energy tradlng Macro-grid
within the -
distribution network Transmission Grid

Distribution Grid
(considered in this talk)

Itage
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No reliance on valtage

Micro-grid 5 macro-station
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Coalition 2,
Coalition 1, Non-cooperative
micro-grid

Micro-grid 3,
Wind farm

Power transfer
inside and with
macro-station
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Ex. 2: Micro-grid Interaction

[w/ Saad, Han- ICC'11]
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Ex. 2: Micro-grid Interaction

[w/ Saad, Han- ICC'11]
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Power transfer

inside and with
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Coalition Games

e (Coalitional game (N,v)

— In a set of players N, a coalition S is a group of cooperating players
— Value (utility) of a coalition v(S)

— User payoff ¢; (S): the portion received by a player / in a coalition S
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Coalition Games

e (Coalitional game (N,v)

— In a set of players N, a coalition S is a group of cooperating players
— Value (utility) of a coalition v(S)

— User payoff ¢; (S): the portion received by a player / in a coalition S

e (Coalition formation

— Coalitions can be compared based on Pareto ordering of user payoffs
- Merges and splits can be used to iterate on coalitions

- Convergence to a stable, merge-and-split-proof limit
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Game Formulation: Value Function

e For a coalition S, we define the value function as

v(S) = max u(S, )
TEX S
- The max is over all orderings of buyers & u measures power losses.

— The utility represents a cost paid per unit of power loss.
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Game Formulation: Value Function

e For a coalition S, we define the value function as

v(S) = max u(S, )
TEL s
- The max is over all orderings of buyers & u measures power losses.

— The utility represents a cost paid per unit of power loss.

e To divide the utility between the players, adopt a fair division
proportional to the non-cooperative utility of each user:

b =i | v(8) =Y v({i}) | +o({i}).

€S
Weight chosen Je
according to .
micro-grid i’ s non- ' v({i})

a'l, - L
s - o =1
cooperative utility / g ’U(j[:]}) ZzES 1
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Typical Simulation Results (1)
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Typical Simulation Results (2)
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Summary

e Game theory for smart grid modeling:
- Demand-side management, energy trading and markets
- Integration and distributed operation of micro-grids

- “Game theoretic methods for the smart grid,” [w/ Saad, Han, Basar - SPM’12]
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Summary

e Game theory for smart grid modeling:
- Demand-side management, energy trading and markets
- Integration and distributed operation of micro-grids

- “Game theoretic methods for the smart grid,” [w/ Saad, Han, Basar - SPM’12]
e Other problems of interest

- Network formation games for PLC backhaul [w/ Saad, Han - Gamenets’11]

- Social optimality of equilibria in trading markets [w/ Tushar, et al. - ICC'13]
e Additional issues

- Optimizing jointly over three layers: economic, cyber, and physical

- Incorporating dynamics (generation/load/mobility/etc.)

Game Theoretic Methods for Modeling Interactions




Privacy-Utility
Tradeoffs for
Data Sources

Joint work with Lalitha Sankar, et al.

Games, Privacy and Distributed Inference for the Smart Grid




Motivation: The Privacy Problem

There are many electronic information sources of information about us.

- Google, Facebook, smart metering, etc.
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Motivation: The Privacy Problem

e There are many electronic information sources of information about us.

- Google, Facebook, smart metering, etc.
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e The utility of these sources depends on their accessibility.
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Motivation: The Privacy Problem

e There are many electronic information sources of information about us.

- Google, Facebook, smart metering, etc.

mnmnmmmmmmmmmmmmu
' 100427080

‘SmartMeter®

101870 378

- OO OO R RN T i
Landis+Gyr  PATENTFENONG

e The utility of these sources depends on their accessibility.
e But, they can also leak private information.

e How can we characterize this fundamental tradeoff?
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Database Model

A database is a table — rows: individual entries (total of n);
columns: attributes for each individual (total of K)

Attributes

Entries Gender Visit Date Diagnosis Medication
. Query
X /\

mee
- User

Response

<«— Numeric and non-numeric data —,
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Database: Source Model

e Database with n rows is a sequence of n i.i.d. observations of a vector
random variable X = (X; X, ... X,) with a joint distribution:

Px(X)= Py x, x, (KisXs50 -0 X )
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Database: Source Model

Database with n rows is a sequence of n i.i.d. observations of a vector
random variable X = (X; X, ... X,) with a joint distribution:

Px(X)= Py x, x, (KisXs50 -0 X )

Attributes divided into public (revealed) and private (hidden) variables,
typically not disjoint:

hk *

— k" entry: X, = (Xr,k’Xhak)

ealed

Privacy-Utility Tradeoffs for Data Sources




Privacy-Utility Tradeoff

[w/ Sankar, Rajagapolan - T-IFS'13]

e Contrast between privacy and secrecy:
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Privacy-Utility Tradeoff

[w/ Sankar, Rajagapolan - T-IFS'13]

e Contrast between privacy and secrecy:

- In the (communications) secrecy problem, there is a single source with
legitimate and eavesdropping receivers.
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e Contrast between privacy and secrecy:

- In the (communications) secrecy problem, there is a single source with
legitimate and eavesdropping receivers.

- In the privacy problem, we have a single “receiver” (the query initiator) with
the source being divided into private and public variables.
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e Contrast between privacy and secrecy:

- In the (communications) secrecy problem, there is a single source with
legitimate and eavesdropping receivers.

- In the privacy problem, we have a single “receiver” (the query initiator) with
the source being divided into private and public variables.

e How can we characterize the tradeoff between utility and privacy
in such a setting?
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Privacy-Utility Tradeoff

[w/ Sankar, Rajagapolan - T-IFS'13]

e Contrast between privacy and secrecy:

- In the (communications) secrecy problem, there is a single source with
legitimate and eavesdropping receivers.

- In the privacy problem, we have a single “receiver” (the query initiator) with
the source being divided into private and public variables.

e How can we characterize the tradeoff between utility and privacy
in such a setting?

- Measure utility by distortion of the public variables as revealed to a user of the
database;
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Privacy-Utility Tradeoff

[w/ Sankar, Rajagapolan - T-IFS'13]

e Contrast between privacy and secrecy:

- In the (communications) secrecy problem, there is a single source with
legitimate and eavesdropping receivers.

- In the privacy problem, we have a single “receiver” (the query initiator) with
the source being divided into private and public variables.

e How can we characterize the tradeoff between utility and privacy
in such a setting?

- Measure utility by distortion of the public variables as revealed to a user of the
database; and

- Measure privacy by equivocation on the private variables in information
revealed to a user.
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Privacy-Utility Tradeoff

[w/ Sankar, Rajagapolan - T-IFS'13]

e Contrast between privacy and secrecy:

- In the (communications) secrecy problem, there is a single source with
legitimate and eavesdropping receivers.

- In the privacy problem, we have a single “receiver” (the query initiator) with
the source being divided into private and public variables.

e How can we characterize the tradeoff between utility and privacy
in such a setting?

- Measure utility by distortion of the public variables as revealed to a user of the
database; and

- Measure privacy by equivocation on the private variables in information
revealed to a user.

e Then the distortion-equivocation region describes the tradeoff.

Privacy-Utility Tradeoffs for Data Sources




Distortion-Eguivocation Model

[w/ Sankar, Rajagapolan - T-IFS'13]

« Encoder maps the original database to a “sanitized” database (SDB):

Encoder:X" — W ={SDB,,SDB,....,SDB,, |
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Distortion-Eguivocation Model
[w/ Sankar, Rajagapolan - T-IFS'13]

« Encoder maps the original database to a “sanitized” database (SDB):

Encoder:X" — W ={SDB,,SDB,....,SDB,, |

XX f ——wew Xl

Source > Encoder > Decoder >
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Distortion-Eguivocation Model

[w/ Sankar, Rajagapolan - T-IFS'13]

Distortion

{ So(x.. )}<D+8

Source

{ rk’

Encoder

WweW

SDB,, |

>

Decoder

« Encoder maps the original database to a “sanitized” database (SDB):

Encoder: X" > W = {SDBI,SDB2,. e
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Distortion-Eguivocation Model
[w/ Sankar, Rajagapolan - T-IFS'13]

« Encoder maps the original database to a “sanitized” database (SDB):

Encoder:X" — W ={SDB,,SDB,....,SDB,, |

Distortion Equivocation
1 1 .
AdEE — X, ..X,,J|£D+e E—H(Xh|W)>E—e
l 1 / "
rk’ k=1 WeW {Xr’k}kzl
Source > Encoder > Decoder >
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Distortion-Eguivocation Model
[w/ Sankar, Rajagapolan - T-IFS'13]

« Encoder maps the original database to a “sanitized” database (SDB):

Encoder:X" — W ={SDB,,SDB,....,SDB,, |

Distortion Equivocation
1 1 .
AdEE — X...X, J|I£D+e¢ E—H(Xh|W)>E—e
l 1 / "
rk’ k=1 WeW {Xr’k}kzl
Source > Encoder \ > Decoder >

Add a rate constraint — |f < 2”(R+8)

Privacy-Utility Tradeoffs for Data Sources




Utility-Privacy/RDE Regions
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Competitive Privacy

N.A. Grid: interconnected regional transmission organizations (RTOs)
which

- need to share measurements on state estimation for reliability (utility)
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Competitive Privacy

N.A. Grid: interconnected regional transmission organizations (RTOs)
which

- need to share measurements on state estimation for reliability (utility)

- wish to withhold information for economic competitive reasons (privacy)
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Competitive Privacy

N.A. Grid: interconnected regional transmission organizations (RTOs)
which

- need to share measurements on state estimation for reliability (utility)

- wish to withhold information for economic competitive reasons (privacy)

Alberta Electric
System Operator Midwest ISO

Ontario Independent
Electricity System Operator
/ New Brunswick

System Operator

~ v
ISO New

| > < \ /\
England \ S % o
ed o 7 \’ New York ISO S . L
- VAR
¥ pm ™, 7

o . % :
Salifornia 159 l' Interconnection \\ ¥ s
/ IR(: """"""""" 'SubnetControI Center

Electric Reliability Southwest
Council of Texas Power Pool ISO/RTO Council

@ Subnetnode

Leads to a problem of competitive privacy
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Competitive Privacy

[w /Sankar, Kar - Asilomar’12]

Noisy measurements at RTO k:

M
Y, =Y H, X, +Z,k=12,...M

m=1

™~

mth system state
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Competitive Privacy

[w /Sankar, Kar - Asilomar’12]

e Noisy measurements at RTO k:

M
Y, =Y H, X, +Z,k=12,...,
m=1 G

e Utility for RTO k: mean-square error for its own state X,

Privacy-Utility Tradeoffs for Data Sources




Competitive Privacy

[w /Sankar, Kar - Asilomar’12]

e Noisy measurements at RTO k:

M
Y, =Y H, X, +Z,k=12,...,
m=1 G

e Utility for RTO k: mean-square error for its own state X,

e Privacy for RTO k: leakage of information about X, to other RTOs
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Competitive Privacy

[w /Sankar, Kar - Asilomar’12]

e Noisy measurements at RTO k:

M
Y, =Y H, X, +Z,k=12,...,
m=1 G

e Utility for RTO k: mean-square error for its own state X,

e Privacy for RTO k: leakage of information about X, to other RTOs

Wyner-Ziv coding maximizes privacy for a desired utility at each RTO.
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Smart Meter Privacy

« Smart meter data is useful for price-aware usage, load balancing
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Smart Meter Privacy

« Smart meter data is useful for price-aware usage, load balancing

» But, it leaks information about in-home activity
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Smart Meter Privacy

[w /Sankar, Rajagapolan, Mohajer - T-SG'13]

P-U tradeoff leads to a spectral ‘reverse water-filling” solution
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Smart Meter Privacy

[w /Sankar, Rajagapolan, Mohajer - T-SG'13]

P-U tradeoff leads to a spectral ‘reverse water-filling’ solution
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Smart Meter Privacy

[w /Sankar, Rajagapolan, Mohajer - T-SG'13]

P-U tradeoff leads to a spectral ‘reverse water-filling’ solution

2.5F

1.5F
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Can also use energy storage to aid privacy [w/ Tan, Gunduz, JSAC:SG Series’13]
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Summary

« An information source is divided into private and public variables

e Leads to an equivocation-distortion characterization

e Adding rate: a rate-distortion problem with an equivocation constraint
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Summary

« An information source is divided into private and public variables

e Leads to an equivocation-distortion characterization

e Adding rate: a rate-distortion problem with an equivocation constraint

« Applications in smart grid include: competitive privacy & smart metering
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Summary

« An information source is divided into private and public variables

e Leads to an equivocation-distortion characterization

e Adding rate: a rate-distortion problem with an equivocation constraint
« Applications in smart grid include: competitive privacy & smart metering

« Can also consider
e multiple queries (successive disclosure)

e multiple sources (side information)

Privacy-Utility Tradeoffs for Data Sources




Distributed
Algorithms for
State Estimation

Joint work with Le Xie, et al.

Games, Privacy and Distributed Inference for the Smart Grid




Motivation

Computational & communications challenge:

- fast sensing (e.g., Phasor Measurement Units) produces big data, and communications
bottlenecks

Restructuring/deregulation means more RTOs, or control areas (CAs)

Situational awareness needed for large interconnected power systems:

- wide area monitoring, control and protection (WAMCP)

Of interest: a distributed estimation framework to obtain the system-
wide states through information exchange among CAs.
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Proposed Solution

Wide area state estimation via distributed iterative information processing:

Conceptual Model Key Properties

* No central coordinator

* Only local information
(measurement Jacobian matrix,
measurement vector) required

* All local control areas not
necessarily observable

* Flexible in communication
topology

* Equivalent performance to

Physical tie-line centralized approach
Information Flow

Distributed Algorithms for State Estimation




Distributed Measurement Model

System State

— 0 € RM: The network system state (vector) consisting of voltage
phase angles of buses in all CAs.

CA Local Observation Model

— 7, € RMn: The local observation at CA n
7z, = H,0 + e,,

where the Jacobian H,, € RM» sub-block represents the local physical
interconnections.
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Proposed Distributed Iterative Solution

[w / Xie, Choi, Kar - T-5G'12]

Each CA n has only local knowledge of the network structure and
measurements and updates a local estimate x,, as follows:

xu(t+1) =%0(t) = B Y (xa(t) = x1(t)) + @ H,, (2, — Hoxa(t)).
ey,

where
e (),,: communication neighborhood of CA n
¢ H'n, — R;1/2Hn

_ —1/2
‘Zn:Rn /Zn

Distributed Algorithms for State Estimation



Convergence to Global Estimates

[w / Xie, Choi, Kar - T-5G'12]

N
Global observability of the grid (i.e.,z H'H, is full rank)

n=1

+ connectivity of the communication network (i.e. the second
smallest eigenvalue of the graph Laplacian is positive) ...

assures a.s. convergence of local estimates to the global
estimate (least squares with all measurements) with
appropriately programmed a’s and f’s.
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Test Bus Systems

<€===-> : Communication scheme 1 <€===-> : Communication scheme 1
Kerrenee > : Communication scheme 2 : Physical Line Kerrnrnn > : Communication scheme 2

: Physical Line

(a) The IEEE 14-bus system (b) The IEEE 118-bus system

« Overall systems are globally observable
« CAs are globally unobservable

« Shaded CAs are locally unobservable
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Convergence of Phase Estimates
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Communication Topology Flexibility
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Related Work

Nonlinear (AC) state estimation [w/ Xie, Choi, Kar, T-SG'12]

Multi-cast routing [w/ Li, Lai, JSAC:SG Series’12]

Games for privacy-aware distributed state estimation [w/
Belmega, Sankar — NetGCoop’12 & T-SG (submitted)]
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Summary

Three Topics in Smart Grid:

- Game Theoretic Methods for Modeling Interactions

- Privacy-Utility Tradeoffs for Data Sources

- Distributed Algorithms for State Estimation

Games, Privacy and Distributed Inference for the Smart Grid
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