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Background: Point-to-Point Channels

e Infinite blocklengths:
® Feedback does not increase capacity (Shannon, IT’56)

m But, feedback can speed-up the convergence of the error
probability to zero (Schalkwijk-Kailath, IT 66)

e Finite blocklengths:

m  Feedback can dramatically improve the maximal achievable rate
(Polyanskiy-Poor-Verdu, IT'11)




Background: Multi-terminal Channels

e Feedback does increase capacity; e.g. (among many others):

Multiple-access channels (Gaarder-Wolf, IT'75)
Broadcast channels (Ozarow & Leung-Yan-Cheong, IT 84)
Wiretap channels (Leung-Yan-Cheong, PhD Thesis’ 76)

Relay channels (Willems-Van der Meulen, IT' 83)
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Interference in Wireless Networks

» Broadcast nature of wireless medium
» Spectrum reuse » interference is unavoidable

» Fundamental barrier to spectral efficiency




Two-User Gaussian Interference Channel
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» Canonical model for interfering users
» Static setting: SNR, INR fixed throughout communication

» Capacity region is unknown




Degrees of Freedom

Point-to-Point AWGN Channel

Y =+VSNRX + N 1X?% <1, N~N(0,1)
C = 2 log(1 4 SNR)
DoF = lim < ¢
SNR—o0 3 log(SNR)
=1

DoF is a measure of how capacity scales with SNR.




Generalized Degrees of Freedom

Normalization (per-user) Sum-rate

‘ max (R; + R»)
lim sup —
SNR-3~ 5 l()g(SNR)

log(INR) Interference free rate
log(SNR)

N

Interference parameter

» GDoF captures behavior when SNR, INR are high

» System is constrained by interference (not by noise)
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GDoF without Feedback

GDoF A
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» GDoF is a W-curve [Etkin-Tse-Wang IT 08]

» Saturates beyond 2 [very-high interference]

11

11


file://localhost/Users/ravitandon/Desktop/Keynoteworkpics/Smiley-sceptic.svg
file://localhost/Users/ravitandon/Desktop/Keynoteworkpics/Smiley-sceptic.svg

GDoF with Feedback
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» GDoF is a V-curve [Suh-Tse, [T"11]

» Increasing beyond 2 [very-high interference].
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Why Feedback Helps
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Intuition Via Linear Deterministic Model
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» Approximation for Gaussian Interference Channel
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Achieving 3/2 (per-user) with Feedback
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Achieving 3/2 (per-user) with Feedback
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Achieving 3/2 (per-user) with Feedback
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Achieving 3/2 (per-user) with Feedback
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Feedback Provides Alternative Path to Rx
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Natural Questions

Q1: Do these results extend to more than two users?

QZ2: If yes, how much does feedback help?

Q3: Dependence of feedback gains on network topology?
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Natural Questions

Q1: Do these results extend to more than two users?

A1: Yes, to (at least) fully connected and ring networks.

QZ2: If yes, how much does feedback help?

AZ2: Sometimes, feedback provides unbounded gains.

Q3: Dependence of feedback gains on network topology?

A3: In general, feedback gain depends on topology.
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Fully Connected K-user Interference Channel
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» Natural generalization of 2-user IC
» Every base-station interferes with every user
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Cyclic K-user Interference Channel
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» Inspired by Wyner model for cellular network
» BS k interferes with user (k-1)
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Known Results: GDoF without Feedback

Fully Connected IC [ Jafar-Viswanath, |T"10]

(1—a, a€l0,1/2)
a, o €[1/2,2/3)
GDoFNeFB () = J ():/Qi a €(2/3,1)
1/, o =
l—a/2, a€e(l,2)
\1 o > 2

Cyclic IC [Zhou-Yu, T3]

(1—a, a€l0,1/2)
v, a €[1/2,2/3)
1 No-FB . ¢ ¢
GDOF(-vm_h-(, (()1) = < ()1/2, Q€ 2/3 1)
1—(}:/2, o € 12)
L 1, k 2 2.
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Our Contribution: GDoF with Feedback

Fully Connected IC [ Mohajer-Tandon-Poor IT’ | 3]

(1—a/2, ael0,1)
GDoFsi(a) = 1/K, a=1
/2, a € (1, 00).

Cyclic IC [Tandon-Mohajer-Poor IT*1 3]

(1-a+, a€l0,1/2)
a4+ = a €(1/2,2/3)
GDoF(,..(a) = S a/2, a € [2/3,1)
1—a/2, a € [1,2)
1+ %=, a>2.
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GDoF Curves with and without Feedback

GDoF )\ .
(per-user)| With-feedback

Fully Connected IC

Feedback gain independent of K

Per-user feedback gain is independent of K.
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GDoF Curves with and without Feedback
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Feedback gain depends on K

No-feedback

CIT= R

Per-user feedback gain depends on K.
As K increases, V-curve ---» W-Curve
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3-user Fully Connected Interference Channel
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Can feedback help in transmission of 3 bits
per user in 2 channel uses ?
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Coding Scheme: Main Idea
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Transmitters decode net-interference viafFeedback
Interference at t=2 should be the same as the clean signal at t=1.




Translation to the Gaussian Model
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Nested Lattice Codes for interference alignment.

Decoding of lattice codeword(s) — cancel off to decode signal.
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Summary: Static Interference Channels

» Feedback can help exploit alternative paths to the receivers
» Significant capacity gains possible
» Connections of feedback gains to network topology

» More interference does necessarily imply less feedback gain
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Interference Mitigation via MIMO

» Downlink multi-user MIMO (spatial multiplexing)
» Inter-cell interference mitigation
» Coordinated multi-point (CoMP in LTE)

» Key enabler in all approaches:

» Accurate & timely channel knowledge at transmitter(s)
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Focus: K-user Downlink MISO
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Perfect Channel Knowledge

Degrees of Freedom = K

No Channel Knowledge

Degrees of Freedom =1
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Focus: K-user Downlink MISO

Perfect Channel Knowledge
Degrees of Freedom = K

K antennas

T % T )) I o Delayed Chanr;l Knowledge
A {

No Channel Knowledge

Degrees of Freedom =1

a—{ e
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Basic Model: Two-user Downlink MISO

Perfect Channel Knowledge— DoF = 2

Delayed Channel Knowledge

A ?

No Channel Knowledge— DoF =1
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Basic Model: Two-user Downlink MISO

Perfect Channel Knowledge— DoF = 2

[ Delayed Channel Knowledge— DoF = 4/3 ]

[Maddah-Ali, Tse IT"12]

No Channel Knowledge— DoF =1
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Usefulness of Delayed Channel Knowledge
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33% gain! [Maddah-AliTse IT'12]
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K-user Downlink MISO

; Perfect Channel Knowledge

K antennas Degrees of Freedom = K

Y Y -YY ) ) ; [Maddah-Ali, Tse IT’12]

1 Delayed Channel Knowledge
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Returning to the Two-user Downlink MISO

Perfect Channel Knowledge— DoF = 2

(from both users)

Delayed Channel Knowledge— DoF = 4/3

(from both users)

No Channel Knowledge— DoF =1

In practice, feedback quality and delay may vary across users.
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Heterogenous Channel Knowledge
[ Tandon, Maddah-Ali, Tulino, Poor, Shamai - ISWCS’ 2]

Feedback quality & delay can vary across users.

([-_) ‘

Perfect
Perfect CSI from both Rx.

1 i

<

Partially Perfect C?SI)

\ rq 13
\ 2

No CSI =—— Delayed CSI from both Rx.

Delayed 1 (.I]

Maximum sum-DoF is at (I, 1/2) with partially perfect CSI.

4]
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Achieving Maximum Sum-DoF of 3/2

Low feedback delay Perfect
2 1
-
a
a2
(o +sayes
High feedback delay Delayed e _,x’
TA1 F DA orreerereeenneiineiiiieiiieenneennns pp —‘r;move
G[1] =[7 5] I
b

Degrees-of-Freedom = 3/2
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Heterogeneous Channel Knowledge: General Result
[ Tandon, Maddah-Ali, Tulino, Poor, Shamai - ISWCS’ 2]

DoF Region of (M, N1, No) MIMO BC with Partial CSI

Perfect CSI from Rx |.

J) M
/ - dl S min(M, Nl) A

<
Y
M s d: l d _,
Y (P min(M, N1 + No)  min(M, Ny) =
/ A . J
v | N9
\—/

Delayed CSI from Rx 2.
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Spatio-temporal Variation: Alternating CSIT

Feedback quality/delay can vary across users and over time:

Perfect Delayed Perfect
<

<

< <

Perfect
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Alternating CSIT

» Motivation:

» Time-varying nature of wireless channels
» Feedback frequency can vary across users and in time
» CSIT acquisition can be deliberately varied (as a design parameter)

» Challenges & Benefits:

» Some non-alternating problems are open (optimal DoF not known)
» Can be solved under the lens of alternating CSIT
» Alternation can provide significant gains
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An Example: P-D and D-P

Optimal DoF = 2 Perfect Delayed Optimal DoF = 2
(

<€
Delayed Perfect

2 . . ] ]
3rd fraction of time. %rd fraction of time.

We ask: what is the optimal DoF ? Clearly optimal DoF > % X %—i—

NGV
N

W=

Optimal DoF = 44% gain

W|O
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Key Idea: Code Across Multiple CSIT States

t =1
Perfect .. Perfect
a1 + 2az
o
2.
\“%’
Delayed = el Delayed

[Interference alignment at Rx 2]

Degrees of Freedom =2 44% gain beyond 3/2
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General Result: Alternating CSIT

» 9 States: PP, PD, DP, PN, NP, DN, ND, DD, NN
Fraction of occurrence A, 1,; I1,Io € {P,D, N}

211,12 )\IlIQ — ]‘ >\11[2 — >\Igll

Ap = App + App + Apn
Ap = App + App + ADN.

dy oo T2 X pridp
g J

On the Synerqistic Benefits of Alternating CSIT for the MISO BC
Tandon-Jafar-Shamai-Poor, IT (to appear)
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http://www.ece.vt.edu/tandonr/ACSIT-IT-Final.pdf
http://www.ece.vt.edu/tandonr/ACSIT-IT-Final.pdf

Tradeoff: Delayed vs Perfect Knowledge

1/3
1/4
1/5
1/6
/\rgin

3 < DoF <2

min ymin\ _ (3DoF —4 2—DoF
(/\P ?/\D )_( ) 3 2 )

2 :
S5O 1

On the Synerqistic Benefits of Alternating CSIT for the MISO BC
Tandon-Jafar-Shamai-Poor, IT (to appear)
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Extension: K-user Downlink MISO

M antennas

|afhag)

A

'
:

Maximum possible sum DoF = min(M, K)

Minimum perfect CSIT to achieve maximum sum

K users

-

\_

DoF:
N
4 - 0. min(M.K) =1
A(M,K) = L Bamss e
( +) {”““"I'\\,['h". min(M, K) > 1.
J

Open problems:

What is the minimum perfect CSIT to achieve

arbitrary DoF !

What are the tradeoffs among perfect/delayed/no
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Beyond Delayed Channel Knowledge
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Transmit

o

Beyond Delayed Channel Knowledge

H[t [ halt)  ha(t) | [ 2 ] + 14 (t)
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Transmit

]

Beyond Delayed Channel Knowledge

If, in addition to channel state,
transmitter also has outputs ...
does DoF increase?
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Transmit

]

Beyond Delayed Channel Knowledge

If, in addition to channel state,

does DoF increase?

Answer: No!

Output Feedback + Delayed CSI| = Delayed CSI
[Maddah-Ali, Tse IT’12]
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Beyond Delayed Channel Knowledge

Transmit HJt To
. If, in addition to channel state,
[ 2 ] ? transmitter also has outputs ...
cil does DoF increase?

Answer: No!

Output Feedback + Delayed CSI| = Delayed CSI
[Maddah-Ali, Tse IT’12]

(But for the MIMO interference channel the answer is yes.)
[ Tandon-Mohajer-Poor-Shamai, IT’ | 3]
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Summary: MISO Fading Broadcast Channels

» Channel state information via feedback
» Retrospective interference alignment

» Advantages of spatio-temporal variability of channel knowledge
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