Feedback in Wireless Networks Recent Results and Discoveries

Vince Poor (poor@princeton.edu)

Joint work with Ravi Tandon, et al.

Supported in part by the AFOSR under MURI Grant W911NF-11-1-0036.

Outline

- Background
 - Point-to-point channels
 - Multi-terminal channels
- Static Interference Channels
 - Why feedback helps
 - Feedback gain for many-user interference channels
- Fading MISO Broadcast Channels
 - The effects of channel state feedback
 - Spatio-temporal variation in channel state feedback

Outline

- Background
 - Point-to-point channels
 - Multi-terminal channels
- Static Interference Channels
 - Why feedback helps
 - Feedback gain for many-user interference channels
- Fading MISO Broadcast Channels
 - The effects of channel state feedback
 - Spatio-temporal variation in channel state feedback

Background: Point-to-Point Channels

Infinite blocklengths:

- Feedback does not increase capacity (Shannon, IT'56)
- But, feedback can speed-up the convergence of the error probability to zero (Schalkwijk-Kailath, IT'66)

Finite blocklengths:

Feedback can dramatically improve the maximal achievable rate (Polyanskiy-Poor-Verdu, IT'11)

Background: Multi-terminal Channels

- Feedback does increase capacity; e.g. (among many others):
 - Multiple-access channels (Gaarder-Wolf, IT'75)
 - Broadcast channels (Ozarow & Leung-Yan-Cheong, IT'84)
 - Wiretap channels (Leung-Yan-Cheong, PhD Thesis' 76)
 - Relay channels (Willems-Van der Meulen, IT'83)

Outline

- Background
 - Point-to-point channels
 - Multi-terminal channels
- Static Interference Channels
 - Why feedback helps
 - Feedback gain for many-user interference channels
- Fading MISO Broadcast Channels
 - The effects of channel state feedback
 - Spatio-temporal variation in channel state feedback

Interference in Wireless Networks

- ▶ Broadcast nature of wireless medium
- ▶ Spectrum reuse interference is unavoidable
- ▶ Fundamental barrier to spectral efficiency

Two-User Gaussian Interference Channel

- Canonical model for interfering users
- ▶ Static setting: SNR, INR fixed throughout communication
- Capacity region is unknown

Degrees of Freedom

Point-to-Point AWGN Channel

$$Y = \sqrt{\text{SNR}}X + N$$
 $\mathbb{E}[X^2] \le 1, \quad N \sim \mathcal{N}(0, 1)$
$$C = \frac{1}{2}\log(1 + \text{SNR})$$

$$\text{DoF} = \lim_{\text{SNR} \to \infty} \frac{C}{\frac{1}{2}\log(\text{SNR})}$$

$$= 1$$

DoF is a measure of how capacity scales with SNR.

Generalized Degrees of Freedom

- ▶ GDoF captures behavior when SNR, INR are high
- System is constrained by interference (not by noise)

GDoF without Feedback

- ▶ GDoF is a W-curve [Etkin-Tse-Wang IT'08]
- Saturates beyond 2 [very-high interference]

GDoF with Feedback

- ▶ GDoF is a V-curve [Suh-Tse, IT'11]
- ▶ Increasing beyond 2 [very-high interference].

Intuition Via Linear Deterministic Model

Linear Deterministic Interference Channel

$$y_1 = \lfloor 2^n x_1 \rfloor \oplus \lfloor 2^m x_2 \rfloor$$
$$y_2 = \lfloor 2^m x_1 \rfloor \oplus \lfloor 2^n x_2 \rfloor$$

Approximation for Gaussian Interference Channel

Feedback Provides Alternative Path to Rx

Natural Questions

Q1: Do these results extend to more than two users?

Q2: If yes, how much does feedback help?

Q3: Dependence of feedback gains on network topology?

Natural Questions

- Q1: Do these results extend to more than two users?
- A1: Yes, to (at least) fully connected and ring networks.
- Q2: If yes, how much does feedback help?
- A2: Sometimes, feedback provides unbounded gains.
- Q3: Dependence of feedback gains on network topology?
- A3: In general, feedback gain depends on topology.

Fully Connected K-user Interference Channel

- ▶ Natural generalization of 2-user IC
- ▶ Every base-station interferes with every user

Cyclic K-user Interference Channel

- ▶ Inspired by Wyner model for cellular network
- ▶ BS k interferes with user (k-1)

Known Results: GDoF without Feedback

Fully Connected IC [Jafar-Viswanath, IT'10]

$$GDoF_{FC}^{No-FB}(\alpha) = \begin{cases} 1 - \alpha, & \alpha \in [0, 1/2) \\ \alpha, & \alpha \in [1/2, 2/3) \\ \alpha/2, & \alpha \in [2/3, 1) \\ 1/K, & \alpha = 1 \\ 1 - \alpha/2, & \alpha \in (1, 2) \\ 1, & \alpha > 2. \end{cases}$$

Cyclic IC [Zhou-Yu, IT'13]

$$GDoF_{Cyclic}^{No-FB}(\alpha) = \begin{cases} 1 - \alpha, & \alpha \in [0, 1/2) \\ \alpha, & \alpha \in [1/2, 2/3) \\ \alpha/2, & \alpha \in [2/3, 1) \\ 1 - \alpha/2, & \alpha \in [1, 2) \\ 1, & \alpha \ge 2. \end{cases}$$

Our Contribution: GDoF with Feedback

Fully Connected IC [Mohajer-Tandon-Poor IT'13]

$$GDoF_{FC}^{FB}(\alpha) = \begin{cases} 1 - \alpha/2, & \alpha \in [0, 1) \\ 1/K, & \alpha = 1 \\ \alpha/2, & \alpha \in (1, \infty). \end{cases}$$

Cyclic IC [Tandon-Mohajer-Poor IT'13]

$$GDoF_{Cyclic}^{FB}(\alpha) = \begin{cases} 1 - \alpha + \frac{\alpha}{K}, & \alpha \in [0, 1/2) \\ \alpha + \frac{2-3\alpha}{K}, & \alpha \in [1/2, 2/3) \\ \alpha/2, & \alpha \in [2/3, 1) \\ 1 - \alpha/2, & \alpha \in [1, 2) \\ 1 + \frac{\alpha-2}{K}, & \alpha \ge 2. \end{cases}$$

GDoF Curves with and without Feedback

Per-user feedback gain is independent of K.

GDoF Curves with and without Feedback

Per-user feedback gain depends on K. As K increases, V-curve ·---> W-Curve

3-user Fully Connected Interference Channel

Can feedback help in transmission of 3 bits per user in 2 channel uses?

Coding Scheme: Main Idea

Transmitters decode net-interference viafFeedback Interference at t=2 should be the same as the clean signal at t=1.

Translation to the Gaussian Model

Sum of two-(or more)-codewords should be a codeword.

Nested Lattice Codes for interference alignment.

Decoding of lattice codeword(s) \longrightarrow cancel off to decode signal.

Summary: Static Interference Channels

▶ Feedback can help exploit alternative paths to the receivers

Significant capacity gains possible

▶ Connections of feedback gains to network topology

▶ More interference does not necessarily imply less feedback gain

Outline

- Background
 - Point-to-point channels
 - Multi-terminal channels
- Static Interference Channels
 - Why feedback helps
 - Feedback gain for many-user interference channels
- Fading MISO Broadcast Channels
 - The effects of channel state feedback
 - Spatio-temporal variation in channel state feedback

Interference Mitigation via MIMO

- Downlink multi-user MIMO (spatial multiplexing)
- Inter-cell interference mitigation
- ▶ Coordinated multi-point (CoMP in LTE)
- ▶ Key enabler in all approaches:

▶ Accurate & timely channel knowledge at transmitter(s)

Focus: K-user Downlink MISO

Perfect Channel Knowledge

 ${\sf Degrees\ of\ Freedom}=K$

No Channel Knowledge

Degrees of Freedom = 1

Focus: K-user Downlink MISO

Perfect Channel Knowledge

 ${\sf Degrees\ of\ Freedom}=K$

Delayed Channel Knowledge

No Channel Knowledge

Degrees of Freedom = 1

Basic Model: Two-user Downlink MISO

Perfect Channel Knowledge— DoF = 2

Delayed Channel Knowledge

No Channel Knowledge— DoF = 1

Basic Model: Two-user Downlink MISO

Perfect Channel Knowledge— DoF = 2

Delayed Channel Knowledge- DoF = 4/3

[Maddah-Ali, Tse IT'12]

No Channel Knowledge— DoF = 1

Usefulness of Delayed Channel Knowledge remove

38

K-user Downlink MISO

Perfect Channel Knowledge

Degrees of Freedom = K

[Maddah-Ali, Tse IT'12]

Delayed Channel Knowledge

Degrees of Freedom
$$= \frac{K}{1+\frac{1}{2}+\ldots+\frac{1}{K}}$$
 $\approx \frac{K}{\log(K)}$

No Channel Knowledge

 ${\sf Degrees\ of\ Freedom}=1$

Returning to the Two-user Downlink MISO

Perfect Channel Knowledge— DoF = 2 (from both users)

Delayed Channel Knowledge— ${\sf DoF}=4/3$ (from both users)

No Channel Knowledge- DoF = 1

In practice, feedback quality and delay may vary across users.

Heterogenous Channel Knowledge

[Tandon, Maddah-Ali, Tulino, Poor, Shamai - ISWCS' 12]

Feedback quality & delay can vary across users.

Maximum sum-DoF is at (I, I/2) with partially perfect CSI.

Achieving Maximum Sum-DoF of 3/2

Heterogeneous Channel Knowledge: General Result

[Tandon, Maddah-Ali, Tulino, Poor, Shamai - ISWCS' 12]

DoF Region of (M, N_1, N_2) MIMO BC with Partial CSI

Perfect CSI from Rx I.

$$\frac{d_1 \le \min(M, N_1)}{\min(M, N_1 + N_2)} + \frac{d_2}{\min(M, N_2)} \le 1.$$

Spatio-temporal Variation: Alternating CSIT

Feedback quality/delay can vary across users and over time:

Time

Alternating CSIT

Motivation:

- Time-varying nature of wireless channels
- Feedback frequency can vary across users and in time
- ▶ CSIT acquisition can be deliberately varied (as a design parameter)

Challenges & Benefits:

- ▶ Some non-alternating problems are open (optimal DoF not known)
- Can be solved under the lens of alternating CSIT
- Alternation can provide significant gains

An Example: P-D and D-P

Optimal DoF = $\frac{3}{2}$

 $\frac{2}{3}$ rd fraction of time.

Delayed

Optimal DoF = $\frac{3}{2}$

 $\frac{1}{3}$ rd fraction of time.

We ask: what is the optimal DoF?

Clearly optimal DoF $\geq \frac{2}{3} \times \frac{3}{2} + \frac{1}{3} \times \frac{3}{2} = \frac{3}{2}$

Optimal DoF =
$$\frac{5}{3}$$
 44% gain

Key Idea: Code Across Multiple CSIT States

General Result: Alternating CSIT

▶ 9 States: PP, PD, DP, PN, NP, DN, ND, DD, NN

Fraction of occurrence $\lambda_{I_1I_2}$; $I_1, I_2 \in \{P, D, N\}$

$$\sum_{I_1,I_2} \lambda_{I_1 I_2} = 1$$
 $\lambda_{I_1 I_2} = \lambda_{I_2 I_1}$

$$d_1 \le 1$$

$$d_2 \le 1$$

$$d_1 + 2d_2 \le 2 + \lambda_P$$

$$2d_1 + d_2 \le 2 + \lambda_P$$

$$d_1 + d_2 \le 1 + \lambda_P + \lambda_D$$

$$\lambda_P \triangleq \lambda_{PP} + \lambda_{PD} + \lambda_{PN}$$
$$\lambda_D \triangleq \lambda_{DD} + \lambda_{PD} + \lambda_{DN}.$$

On the Synergistic Benefits of Alternating CSIT for the MISO BC

Tandon-Jafar-Shamai-Poor, IT (to appear)

Tradeoff: Delayed vs Perfect Knowledge

On the Synergistic Benefits of Alternating CSIT for the MISO BC

Tandon-Jafar-Shamai-Poor, IT (to appear)

Extension: K-user Downlink MISO

Maximum possible sum DoF = min(M, K)

Minimum perfect CSIT to achieve maximum sum DoF:

K users

$$\lambda^*(M,K) = \begin{cases} 0, & \min(M,K) = 1 \\ \frac{\min(M,K)}{K}, & \min(M,K) > 1. \end{cases}$$

Open problems:

What is the minimum perfect CSIT to achieve arbitrary DoF?

What are the tradeoffs among perfect/delayed/no CSIT ?

If, in addition to channel state, transmitter also has outputs ... does DoF increase?

If, in addition to channel state, transmitter also has outputs ... does DoF increase?

Answer: No!

Output Feedback + Delayed CSI = Delayed CSI

[Maddah-Ali, Tse IT'12]

If, in addition to channel state, transmitter also has outputs ... does DoF increase?

Answer: No!

Output Feedback + Delayed CSI = Delayed CSI

[Maddah-Ali, Tse IT'12]

(But for the MIMO interference channel the answer is yes.) [Tandon-Mohajer-Poor-Shamai, IT'13]

Summary: MISO Fading Broadcast Channels

- ▶ Channel state information via feedback
- ▶ Retrospective interference alignment
- ▶ Advantages of spatio-temporal variability of channel knowledge

Summary

- Background
 - Point-to-point channels
 - Multi-terminal channels
- Static Interference Channels
 - Why feedback helps
 - Feedback gain for many-user interference channels
- Fading MISO Broadcast Channels
 - The effects of channel state feedback
 - Spatio-temporal variation in channel state feedback