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WinZip and LZ77

WinZip is based on LZ77, a lossless compression method
proposed by Lempel & Ziv [1977].
Compression is achieved by replacing repeated segments in
the data with pointers. To avoid deadlock an uncoded
symbol is added to each pointer.

Example LZ77:

rbadacarba

a b r a c a d a b r a
arbadacarba

a b r a c a d a b r a
arbadacarba

a b r a c a d a b r a
arbadacarba

outputlook-ahead buffersearch buffer
(0,-,a)

(0,-,b)
(0,-,r)
(3,1,c)
(2,1,d)
(7,4, )

a

Question: Why does this method work? Note that the statistics of
the data are unknown!
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Waiting Times

Consider the discrete stationary and ergodic process

· · · ,X−3,X−2,X−1,X0,X1,X2, · · · .

Suppose that X1 = x for symbol-value x ∈ X with Pr{X1 = x} > 0. We
say that the waiting time of the x that occurred at time t = 1 is m if
X1−m = x and Xt 6= x for t = 2−m, · · · , 0.

X−3

@@

X−2 X−1 X0 X2X1

= x6= x 6= x6= x= x

m = 4
��	

Let Qx(m) be the conditional probability that the waiting time of the x
occurring at t = 1 is m. Hence

Qx(m)
∆
= Pr{X1−m = x ,X2−m 6= x , · · · ,X0 6= x |X1 = x}.

The average waiting time for symbol-value x with Pr{X1 = x} > 0 is
defined as

T (x)
∆
=

∑
m=1,2,···

mQx(m).
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Kac’s Result

Example: Consider an i.i.d. (binary) process and assume that
Pr{X1 = 0} = p > 0. Then

Q0(m) = p(1− p)m−1 and

T (0) =
∑

m=1,2,···

mp(1− p)m−1 =
1

p
.

Theorem (Kac,1947)

For stationary and ergodic processes

T (x) =
1

Pr{X1 = x} , (1)

for any x with Pr{X1 = x} > 0.
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Kac’s Result for Sliding Blocks

Let L be a positive integer.
When · · · ,X−1,X0,X1,X2, · · · is stationary and ergodic, then also

· · · ,


X−1

X0

...
XL−2

 ,


X0

X1

...
XL−1

 ,


X1

X2

...
XL

 ,


X2

X3

...
XL+1

 , · · ·

is stationary and ergodic.
Therefore Kac’s result holds also for ”sliding” L-blocks, hence

T ((x1, x2, · · · , xL)) =
1

Pr{(X1,X2, · · · ,XL) = (x1, x2, · · · , xL)
,

if Pr{(X1,X2, · · · ,XL) = (x1, x2, · · · , xL)} > 0.
Now a waiting time equal to m implies that m is the smallest positive
integer such that (x1−m, x2−m, · · · , xL−m) = (x1, x2, · · · , xL).
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Universal Source Coding Based on Waiting Times

Suppose that our source is binary i.e. Xt ∈ {0, 1} for all integer t.

‖

@@��	

x−6 x−5 x−4 x−3 x−2 x−1 x0

x3x2

x3x2x1

x1

x−7

m = 4

‖ ‖

An encoder wants to transmit a source block xL
1

∆
= (x1, x2, · · · , xL) to a

decoder. Both encoder and decoder have access to buffers containing all
previous source symbols · · · , x−2, x−1, x0.
Using these previous source symbols the encoder can determine the waiting
time m of xL

1 . It is the smallest integer m that satisfies

xL−m
1−m = xL

1 ,

where xL−m
1−m

∆
= (x1−m, x2−m, · · · , xL−m).
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Universal Source Coding Based on Waiting Times (cont.)

Waiting time m is encoded and sent to the decoder. The code for m
consists of a preamble p(m) and an index i(m) and has length l(m). Code
table for the waiting time m for L = 3:

m p(m) i(m) l(m)
1 00 - 2+0=2
2 01 0 2+1=3
3 01 1 2+1=3
4 10 00 2+2=4
5 10 01 2+2=4
6 10 10 2+2=4
7 10 11 2+2=4
≥ 8 11 copy of x1x2x3 2+3=5

After decoding m the decoder can reconstruct xL
1 using the previous source

symbols
For arbitrary L we get index lengths 0, 1, · · · , L− 1 and a “copy”-code
with length L. We use a preamble p(m) of dlog2(L + 1)e bits to specify
one of these L + 1 alternatives.
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Universal Source Coding Based on Waiting Times (cont.)

For arbitrary L we get for the code-block length l(m)

l(m) =

{
dlog2(L + 1)e+ blog2 mc if m < 2L,

dlog2(L + 1)e+ L if m ≥ 2L.

This results in the upper bound

l(m) ≤ dlog2(L + 1)e+ log2 m. (2)

After processing the block xL
1 both the encoder and decoder can update

their buffers. Then the next block

x2L
L+1

∆
= xL+1, xL+2, · · · , x2L

is processed in a similar way, etc.

Note: Buffers need only contain the previous 2L − 1 source symbols!
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Analysis of the Waiting-Time Algorithm

Assume that a certain xL
1 occurred as first block. What is then the average

codeword length L(xL
1 ) for xL

1 ?

L(xL
1 ) =

∑
m=1,2,···

QxL1
(m)l(m)

(a)

≤
∑

m=1,2,···

QxL1
(m)dlog2(L + 1)e+

∑
m=1,2,···

QxL1
(m) log2 m

(b)

≤ dlog2(L + 1)e+ log2

( ∑
m=1,2,···

mQxL1
(m)

)
(c)
= dlog2(L + 1)e+ log2

1

Pr{X L
1 = xL

1 }
.

Here (a) follows from the bound (2) on l(m), (b) from Jensen’s inequality
E [log2 M] ≤ log2 E [M] since the log is a convex-∩ function. Furthermore
(c) follows from Kac’s theorem (1).
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Analysis of the Waiting-Time Algorithm (cont.)

The probability that xL
1 occurred as first block is Pr{X L

1 = xL
1 }. For the

average codeword length L(X L
1 ) we therefore get

L(X L
1 ) =

∑
xL1

Pr{X L
1 = xL

1 }L(xL
1 )

≤
∑
xL1

Pr{X L
1 = xL

1 }
(
dlog2(L + 1)e+ log2

1

Pr{X L
1 = xL

1 }

)
= dlog2(L + 1)e+ H(X L

1 ).

For the rate RL we now obtain

RL =
L(X L

1 )

L
≤ H(X L

1 )

L
+
dlog2(L + 1)e

L
.
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Achieving Entropy

First note that

lim
L→∞

H(X L
1 )

L
∆
= H∞(X )

and

lim
L→∞

dlog2(L + 1)e
L

= 0.

Theorem (W., 1986, 1989)

The Waiting-Time Algorithm achieves entropy since

lim
L→∞

RL = lim
L→∞

(
H(X L

1 )

L
+
dlog2(L + 1)e

L

)
= H∞(X ).

Note: This algorithm is universal. Although the statistics of the source
are unknown, entropy is achieved.
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Relation Waiting Times and Entropy

Again assume that · · · ,X−1,X0,X1,X2, · · · is stationary and ergodic with
entropy H∞(X ). Let the random variable M be the waiting time of the
source block X L

1 .

Theorem (Wyner & Ziv, 1989)

Fix an ε > 0. Then

lim
L→∞

Pr
{
M ≥ 2L(H∞(X )+ε)

}
= 0.

This result was crucial in proving that the LZ77 algorithm achieves entropy
(Wyner & Ziv [1994]).
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