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President’'s Column

Last January, when I sat down to write my

first column as President of the Informa-

tion Theory Society, I asked for your help

on a monumental task. In that column, I set

forth the goal of increasing public awareness

about information theory, argued for the im-

portance of this mission, and noted that we

are the right ones—perhaps the only ones—

to make that goal a reality. I suggested that

we teach children about Shannon so that they

can be inspired by his example and under-

stand that math is a powerful tool with which

they too can transform the world. I proposed

that we communicate our results beyond

our Transactions and our own community’s

events so that researchers from other fields

can learn enough about what we do to discover connections
with their own interests. I advocated that we talk about our
ideas in the popular press so that the public can understand
the impact of our past accomplishments and the potential of
our future work.

The goals that I set forth are long term endeavors. I write to-
day, in mid-October, to report on how far we have come in the
intervening months and to look forward to where we might
go in the future.

The ad-hoc committee for Broader Outreach, led by Chris-
tina Fragouli, manned by Ruediger Urbanke, Lav Varshney,
Sergio Verdd, and myself, and supported by a wide base of
Society members, has been hard at work at making the goal
of broad outreach a reality. Since Shannon’s 100th birthday
presents a rare and important opportunity to draw attention
to the field and the people who make it happen, the com-
mittee’s focus to date is on events and initiatives to mark
Shannon’s centennial.

We are moving forward on the Shannon Documentary, which
we hope to have completed and signed for broad distribu-

Michelle Effros

tion by the end of 2016. The filmmaker Mark
Levinson, working in consultation with
Sergio Verdd, has written a first draft of a
“treatment”—a sort of outline used in lieu
of a script when making a documentary. The
process of reviewing and revising that treat-
ment with input from the committee and oth-
er experts is currently underway.

Our fund raising efforts for the documenta-
ry are in full swing. To date, we have raised
over 2/3 of the projected budget. We would
love to receive the support of individuals and
institutions to bridge the gap and make this
once-in-a-century opportunity a reality. Do-
nations for the project can be made at the
IEEE Foundation’s project webpage https:/ /ieeefoundation.
org/ClaudeShannon. We look forward to publicly thanking
the generous donors who are making this once-in-a-hundred-
year opportunity a reality. (Anonymous donations are also
possible. Please note the desire to maintain anonymity with
your donation if that is your preference.)

The committee is working to seed and support Shannon Day
events at institutions around the world. A variety of mate-
rials are being created and shared to amplify the efforts of
all of our volunteers and make hosting a Shannon Day event
at your institution as easy as possible. A Shannon Day logo,
crowdsourced for these events, now graces our website and
this Newsletter. Using this logo on publicity materials for
events around the world will help unify these activities. Post-
ers describing both Shannon’s life and key technical prob-
lems in information theory are under preparation by a team
of volunteers. Erdal Arikan, German Bassi, Vijay Gupta, Al
Hero, Nicolas Macris, Anna Scaglione, Lalitha Sankar, Aslan
Tchamkerten, Lav Varshney, and Aylin Yener are leading
the efforts on posters with topics ranging from Shannon’s
biography to source coding, channel coding, and quantum
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From the Editor

Dear colleagues,

In our fourth issue for 2015 we open with
Michelle Effos’s last column as President
of the IT Society. Please join me in thank-
ing Michelle for her dedication and inspir-
ing leadership over the past year, and in
warmly welcoming our incoming Presi-
dent Alon Orlitsky. The upcoming year of
2016 is one of festivity for our community.
I am eagerly looking forward to reporting
on the workshops, seminars, and events
now in preparation for The Shannon Cen-
tenary, events that will surely touch our
society as well as reach out and influence
societies beyond our own.

The current issue opens with a number
of excellent technical contributions. We
start with an outstanding contribution by
this years Shannon Award winner Robert
Calderbank summarizing his Shannon
Lecture “The Art of Signaling”, presented
in ISIT over the summer, which beautifully
links between binary and Euclidean geom-
etry through the lens of Fourier analysis.
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We follow by a contribution from Alexander Barg and Itzhak
Tamo, this years recipients of the IT Society Paper Award for
the paper “A Family of Optimal Locally Recoverable Codes,”
which summarizes their elegant algebraic constructions
alongside several extensions, connections, and applications.
We conclude with two excellent surveys summarizing tuto-
rial sessions presented in ISIT this summer. Mohammad Ali
Maddah-Ali and Urs Niesen present the intriguing possibili-
ties and challenges in the context of Cache Networks in their
survey “Cache Networks: An Information-Theoretic View”.
Maxim Raginsky and Igal Sason present a comprehensive
survey on concentration inequalities with a list of informa-
tion theoretic applications in their article “Concentration of Measure Inequalities and
Their Communication and Information-Theoretic Applications”. I greatly thank the au-
thors, on behalf of the newsletter editorial board, for their significant efforts in preparing
these excellent contributions, which may expose us all to new and exciting fields of study.

The body of this issue also includes our recurring contributions alongside reports and
announcements. Many thanks to Tony Ephremides for preparing the Historian’s Column
and to Sol Golomb for preparing his Puzzle Column. In continuation of our efforts to reach
out to the students of our society, the “Students” Corner” is an attempt to bring forward
contributions “by students-for students” allowing students to share their experiences and
perspective on our community. Thanks to Jonathan Scarlett who generously wrote this is-
sue’s column. Thanks to Yuval Kochman, the chair of the IEEE Israel Section Chapter, for
writing this issue’s column “From the field” which regularly includes reports on exciting
local events and initiatives form our chapters worldwide.

continued on page 23
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The Art of Signaling

I had listened to many Shannon lectures without appreciating
how hard it is to tell a technical story that is personal and
broadly accessible. I know that I rarely follow a technical talk
from start to finish, and sol wanted to tell a sequence of techni-
cal stories with a common thread but different enough to pro-
vide the audience with opportunities to reconnect. I was mindful
that the audience would be quite diverse, but I thought all would
be familiar with Fourier analysis, and that I could build out
from Fourier analysis in the binary world.

1. Fourier Analysis in the Binary World

Philippe Delsarte is an extraordinary Belgian electrical engineer,
he was employed by Philips, and his thesis [1], published in
1973, transformed the field of coding theory leading to the fa-
mous linear programming bounds on achievable rate.

If you are familiar with the duality between time and frequency
in the continuous world, then you will know that sinusoids are
eigenfunctions of time shifts. Delsarte’s thesis opened the door to
a parallel universe, where there are binary counterparts of time
and frequency shifts that are interchanged by the Walsh-Had-
amard transform, a matrix that plays the same role as the Fourier
transform in classical analysis. The binary counterparts of sinu-
soids are called Walsh functions, known to coding theorists as
the codewords in the 1st order Reed Muller code.

Set N = 2". The Heisenberg-Weyl group HWy is a remarkable
group of N X N matrices that provides the framework for Fou-
rier analysis in the binary world. When m = 1, the group H, is
just the symmetry group of the square, generated by the matrices

1 1
and z=
of ==y

X =

0
1]. The Walsh-Hadamard matrix

H21[+ +] where +, — represent 1, -1
o) /TP o

We view the symmetry x as a binary time shift; indexing rows and
columns by 0 and 1, this matrix represents adding 1 modulo 2.
The lines B; and B, are eigenvectors of the time shift x, and we
view them as binary sinusoids. The symmetry z then becomes a
binary frequency shift. The lines A; and A, are eigenvectors of z,
and we view them as Dirac spikes. The Walsh-Hadamard matrix
H, acts like the Fourier transform in classical Fourier analysis, in-
terchanging time and frequency in our binary world. Applying H,
to vectors interchanges coordinate frames, and conjugating by H,
interchanges x and z.

The matrices x and z are also known as Pauli matrices in quan-
tum mechanics. When we discuss quantum error correction, we
will need the concept of a quantum bit; this is a 2-dimensional
Hilbert space and we will call the two basis states 0 and 1. In
a quantum computer, these two basis elements will have a
physical realization, perhaps as two states of a beryllium ion. The
matrix x interchanges 0 and 1, and the matrix z changes their
relative phase, hence we refer to x as a bit flip, and we refer to
z as a phase flip. A quantum computer needs more than a single
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qubit, and we use m-fold Kronecker
products to describe the evolution
of an m-qubit quantum system.

Given a binary m-tuple a = (ao,
e, 1), we set D(a, 0) = x'm1®

-+ ® x%, Thus
+ 00
- +) |+ 10
D(10,00) = & =
ao="Je[, 7]
+ 11

The matrix D(a, 0) is a permutation matrix that represents addi-
tion of the binary vector a modulo 2. We think of these matrices
as binary time shifts.

Similarly, given a binary m-tuple b = (by, ..., b, ) we set D(0, b) =
Zbm1® ... ® z%. Thus

D(00,10) = {+ +]®[+ _] _

We think of these matrices as binary frequency shifts. Each fre-
quency shift D(0, b) is a diagonal matrix, and the diagonal entry

Figure 1. The square has 4 axes of symmetry: the lines
A, and A, joining opposite vertices, and the lines B,

and B, joining the midpoints of opposite sides. Any sym-
metry of the square permutes these four axes. The coor-
dinate frame B,, B, is fixed by x and the coordinate
frame A,, A, is fixed by z.
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indexed by v is either 1 or -1 according as the binary inner
product of b and v is 0 or 1.

The Walsh-Hadamard matrix Hy is the m-fold Kronecker product
of the 2 X 2 matrix H,. Conjugation by Hy, interchanges the time
shift D(a, 0) and the frequency shift D(0, a).

The elements of the Heisenberg-Weyl group HW) are multiples of
the Kronecker products D(a, b) = D(a, 0)D(0, b) by the phases 1,
-1, i, and —i. The notation D(a, b) keeps track of how the Kro-
necker product is formed; the binary vector a captures appear-
ances of x and the binary vector b captures appearances of z.

D(11010, 10110) =, ®xz @z ®@x ®xz

There are 4N? matrices, all of them square to I or I, any pair
of matrices commute or anticommute and a symplectic form gov-
erns which possibility occurs:

D(a, b)D(a’, b") = (-1)Y'*" 'Y — D(a’, b")D(a, b)

As before, the Walsh-Hadamard matrix Hy acts like the Fourier
transform in classical Fourier analysis, interchanging time and
frequency in our binary world. Applying Hy to vectors inter-
changes the Walsh and Dirac coordinate frames, and conjugat-
ing by Hy interchanges time shifts and frequency shifts.

The Heisenberg-Weyl framework makes it possible to construct
a large number of coordinate frames, and to control the correla-
tion between different frames. Every unitary matrix U that fixes
HW)y by conjugation

Hy

Time shifts X Z  Frequency shifts

Walsh Coordinate m Hy m  Dirac Spike
Frame evHy v € Foe—se, v € [ Coordinate Frame

1
Walsh Functions €g10Hg = \/% (+HOHF-)®(++)

maps the time shift group to a new commutative subgroup, and
maps the Walsh vector coordinate frame to a new coordinate
frame. What is special about HW) is that there are many, many
choices for the unitary matrix U.

2. Families of Quaternary Sequences
with Low Correlation

Binary sequences generated by shift registers appear in spread
spectrum communicationand other applications. This subject has
a long history, much of it associated with USC, starting with Sol
Golomb and Lloyd Welch, and continuing with Vijay Kumar. This
Section describes (in a new way) my 1994 paper with Vijay, his
student Roger Hammons Jr., Neil Sloane, and Patrick Sole [2] on
a code design framework that led to the short uplink scrambling
codes in the 3G WCDMA standard.

Most coding theory emphasizes linear codes. They are simple

to understand, to encode and decode, but most of all, they are
simple to discover. However, the most efficient codes are some-
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Figure 2. The quaternary world, where Lee distance is
measured around the circle, and the binary world,
where distance is Hamming distance. We give each
QPSK phase a quaternary label and a binary label, and
we observe that the two notions of distance coincide.
The Gray map is an isomeiry.

times nonlinear. For example the Nordstrom-Robinson and Pre-
parata codes are twice as large as the best possible linear codes
for the same parameters.

When a code is linear the MacWilliams transform of the distance
distribution yields the distance distribution of the dual. Kerdock
and Preparata codes were known to be dual in this sense, even
though as binary codes they were nonlinear. Why this was so
was a mystery and it was resolved by showing that Kerdock and
Preparata codes are in fact linear, if one views them in the right
way over the ring of integers modulo 4, instead of the binary
field. Over this larger ring thetwo codes ARE mathematical duals.

The Kerdock and Preparata codes turn out to be images under the
Gray map of a quaternary linear code and its dual. Actually this
is not strictly accurate. The Kerdock code is the one discovered
by Kerdock, but Preparata discovered a slightly different code
with identical distance properties. The MacWilliams identities
also relatethe weight enumerator of a quaternary code to that of
its dual. Since Lee and Hamming weights coincide, the mystery
is resolved.

We can think of the entries of a Kerdock codeword as QPSK phas-
es. The Kerdock code is a union of coordinate frames, where the
coherence between a basis vector in one frame and a basis vec-
tor in a different frame is as small as it can possibly be. Thus
the Kerdock code is a union of mutually unbiased bases. If you
ask for a maximal collection of unit vectors of length N with the
property that any two vectors are orthogonal or have coherence
N-12 the answer is a Kerdock code.

We construct coordinate frames by constructing maximal com-
mutative subgroups of the Heisenberg-Weyl group. The time-shift
group determines the frame of Walsh functions. If Pis an m X m
symmetric matrix, then the unitary matrix dp = diag[i*" 7] con-
jugates the Heisenberg-Weyl group to itself, and conjugates the
time-shift group X to the maximal commutative subgroup Xp.
The coordinate frame determined by X, is formed by the rows

December 2015



—5

of the matrix dpH, and if you are familiar with classical cod-
ing theory, you can start to see second order Reed Muller codes
emerging.

It turns out that the coherence between coordinate frames de-
termined by Xpand X, depends only on the rank of the binary
matrix P + Q. In particular, if P + Q is nonsingular, then these
coordinate frames are mutually unbiased bases. It is possible
to construct a binary vector space of N Hankel matrices of size
m with the property that every non-zero matrix is non-singular.
The vector space is called a Kerdock Set and the corresponding
Kerdock code is just the set of coordinate frames determined
by this set.

3. Space-Time Codes for
Wireless Communication

This section focuses on three papers that I wrote with Vahid
Tarokh [3, 4, 5], but he is representing many friends and col-
laborators - Nambi Seshadri, Suhas Diggavi, Naofal Al Dhahir,
Ayman Naguib, and Hamid Jafarkhani in particular. AT&T Labs
was an extraordinarily collaborative environment, one that I re-
member with great affection.

Why did we consider transmit diversity when, given a choice,
information theorists know that it is better to have multiple anten-
nas at the mobile? We were motivated by the fact that there are
many more mobiles than there are base stations, making it easier
to get innovation into base stations than into mobiles. We focused
on small numbers of transmit antennas for reasons that have little
to do with radio. The more antennas in a base station, the more
it resembled a sail, so wind-qualification of the tower was a con-
cern. Also, signal processing was taking place, not at the antenna,
but in a hut at the base of the tower, and it was difficult to have
too many thick wires going up the middle of the tower.

The simplest form of transmit diversity is the delay diversity
scheme proposed by Wittneben for two transmit antennas. A sig-
nal is transmitted from the second antenna, then delayed one
time slot and transmitted from the first antenna. It achieves a di-
versity gain butno coding gain, whereas our 1998 paper achieves
both. Before we started thinking about transmit diversity, Nambi
Seshadri had designed block codes for fading channels, includ-
ing the following code for 8-PSK:

C =100, 15, 22, 37, 44, 51, 66, 73}

It turns out that our first space-time trellis code results from ap-
plying delay diversity to this block code.

The most famous space-time code is the 2 X 2 block code dis-
covered by Siavash Alamouti [6], where the columns represent
different time slots, the rows represent different antennas, and
the entries are the symbols to be transmitted. The encoding

rule is
¢, ¢
(le Cz) = [ ! _2]

-6 4

The signals ry, r, received over two consecutive time slots are

given by
2 h h (2 Z[2
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Thus r = Hc + w where the matrix H of channel gains that con-
nects received to transmitted signals is a scalar multiple of a uni-
tary matrix. When we apply H* we obtain a scalar multiple of
the transmitted codeword in Gaussian noise, and decoding is
extremely simple.

Siavash Alamouti never thought about quaternions. William
Hamilton, who discovered quaternions in 1843, certainly never
thought about cellular phones. However he knew that quaterni-
ons were the answer to every problem presented by the physical
world. a point of view that became known to some as the Irish
madness. And perhaps he was right after all, because his repre-
sentation of quaternions as pairs of complex numbers coincides
with the Alamouti block space time code.

Quaternions lead to orthogonal designs, and to normed algebras
and sums of squares. In fact the problem of finding full rate
orthogonal designs is essentially that of finding all normed alge-
bras, a question resolved by Hurwitz in 1896. Where can we find
orthogonal designs? If we start with the quaternion orthogonal
design we discover that the matrix that captures appearances
of each variable is an element of the Heisenberg-Weyl group H,.

xO xl xZ x3
—X X, —X X.
L ® 2 =x,I,-x,D(10, 11) - x,D(01, 01) - x,D(11, 10).
X, X3 | X, X
—X; X X Xo

When we ask what properties these matrices must have, we dis-
cover that they must pairwise anticommute, and after a change
of basis we are led to what is called a Hurwitz-Radon family of
matrices. For more details, see my paper with Ayman Naguib [7]
where we also describe interference cancellation of two Alamouti
coded streams using a second antenna at the receiver. We used
this idea in a project linking AT&T and Nokia where the aim was
to achieve 1 Mb/s on GSM channels, and where Nokia was most
insistent that we not exceed the capabilities of the DSP used in
their 2nd generation systems. The Heisenberg-Weyl group struc-
ture makes it all possible. Texas Instruments liked this idea and
pushed it in CDMA standards.

4. Quantum Error Correction

The focus of this final section is quantum computing. If we look
back at 1946, a computer was essentially a physics experiment,
and the same is true of quantum computers today. Peter Shor
showed that if a quantum computer could be built then it would
be possible to compromise public key cryptography by factoring
integers exponentially faster than the best known classical com-
puter. His discovery led to an explosion of interest in the field.

What makes quantum computing so challenging is decoherence;
the environment interacts with the computer, introducing errors
into a computation as it is happening. Quantum error correcting
codes insulate computations from decoherence, and I am now
going to describe the mathematical framework for quantum er-
ror correction that I developed with Peter and other colleagues
[8, 9].

Classical bits can only take values 0 and 1, but a quantum bit is
a two dimensional Hilbert space and can find itself in an arbi-
trary superposition of the two basis states ¢y and e;. A quantum
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computer employs m qubits and we use Kronecker products to
describe all the basis states. When the quantum computer occu-
pies a superposition of basis states, it is able to investigate in a
uniform way exponentially many potential instances at the same
time. That is the power of quantum computing.

We say that the environment is continually measuring the quan-
tum system. What does that mean? Von Neumann formulated
measurement in terms of a resolution of the identity, a collection
of projection operators P; that are pairwise orthogonal, and that
sum to the identity operator. When we measure a state v, we pro-
ject onto one of the subspaces, and learn the index i. The energy
of the unit vector v is distributed across the different subspaces,
and the probability of landing in subspace i is simply the frac-
tion of energy in that subspace.

The error group of an m-qubit quantum system is the Heisen-
berg-Weyl group Hy, the matrix x represents a bit flip, and the
matrix z a phase flip. This is the quantum analog of the classical
binary symmetric channel and we can think of the probability of
an error as Bernoulli p in the number of qubits that it touches.
Note that we work with ixz rather than xz because we need Her-
mitian operators for measurement.

Given a commutative subgroup of Hy, the projection operators
associated with the common eigenspaces form a resolution of the
identity. More precisely, if we are given ¢ = (e ,..., ¢) with ¢; =
1 or -1, and a commutative group of order 4 - 2¢ generated by ily

and matrices D(a;, b;) then the operators

1 k .a,b]
P = ?H(IN +eji D(a].,b]-)>,
P

constitute a resolution of the identity. Note that the subspaces as-
sociated with the projection operators are defined by the prop-
erty that every matrix in the commutative subgroup acts as I or
-I on each subspace. This means that the subspaces are inde-
pendent of the choice of generators. Conjugation by an element
g of the error group fixes the commutative subgroup, so g just
permutes the projection matrices P,.

Each subspace in the resolution of the identity has dimension
2Nk and we can think of it as N — k qubits. For example, the
matrices D(a, b) generated by the rows (a|b) of the matrix

(=R =]

0
0
1
1

o O O =
S O =
_ O O O
= =)
o = O O
-0 O
o © = O
O = O =

generate a commutative group of 32 X 32 matrices with order
4 x 16 = 64. There are 16 subspaces in the resolution of the iden-
tity and each is 2-dimensional.

We pick one of the subspaces, say Py, we think of it as a single
qubit, and we now show that the construction protects against
any single qubit error. There are 15 remaining subspaces in the
resolution of the identity, and 15 possible single qubit errors. It
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is not difficult to show that different single qubit errors take us
to different eigenspaces. We identify the eigenspace and simply
reverse the most probable way of getting there — just like syn-
drome decoding in the classical world.

The codes constructed from commutative subgroups in this way
are called stabilizer codes or CSS codes (for Calderbank, Shor
and Steane).

5. Conclusion

I feel like I spent most of last year either procrastinating and
not writing my Shannon lecture or worrying about the impres-
sion I would leave. Now that it is over I am happy with the story
I chose, and I would like to thank all my friends and colleagues
who made it possible.
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On Codes with the Locality Property

Abstract—We consider codes that support the local recovery
property of each code symbol (LRC codes). Codes of this
type were extensively studied in recent years because of their
applications in distributed storage systems. We discuss algebraic
constructions of LRC codes over small alphabets that attain the
best possible distance-locality tradeoff and their extensions to
cyclic codes and codes on algebraic curves. We also discuss
examples of practical LRC codes used in large-scale storage
systems and point out some open questions in this area.

I. INTRODUCTION

Distributed and cloud storage systems have reached such
a massive scale that recovery from several node failures is
now part of regular operation of the system rather than a rare
exception. To support reliable storage, system designers have
turned to error correcting codes, introducing redundancy to
recover the temporarily or permanently unavailable data. The
simplest and to date the most frequently employed solution
is to replicate the data several times, writing the copies of
each data fragment to distinct physical locations. For example,
Apache Hadoop, an open source software for distributed stor-
age, uses a default method of 3-way replication. Another com-
mon solution, based on Reed-Solomon (RS) codes, provides
stronger protection for the same or smaller storage overhead.
For instance, the file systems of Facebook and Google use the
(14,10) and (9,6) RS codes, respectively. RS codes have been
also standardized as a part of the well-known RAID 6 data
protection technology.

New challenges in the development of distributed storage
systems are to a large extent driven by the exponential growth
of the amount of stored data which makes exabyte data vol-
umes today’s new reality. One of the new tasks faced by such
systems, but not addressed by current solutions, is recovery
from a single node failure. Studies show that, although several
concurrent failures are possible, and therefore the system
should be able to protect against them, the most common
scenario is the failure of a single node. Therefore, constructing
codes that optimize the repair of a single node becomes an
important problem for coding theorists and developers alike.

Recovery of the information stored on a single node, or
the repair problem, can be carried out successfully because
of the redundancy inserted in the information at the time of
writing to the memory. The efficiency of the data repair can
be measured in several ways. One of them, introduced in the
foundational paper [4], proposes to optimize the amount of
data transmitted in the system to accomplish the repair. This
metric has become known as repair bandwidth. The second
measure, called locality, is related to the total number of nodes
accessed during the data recovery [8], [9], [7]. Both metrics
have their own merits, and choosing between them is related
to the type of the storage system and the underlying scope
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of applications. In this paper we focus on codes with locality,
i.e., codes that in the course of repair of a single node access
only a small number of other nodes.

An (n,k,r) locally recoverable (LRC) code encodes k data
symbols into # symbols in such a way that the value of any
symbol of the encoding can be found by accessing at most
r other stored symbols. For example, a code of length n =
2k in which every data symbol is repeated twice, is an LRC
code with locality ¥ = 1. As another extreme, consider an
(n,k) MDS code with locality » = k in which not only one
symbol, but the entire encoding can be found by accessing k
codeword symbols. Generally the value of locality r satisfies
1 <r < k. Yet another simple example is provided by regular
LDPC codes with r 4+ 1 nonzeros in every check equation,
meaning that every single symbol of the codeword is a linear
combination of some other  symbols. The study of LRC codes
forms a new topic in coding theory that gives rise to questions
ranging from limits to the maximum size of LRC codes to
the constructions and structure of codes and their decoding
algorithms. For instance, MDS codes which are optimal for the
classical error/erasure correction problem, are far from being
optimal in terms of locality because the repair task requires
access to a large number of code symbols.

Bounds and constructions of LRC codes have been studied
in a number of recent papers. A natural question to ask is as
follows: given an (1,k,7) LRC code C, what is the largest
possible minimum distance d(C)? A useful generalization of
the Singleton bound [7], discussed in Section II-A, Eq. (3)
below, gave rise to both studies into code bounds and construc-
tions of RS-type codes that form the main topic of this paper.
While the LRC Singleton bound, like its classic counterpart, is
independent of the code alphabet, another work [3] introduced
a bound on the code’s distance that accounts for the alphabet
size, and more results of this kind appear in the recent paper
[17].

Codes whose parameters satisfy the LRC Singleton bound
with equality, are called optimal LRC codes in the literature.
Among the constructions of LRC codes we note the results
of [15], [19], [6] that combine some known code families to
account for the LRC property. While these constructions are
optimal by their parameters, they rely on alphabets of a large
size, limiting their usefulness in applications.

Coding for distributed storage is currently an active research
area. Codes that optimize the repair bandwidth and codes with
locality appear in a large number of publications, too numerous
to cite or overview in this article. In [16] we initiated a line of
research in this area that begins with a construction of RS-type
codes with the locality property and extends to constructions
of cyclic codes and codes on algebraic curves, as well as to
a study into bounds on the parameters of LRC codes. In this
paper we present and discuss this work, apologizing to our
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many colleagues whose contributions to this area we did not
have a chance to mention.

II. CODES WITH THE LOCALITY CONSTRAINT (LRC
CODES)

We say that a code has locality r if the value of every
coordinate of the codeword c is uniquely determined by the
values of at most r other coordinates of c. In the context of
storage applications, this enables the system to recover the data
from a dysfunctional node by accessing at most r other nodes
in the storage cluster. At the same time, if a group of more
than one nodes become inaccessible, we would still like to
be able to restore the data using the remaining storage nodes.
In this case, it may not be possible to recover the missing
symbols in a local fashion, but we would like to be able to
recover them nevertheless by accessing the remaining available
symbols of the codeword. Taken together, these conditions call
for constructing codes with small locality and large distance
d. A formal definition of an LRC code is as follows.

Definition 1: A code C of length n over a finite alphabet
Q is said to have locality r if for every i € [n] there exists
a subset R; C [n]\{i},|R;| <r and a function ¢; such that
for every codeword ¢ € C

ci = ¢i({cj,j € Ri}). Q)

As already remarked, simple examples of LRC codes are
obtained by concatenating several copies of some code. For
instance, replicating m times a single-parity-check code of
length r + 1, we obtain an (m(r + 1), mr,r) LRC code with
distance d = 2, and repeating twice an (1n/2,k) MDS code
yields an (1,k,1) LRC code with distance d = 2(n/2 —
k+1).

Let us give a less trivial example of an LRC code. This
example relies on the main LRC code construction discussed
in the paper.

Example 1: We will construct an (n = 9,k = 4,r = 2)
LRC code C with distance d = 5, choosing [Fy3 to be the
code alphabet. Consider the space of polynomials

P = {fa(x) =ap +arx +azx® +a4x4},

where a = (ag,ay,4a3,a4) € ]F%3 denotes the message vector
(the omission of x2 is intended). Consider the linear code

C={evalf) f € P},

defined by the set of points A = {1,3,9,2,6,5,4,12,10}
and the evaluation map evs : Fylx] — IFj given as
eva(f) = (f(a),a € A). For instance, taking a = (1,1,1,1),
we evaluate the polynomial f;(x) =1+ x + x3 + x* to find
the codeword

c:=eva(fa) = (4,8,7,1,11,2,0,0,0). 2)

Since the degree of f,(x) is at most 4, the distance of the
code satisfies d(C) > 5. It will be argued later that 5 is the
maximum possible distance for any (9,4,2) LRC code, so the
code C is optimal. Note that an RS code with n =9 and k = 4
has distance 6 which is only one greater than the distance of
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the code C. Therefore by reducing the distance by one we
managed to decrease the locality by a factor of two.

Although the code C is a subset of a (n = 9,k = 5) RS
code!, we emphasize the special choice of the space P and
the set A which account for the locality property of the code.
Indeed, regardless of the exact values of the entries of the
information vector a, there is a linear polynomial that passes
through the points f,(1), fz(3) and f;(9) of the codeword c.
For instance, the polynomial é1(x) = ag + as + (a1 + a4)x
satisfies 61(i) = fu(i),i = 1,3,9, and in a similar way,
da(x) = ap + 8asz + (a1 + 8ay)x passes through the co-
ordinates with locations 2,6, and 5. It is also possible to
construct a linear polynomial d3(x) that passes through the
locations 4,12, and 10. This property supports local recovery
of any one symbol. Indeed, if the value f,(1) is unavailable,
we can compute &1 (x) from its values 61(3),51(9) and find
fa(1) = 61(1). For instance, for the codeword c¢ in (2) we
obtain 61(x) = 2x + 2 and find the correct value & (1) = 4.
This procedure is schematically shown in Fig. 1.

Fig. 1: Local recovery by polynomial interpolation

The local recovery described constitutes a saving compared
to the standard decoding of RS codes which calls for comput-
ing the polynomial f, of degree 4 from some of its 5 values.
Note also a special property of the construction: the described
linear polynomials pass through 3 points of the graph of f,,
which is one point more than is guaranteed by the general
interpolation. That this becomes possible is an artifact of
the special choice of the polynomial space P and the set of
points A.

A. General Construction of Optimal LRC Codes

There are several classical bounds on the distance of the
code in terms of its length and dimension. One of them is
the Singleton bound, and a code that meets it is called an
MDS code. Moreover, the MDS conjecture (partially proved
recently in [1]) claims that, loosely speaking, in order to attain
the Singleton bound, the code alphabet has to be of the order

IThe RS code is obtained by evaluating all the polynomials of degree
degf<k—-1=4.
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of the length of the code. The Singleton bound was extended
to codes with locality in [7] which showed that the distance
d(C) of an (n,k,r) LRC code C is bounded by

dC)<n—k— m +2. 3)
An LRC code whose parameters meet this bound with equality
is called optimal. Taking r = k in (3), we recover the Singleton
bound, so any (7,k) RS code is an optimal (1, k, k) LRC code.
Likewise, the subcode of an RS code constructed in Example
1 is also an optimal LRC code. This suggests that to construct
optimal LRC codes for a broad range of the parameters n, k, 7,
it suffices to take an alphabet of size g comparable to n,
and RS codes and their subcodes form natural candidates for
optimal LRC codes. We will show that this is indeed the case
by providing such a construction which we call an RS-type
LRC code.

In Example 1 we implicitly defined a partition of the set of
locations into subsets A; = {1,3,9}, A, = {2,6,5}, A3 =
{4,12,10} such that for each of them, there is a linear
polynomial that passes through all the codeword coordinates in
these locations. Building on this intuition, let us take a subset
A C [Fy of n points that label the coordinates of the code.
Suppose that there is a partition A = {Al,...,Ar:Til} of the
set A into n/(r 4 1) subsets of size ¥ + 1 and that there exists
a polynomial g(x) of degree 7+ 1 such that g is constant on
the blocks of the partition, i.e.,

g(a) =g(B) forany o, p € Aji=1,...,n/(r+1). 4

We aim at constructing a linear k-dimensional code C : IFI‘; —
]F;‘ Given a vector a € ]F’g,a = (ai]-,i =0,...,r—1,j =
0,..., % — 1), define the polynomial?

=1 k1 )
fax) =Y« Y ajg(x). (5)
i=0  j=0

and note that deg f, < k+ % -2.
Definition 2: Let P be the set of polynomials of the form
(5) and define the code

C={evalfa), fa € P}. (6)

The subsets A; are called recovery sets. Once we specify a
location & such that A; S a, the subset A;\{a} is called the
recovery set of a. The main result about this code family is
as follows.

Theorem 2.1: The code C defined in (6) is an optimal
(n,k,7) LRC code. The local recovery of the symbol in
location « is accomplished by computing a polynomial §(x) of
degree v — 1 that passes through all the points of the recovery
set of this location.

Sketch of the proof: The distance of C equals n minus the
maximum number of zeros of f,(x), and is seen to meet
the bound (3). The claim that dimC = k becomes obvious
once we observe that the k polynomials g(x)fxi are all of

2We assume that both ,jr—’l and ’;‘ are integer numbers and comment on the

other possibilities in the remarks below.
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different degrees and therefore span a k-dimensional subspace
of Fy[x]. Furthermore, the polynomials f, are evaluated at
n > k distinct points of the field, therefore the evaluation
mapping (6) is injective and the code is of dimension k.

The local recovery is accomplished as follows. Given the
erased location & € A;, find the unique polynomial §(x) of
degree at most r — 1 that intersects the graph of f,(x) at all
the other r points of the set A; :

5(B) = fa(B), B € Ai\{a}.

Note that g(x) is constant on A;, and therefore 6(x) is the
polynomial

r—=1 Iﬁ—l
6(x) =)« Y aga)
0 j=o

Hence, the symbol at location & equals to d(a) = f,(x). B

Let us make a few observations about the features of the
code family.

(i) CONSTRUCTING g(x): The main ingredient of the con-
struction is the polynomial g(x) whose existence is a priori
not so obvious. It is not difficult to prove by counting that
the required g(x) exists, but we would like to be able to
construct it efficiently. This question will be discussed in the
next subsection, and it will also enable us to establish relations
between the code length 72 and the size of the alphabet 4. The
property that g(x) = const on A;,1 < j < n/(r+1) also
has a natural geometric interpretation which provides a segue
to constructing LRC codes on algebraic curves (more on this
in Sect. IV-B below).

(ii) DIVISIBILITY ASSUMPTIONS: Both the assumptions 7|k
and (7 +1)|n can be removed. To lift the first one, we simply
modify the polynomials f,(x) by taking the inner sum in (5)
to go to Léj or Léj — 1 depending on whether i < kmodr or
not. As a result, the properties of the code do not change; in
particular, it remains optimal. To construct codes of arbitrary
length 7, removing the constraint ( + 1)|n, we take the last
recovery set to be of a smaller size as needed. Most properties
of the code again do not change, although its distance can be
one less than the optimal value given by (3).

(iii) LRC REED-SOLOMON CODES: The codes introduced
in this section form a direct extension of the classical Reed-
Solomon codes; in particular, the code C is a k-dimensional
subcode of an (n,k + ’f —1) RS code. Our construction also
reduces to Reed-Solomon codes if r is taken to be k. Indeed,
in this case the inner sum in (5) reduces to one term, so g(x)
is removed, and we recover the classical definition. Moreover,
the set A in this case can be an arbitrary subset of F;, while
the locality condition for » < k imposes a restriction on the
choice of the locations.

(iv) SYSTEMATIC ENCODING: Any linear code can be
represented in a systematic way, but the described construction
can be modified to make this systematic representation explicit
and presented in algebraic terms. For i = 1,...,k/r let
Bi = {Bi1,.-..Bis} be some subset of A; of size r. For
each set B; define r polynomials ¢;;,j = 1,..,7r of degree
less than r such that ¢;;(B;;) = J;;, and similarly define
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m = n/(r+1) polynomials f;(x) such that f;(A;) = J; ;. For
k information symbols a = (al-/]-,i =1,....k/r;j=1,...,1)
construct the polynomial

k/r

x) = z;fi(x)(i%ai,j¢i,j(x))- (7
i= j=

Define the evaluation code CY®) := {ev(fa), fa € P} where
‘P is the set of all polynomials of the form (7). It is easily
seen that this code is systematic, and the message symbols
are written in the locations of the sets B;.

A useful general view of these remarks as well as of the
code construction itself is related to the study of properties
of the polynomial algebra IF 4[x] spanned by the polynomials
constant on the blocks of the partition A. This approach and
its connections to the code construction are further developed
in [16].

B. Piecewise-constant polynomials

In this section we show how to construct a partition A of
A C TF,; and a polynomial g(x) of degree r + 1 that is constant
on the blocks of the partition. Let IF; and ]F; denote the
multiplicative and the additive groups of IF; respectively. The
main idea is expressed in the following simple observation.

Proposition 2.2: Let H be a subgroup of IF; or IF;F The
annihilator polynomial of the subgroup

g(x)=JI(x—h) (8)
heH
is constant on each coset of H.

Proof: Assume that H is a multiplicative subgroup and
let a, ah be two elements of the coset aH, where h € H, then

g(ah) = [T (ah—n) =i [Ta—ni")
heH heH
=]J@—n
heH
=g(a).

The proof for additive subgroups is completely analogous. B

If H is a multiplicative subgroup of IF}, then g(x) in (8)
can be written as g(x) = x/l — 1. Equivalently, we can take
g(x) = x!Hl. Accordingly, the code length 1 can be any
multiple of r + 1 satisfying n < g —1 (or n < q in the case
of the additive group). In Example 1 we made the following
choices: (i) H is the group of cube roots of unity modulo 13,
(ii) A = HU2H U4H a union of three cosets (note that we
can take any three cosets of the full set of cosets), and (iii)
g(x) = 23 (instead of g(x) = x3 —1).

Example 2: In this example we construct an optimal
(12,6,3) LRC code with distance d = 6 using the additive
group of the field. Let « be a primitive element of the field IFy4
and take the additive subgroup H = {x +ya : x,y € Fp}.
The polynomial g(x) in (8) equals

gx)=x(x+1)(x+a)(x+a+1)
=xt+ (@ +a+1)x* + (a* +a)x.
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Let A be the union of any 3 out of the 4 cosets of H. For
a=(aj;,i=0,1,2;j=0,1) € FS, let

2 .
Z ﬂzo+ﬂ113 x))x'.

Constructing a code C by evaluating the polynomials f,(x) at
the points of A, we obtain an LRC code with locality » =
3. Note that any (12,6) MDS code over [Fys has minimum
distance d = 7 and locality r = 6. The distance of the code
C is only one less than that, but at the same time the locality
is decreased by a factor of two, from 6 to 3.

The method described above gives a way of constructing
piecewise-constant polynomials, while at the same time con-
straining the possible values of the code length due to the
natural divisibility constraints. We conclude by noting that
the additive and multiplicative structures of the field can be
combined into a more general method of constructing the
polynomials, increasing the range of options for the code
length [16, Section II1.B].

III. EXTENSIONS: MULTIPLE RECOVERY SETS;
CORRECTING MORE THAN ONE ERASURE

A. Algebraic LRC codes with multiple recovery sets

In distributed storage applications there are fragments of the
data that are accessed more often than the remaining contents
(they are called “hot data”). In the case that such fragments are
accessed simultaneously by many users of the system, it may
be desirable to ensure that every symbol has several disjoint
recovery sets, increasing the instantaneous availability of the
data.

Using this as a motivation, let us generalize the definition
of LRC codes as follows. A code over the alphabet Q is said
to be locally recoverable with two recovery sets (an LRC(2)
code) if for every i € {1,...,n} there exist disjoint subsets
Ri1, Riz C [n]\{i} and functions ¢;;,j = 1,2 such that for
every codeword c € C

ci = ¢ij(c, L €Rij),

Suppose that |R;1| < r1,|Riz| < rp for all i (we do not
assume that r; = rp). We write the parameters of an LRC(2)
code of dimension k as (n,k,{ry,r2}).

Among the obvious ways to construct LRC(2) codes are
various two-level constructions such as product codes or codes
on bipartite graphs. We focus on algebraic constructions,
extending the approach of the previous section to multiple
recovery sets.

Suppose that Ay (A;) is a partition of a set A C [n] into
subsets of size r1 + 1 (resp., o + 1). Call the partitions A4, A
orthogonal if

|A1iNAyj| <1 forall Ay; € Ay, Ay € As.

j=1,2 )

If the partitions A1 and A, are orthogonal, then it is possible
to construct a code in which every symbol has two disjoint
recovery sets of size r; and rp. The construction relies on
polynomial evaluation and is very similar to the construction
of Section II-A. To give an example, consider the field [Fqg4. Its
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additive group ]F16 contains several pairs of subgroups G =
H = (Z,)? such that G N H = 0. For instance, take G =
{0,1,a,4*} and H = {O a2, a%,a%}, where « is a primitive
element that satisfies a* = a + 1 The subgroups G and H
define a pair of orthogonal partitions of lF . given by

:{G,a +G,ab +G,a” +G}
Ap={H,1+H,a+H,a*+H}.

Using each of these partitions, we can construct an LRC code
C with the parameters (n = 16,k,{r; = 3,r, = 3}) of
dimension k,1 < k < 8. Every coordinate of the codeword
can be recovered in two independent ways: for instance, the
coordinate ¢, is found by computing the polynomial &7 (x) of
degree at most 2 that passes through the points cg, ¢y, ¢ 4 as
well as the polynomial d;(x) that passes through ¢ s, ¢,9, Cy11.
Then we have ¢, = 61(a) = 6p(a).

It is easy to identify a necessary and sufficient condition for
two subgroups to generate orthogonal partitions.

Proposition 3.1: Let H and G be two subgroups of a finite
group X, then the coset partitions H and G defined by H
and G respectively are orthogonal iff the subgroups intersect
trivially, namely

HNG=1

If the group X is cyclic, then it is equivalent to requiring that
ged([H|, [G]) = 1.

In the context of finite fields we can use both the multiplicative
and the additive group of the field to construct LRC(2) codes.
It is also easy to find several subgroups that intersect trivially;
in particular, this is clearly possible for the additive group IF;
in the case of a non-prime 4. At the same time, constructing
LRC(2) codes from a multiplicative subgroup of Fy,q = p!
requires one extra condition, namely, that 4 — 1 is not a power
of a prime. In this case, we can find two subgroups of ]F;‘ of
coprime orders that give rise to orthogonal partitions of IF;

Proposition 3.2: Let [F4 be a finite field such that the g — 1
is not a power of a prime. Let r1,7, > 1,gcd(r,72) = 1 be
two factors of g — 1. Then there exists an LRC(2) code C of
length ¢ — 1 over IF; such that every code symbol has two
disjoint recovery sets of sizes r1 —1 and rp — 1.

The discussed construction gives codes with distance close to
the upper bound on LRC(2) codes derived in [17].

The definitions and constructions of this section extend
straightforwardly to an arbitrary number ¢ > 2 of recovery
sets, giving rise to easily constructible LRC(#) codes with the
parameters (1n,k,{ry,...,7t}), where r; +1,i = 1,...,t is
the size of the blocks in the corresponding partition. At the
same time, note that for > 3 better parameters are obtained
using random expanders; see [17, Theorem C]. Paper [17] also
contains results on upper bounds for codes with an arbitrary
number of recovery sets.

B. Correcting more than one erasure: (r +p — 1,v) Local
MDS Codes

A more general version of the local recovery problem calls
for correcting more that one erasure within each recovery set.
To address this task, we consider LRC codes in which the set
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of coordinates is partitioned into several subsets of cardinality
7+ p — 1 such that every local code is an (r+p —1,7) MDS
code, where p > 3. Under this definition, every symbol of
the codeword is a function of any r out of the r + p — 2
symbols, increasing the chances of successful recovery. A
compact notation for such codes is (1n,k,r,p) LRC codes,
where 7 is the block length and k is the code dimension. A
generalization of the bound on the distance (3) to the case of
(n,k,r,p) LRC codes takes the form [11]

dgn—k—i-l—([ﬂ —1)(p—1).

As before, we will say that the LRC code is optimal if its
minimum distance attains this bound with equality.

We assume that (r + p — 1)|n and r|k, although the latter
constraint is again unessential. To construct the code using
the ideas of Sect. II-A, we begin with a partition A =
{Ay,..., Autm=mn/(r+p—1) of the set A C F,|A| =
n, such that [A;] =r+p—1,1 <i<m. Let g € F[x] be a
polynomial of degree r 4 p — 1 that is constant on each of the
blocks A;. Given a message vector a € IFX, let us write it as
a = (ag,..,a,_1) € F¥, where each a; = (@i, 0, k _,)isa
vector of length k/r. In analogy to (5), define the polynom1a1

(10)

I

)= 5 Dot

The properties of the obtained codes are summarized in the
following theorem.

Theorem 3.3: Let C : ]F’,; — IF§ be a linear code defined
as the image of the evaluation map a — ev(fs). Then C
is an optimal (n,k,r,p) LRC code in which local recovery
of an erasure at location a can be performed by polynomial
interpolation over any r locations of its recovery set.

IV. MORE ALGEBRAIC CONNECTIONS: CycLIC LRC
CODES AND LRC CODES ON CURVES

In classical coding theory there are two code families related
to RS codes, namely cyclic codes and codes on algebraic
curves. Since the codes considered above can be viewed as
LRC analogs of RS codes, it is natural to consider these two
families in relation to our construction. It turns out that both
connections lead to new constructions of LRC codes as well
as new problems in algebraic coding theory. Sections IV-A
and IV-B below are based on [18] and [2] respectively.

A. Cyclic LRC codes

Cyclic codes form a well-established chapter in coding
theory, important both theoretically and in applications. To
construct cyclic LRC codes, we will rely on the multiplicative
structure of the field IF,. Let us choose the code length
n to be a divisor of 4 —1 and let us assume that the
coordinates are labeled by n-th degree roots of unity in [F, i.e.,
A= {1,a,...,a"" 1}, where & is a primitive root. Suppose
that (r + 1)|n and let m = n/(r + 1) be their quotient.
We rely on Proposition 2.2 to construct the polynomial g(x).
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Let H be a subgroup of the group IFj of order |H| and let
r=|H|—1.

According to the discussion after Proposition 2.2, we can
take g(x) = x"*1. Examination of the expression (5) shows
that the polynomial f,(x) can be written in the form

Er41)-2 ‘
falx) = Y a4,

i=0
iZ#rmod(r+1)

an

where the a;’s form the message vector. Following the con-
struction (6), we obtain an LRC code, denoted by C.

It is clear that the code C is cyclic, and it is easy to find
its defining set of zeros. From the classical BCH bound it is
well known that a set of d — 1 consecutive zeros guarantees
that d(C) > d. The following theorem supplements this claim
by identifying the set of zeros of C that supports the locality

property.

Theorem 4.1: Consider the following sets of elements of
F, :

q

L={a,imod(r+1) =1}
D={a%,5s=0,....n—5(r+1)},

where 0 < [ < rand &/ € L. The cyclic code with the defining
set of zeros Z := LU D is an optimal (n,k,r) g-ary cyclic
LRC code’.

If the set Z contains cosets of two groups of roots of unity
of coprime orders r1 + 1 and r, + 1, then this gives rise to an
LRC(2) code (n,k,{r1,r2}) which has two disjoint recovery
sets for every coordinate.

The following obvious remark sometimes facilitates the
analysis of cyclic LRC codes.

Proposition 4.2: Let C be a cyclic LRC code with locality
r. Supfose that d* is the distance of the dual code C*, then
r=d-—1.

So far we were interested in RS-type LRC codes. Subfield
subcodes of these codes form a natural analog of the family
of BCH codes. Their properties are not so easy to analyze in
general, but one possibility has been suggested in [18]. Let
C be an (n,k,r) LRC code over Fgn and denote by C|F,
the subcode of C formed by the codewords whose coordinates
are contained in [Fy. Suppose we attempt to construct LRC
codes over IF; as subfield subcodes of RS-type LRC codes
over [Fgn. Since C|g, C C, we have that d(C|f,) > d(C). At
the same time, the dual distance of a cyclic LRC code (C|F, )+
may, and often does, decrease from its original value » + 1.
Thus, studying subfield subcodes is an appropriate context for
constructing cyclic LRC codes over small alphabets with good
distance and small locality.

B. LRC codes on algebraic curves

The RS-type LRC codes constructed above solve the prob-
lem of local recovery for codes of length n that is on the
order of the size of the alphabet 4. Consider again the problem

3We note that the sets L and D have a nonempty intersection, but their
common elements appear in Z only once.
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of constructing long LRC codes for a fixed alphabet size. In
classical coding theory good codes of this kind are obtained
using the Goppa construction of codes on algebraic curves.
Here we show how this approach can be utilized for codes
with the locality constraint.

We begin with another view of the construction of RS-type
LRC codes (4)-(6), focusing on the polynomial g(x). Let k =
IF; denote the code alphabet. Recall that ¢ : k — k defines
a mapping such that there are exactly » 4+ 1 points that are
mapped to every point in the range of g. In other words, we
have |¢71(P)| = r + 1 for all P in the range. Switching to
geometric language, let X = Y = P! denote the projective
line over the field k, then ¢ : X — Y is a covering map
of lines such that the fiber above any point of Y in its range
contains exactly ¥+ 1 points of X. For instance, in Example 1
the range of g : x — x° is the set {P; = 1,P, = 8, P = 12}
and g7 1(P) = A;,i =1,2,3.

This view of our construction suggests the following gener-
alization to codes on curves. Let X and Y be smooth projective
absolutely irreducible curves over k and let g: X — Y be a
rational separable map of curves of degree r + 1. For example,
let k = IFg and consider the Hermitian curve X of genus 3
given by the equation x> + x = y4. The curve X has 27 points
in the finite plane, shown in Fig. 2 below, and one point at
infinity.

d ° ° ° °
al e
a° ° ° ° °
064

X 063
062 ]
X e e ° °
1 ° ° ° °
0 e

01 aa?adaadab o’
Y

Fig. 2: 27 points of the Hermitian curve over FFg; here % = & + 1.

Take Y = ]Pﬁ{, then we can take ¢ to be the map of degree
r+1 = 3 given by the natural projection § : (x,y) — y.
Another possibility is a degree-4 map ¢ : (x,y) — x whose
range does not include the points 0,a?, and «®.

More generally, let k(X) and k(Y) denote the fields of ra-
tional functions on X and Y. By the primitive element theorem
there exists a function x € k(X) such that k(X) = k(Y)(x)
and that satisfies an algebraic equation of degree » 4+ 1 over
k(Y. The function x can be considered as a map x : X — P,
and we denote its degree deg(x) by h.

The codes that we construct again belong to the class of
evaluation codes. Let S = {Py,..., P} C Y(k) be a subset
of k-rational points of Y in the finite space, and let Qe be
a positive divisor of degree ¢ > 1 such that supp Qe C
! (c0), where 7t : Y — ]P%{ is a projection map. To construct
our codes let us assume that

A:=g1(S)={P;i=0,...,r,j=1,...,5} C X(k);
(12)

December 2015



g(P;j) = P; for all i,j.

Let {fi,...,fm} be a basis of the Riemann-Roch space
L(Qw). Our codes will be constructed as evaluations of
functions in the k-subspace V of k(X) generated by the
functions

{fix',i=0,...,r=1,j=1,...,m} (13)

(note an analogy with (5)).

Definition 3: (LRC codes on curves). Consider the evalua-
tion map

evy V —s Kr+bs

. . (14)
F (F(Pi]-),z =0,....,rj=1,...

/5)s

and denote its image by C(Qw,g). It is a linear code in the
space Fjj,n = (r+1)s, and since supp Qe NS = O, the
code is well defined.

The code coordinates are naturally partitioned into s subsets
Aj = {Pl-]-,i =0,..,r},j=1,...,5 of size r + 1 each; see
(12).

Theorem 4.3: The subspace C(Qe,g) C IF; forms an
(n,k,7) linear LRC code with the parameters

n=(r+1)s
k=rm>r({—gy+1)
d>n—L(r+1)—(r—1)h,

(15)

provided that the right-hand side of the inequality for d is a
positive integer. Local recovery of an erased symbol F (Pij) can
be performed by polynomial interpolation through the points
of the recovery set A;.

In particular, let us specialize this construction for codes on
Hermitian curves. Let g = q%, where g is a prime power, let
k = ]Fq, and let X be the Hermitian curve, i.e., a plane smooth
curve of genus gy = go(qo — 1)/2 with the affine equation

X x4 x =yt

The curve X has qg = (/4 rational points in the affine plane.
By taking ¢ to be the projection on y as discussed above we
obtain a family of LRC codes with the parameters

n=qp k={+1)(q0—1), r=go—1
d>n—1Lq0— (g0 —2)(q0 +1).

It is also possible to take g to be a projection on x, which gives
a family of LRC codes with similar parameters and locality
r = qo-

Asymptotically good code families. As in classical coding
theory, we obtain infinite families of codes with good pa-
rameters by taking asymptotically maximal curves such as,
for instance, the Garcia-Stichtenoth towers of curves. These
curves are constructed by successively extending the function
fields, adding algebraic elements that satisfy equations similar
to the equation that defines the Hermitian curves. Similarly
to the Hermitian case, there are several variants of the code
construction. For instance, it is possible to construct a family
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of g-ary LRC codes whose rate and relative distance satisfy
the asymptotic inequality

2
q\—/ﬁl)'

where ¥ = /g and q = q% for some prime power . For
qo > 23 this bound improves upon the Gilbert-Varshamov
type bound for LRC codes discussed in the next section (see
an example in Fig. 3).

r
> — —
R P (1 ) (16)

.....................

02 TRCGVBound TN Fosneee

..................................

Fig. 3: The bound (16) shown together with the Gilbert-Varshamov
type bound (gp = 32).

While this construction yields sequences of codes with
asymptotically good parameters, its locality parameter r is
fixed once we choose the code alphabet. In principle one would
want to have flexibility in choosing » in a way similar to the
construction of RS-type LRC codes. This is indeed possible by
studying certain quotients of curves in the Garcia-Stichtenoth
tower. As a result, we obtain asymptotically good codes over
a fixed field IF; with a range of values of r with parameters
similar to the ones mentioned above.

Concluding this section, note that the proposed approach
generalizes to codes with more than one recovery set for every
coordinate (the so-called availability problem). Indeed, when
discussing the example in Fig. 2 we remarked that there are
two natural maps from X to P1. A closer look confirms that
together they define a pair of orthogonal partitions of the set of
n= qg — go — 1 affine points of the Hermitian curve, giving
rise to an LRC code of length n with two disjoint recovery
sets for each codeword symbol.

V. BOUNDS ON THE PARAMETERS OF LRC CODES

Here we discuss bounds on the rate and distance of LRC
codes introduced in Definition 1. It can be easily seen that the
rate of any LRC code C with locality r is at most R(C) <
r/(r+1). Intuitively this is justified by the fact that any r + 1
codeword symbols within a recovery set satisfy a functional
relation, so they contain at most r information symbols.

How large can d(C) be? Even in the classical coding
problem, this question is addressed in more than one way,
depending on whether we account for the value of g or not. The
Singleton-type bound (3), discussed above, does not depend

IEEE Information Theory Society Newsletter



14

on the size of the alphabet. A bound that accounts for the
value of ¢, proved in [3], has the following form:

k§r5n>i{1{sr+kq(n—s(r+l),d)}, (17)
where k;(1,d) is the maximum dimension of a code of length
n and distance d over IF; (with no locality assumptions).
It is also possible to derive lower Gilbert-Varshamov-type
bounds on the parameters of LRC codes using the probabilistic
method, bringing the state of bounding the parameters of LRC
codes to the same status as bounds on classical error correcting
codes. In particular, sequences of codes of asymptotically
positive rate exist if and only if the number of correctable
errors does not exceed the (g — 1) /2q proportion of the code
length. The results of [3], [17] imply that the same conclusion
is valid once we add the locality constraint (for any constant
r). Therefore, adding the locality constraint does not shift the
“Plotkin point” for asymptotic relative distance from the value
(9 —1)/q. The best asymptotic lower and upper bounds on
LRC codes are shown in Fig. 4.

Fig. 4: Asymptotic bounds for the rate R of binary LRC codes as
a function of the relative distance &; » = 3. The upper curve is
obtained from the bound (17), and the lower curve is a GV-type
bound.

VI. OUTLOOK
A. LRC codes in industry

Apart from their theoretical merits, LRC codes offer an
efficient solution for data protection in large-scale distributed
storage systems. Data encoding schemes employed by com-
panies using or providing distributed storage solutions are
based primarily on the ease of implementation, update, and
maintenance. Driven by these metrics, companies are mostly
interested in implementing LRC codes that provide the locality
property only for the information part of the codeword. Codes
with this property are said to have information symbol locality.
It turns out that constructing such codes with good minimum
distance is relatively simple, which is why these codes are
popular in current industry solutions.

To construct an (1, k, r) LRC code with information symbol
locality and good minimum distance, begin with an (1 — %, k)
MDS code (typically an RS code). To account for locality,
let us partition its k information symbols into k/r disjoint
sets of size r and add one parity check symbol for each set.
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Fig. 5: (16,12,6) LRC code used in Windows Azure storage [10].

This results in a code of length n with information locality r.
Examples of LRC codes constructed in this way are already
used in practice or have been tested by industry, and here we
list a few of them.

The free software storage platform Ceph enables the users
to protect their information by simple replication, RS code, or
an LRC code. In another project [13], the authors constructed a
(16,10,5) LRC code based on the (14,10) RS code and tested
it on a cluster at Facebook’s data warehouse. The construction
proposed in [13] has in fact the all-symbol locality property.
Finally, Windows Azure Storage (WAS), Microsoft’s scalable
cloud storage system that has been in use for some years [10],
uses a (16,12,6) LRC code shown in Fig. 5. Here P; and
P, are the global parities found from all the 12 information
symbols X;,Y;,i = 1,..,6. They are employed in cases of
more than one failure among the nodes. The symbols Py
and Py, are the parities that provide local recovery for the
information symbols by accessing 6 other symbols within the
recovery set.

Encouraged by the fast embrace of LRC codes by large-
scale users of distributed storage, we believe that there is
room for implementation and testing of other code families
with the locality property. Specific storage applications may
benefit from all-symbol locality or large minimum distance. At
the same time, the solutions should be tailored to the needs
of the application, including update complexity, security and
availability of the data, and other features.

B. LRC codes on graphs

An interesting generalization of the LRC coding problem is
related to local recovery that is constrained by the topology
of the computer network. Consider a graph on n storage
nodes whose edges describe the available communication links
between the nodes. Similarly to the problem studied above,
we require that every node can recover its storage contents
by reading the information stored in its neighbor nodes in
the graph. A set of vectors over a finite alphabet that can be
stored in the nodes to satisfy this constraint, forms an LRC
code on the graph, and we seek such codes of the largest
possible size. This problem was recently introduced in [12]
(in a different form, it was also studied earlier in [5]). It is
also shown to be (in some sense) a dual of the well-known
index coding problem [12], [14]. Major open questions in this
area include finding constructions of good codes for the graph
LRC problem, for instance, for families of graphs with some
structure, as well as advancing connections between LRC
codes and index coding.

C. Maximally recoverable codes: Can a code be LRC and
MDS?

MDS codes form a practically appealing family because
they provide the best possible error resilience for a given
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amount of storage overhead. In formal terms, this amounts to
saying that any k symbols in a k-dimensional MDS code form
an information set. At the same time, the locality constraint
requires some dependence among the codeword symbols, so
locality and the MDS property cannot be combined in one
construction. How close to being both MDS and LRC can
a code be? This question brings in the following natural
definition: Call an (n,k,7) LRC code maximally recoverable
[6] if every k coordinates that do not contain a full recovery
set form an information set. Note any k-subset that contains a
recovery set cannot be an information set.

For large sets of parameters (7, k, 7) maximally recoverable
codes have been constructed in [15], [19], [6]; however,
none of these results yield code families over alphabets g
of size comparable to the code length. At the same time,
as shown above, it is possible to construct LRC codes over
small alphabets. This gives rise to the following open problem:
is it possible to construct maximally recoverable codes with
small g, or does maximality necessarily require a superlinear
alphabet size?

Observe that the maximality property is not resolved even
for the RS-type LRC code family presented in this paper: we
do not know if (apart from the trivial cases of r = 1, k) among
the constructed codes there are maximally recoverable ones.

D. AG codes: Parameters and availability

The construction of LRC codes on curves in Sect. IV-B
is rather general in the sense that it applies to any pair of
curves equipped with a covering map. At the same time, the
estimates of the parameters of the obtained codes derived
using this general approach do not take into account specifics
of individual families of curves, and for this reason may
be somewhat crude. Thus, the initial results reported above
could be specialized and improved in examples that rely on
properties of specific curves and their maps.

Another problem, mentioned only very briefly in Sect. IV-B
and in [2] concerns the availability problem for algebraic
geometric codes. While we have explored the most natural
approach to this problem, the parameters of the obtained codes
are far from optimal. It may be possible to obtain better LRC
codes relying on the automorphism groups of curves and their
codes, and we envision this as another avenue for further
studies.

Yet another topic of possible studies is related to decoding
of the constructed codes. While we have focused on local
erasure recovery, occasionally we will face the task of global
decoding for the purpose of error and erasure correction. Here
we tacitly rely on the existing decoding algorithms of algebraic
geometric codes, although conceivably the structure of our
codes could support decoding algorithms designed specifically
for this family. It is also of interest to explore the connection
of these codes with generic list decoding algorithms of codes
on curves.
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Cache Networks: An Information-Theoretic View

Abstract—Caching is a popular technique that duplicates
content in memories distributed across the network in order
to enhance throughput and latency in a variety of applications.
Cache systems were the subject of extensive study, mostly in
the computer science community, in the 80s and 90s. How-
ever, the fundamental results derived during that period were
mainly developed for systems with just a single cache and only
heuristically extended to networks of caches. In this newsletter
article, we argue that information theory can play a major
role in establishing a fundamental understanding of such cache
networks. In particular, we show that cache networks can be cast
in an information-theoretic framework. Using this framework,
we demonstrate that the aforementioned heuristics, which utilize
caches to deliver part of the content locally, can be highly
suboptimal when applied to cache networks. Instead, we identify
cache memories as limited spaces to plan side information from
among a fixed set of pre-recorded content (e.g., movies) to
facilitate future communication. This new understanding of the
role of caching creates various coding and signaling opportunities
and can offer gains that scale with the size of the network.

I. INTRODUCTION

Caching is an essential technique to improve throughput
and latency in a vast variety of applications such as virtual
memory hierarchies in CPU design, web caching for content
delivery networks (CDNs), and inquiry caching in domain
name systems. The core idea of caching is to use memories
distributed across the network to duplicate data. This stored
data can be then used to facilitate the delivery of future
requests, thereby reducing network congestion and delivery
delay. Companies like Akamai, Facebook, Netflix, Google, etc.
are heavily investing in their cache networks to increase the
performance of their systems.

There is a rich and beautiful theory, developed mostly in the
computer science community during the 80s and 90s, for sys-
tems with a single cache. However, when it comes to networks
of caches, the existing theory falls short, and engineers instead
rely on heuristics and the intuition gained from the analysis of
single-cache systems. Quoting Van Jacobson, one of the key
contributors to TCP/IP and expert on content distribution:

“ISPs are busily setting up caches and CDNs to
scalably distribute video and audio. Caching is a
necessary part of the solution, but there is no part of
today’s networking—from Information, Queuing, or
Traffic Theory down to the Internet protocol specs—
that tells us how to engineer and deploy it.” [I,
p. 302]
We argue that information theory can in fact provide the
theoretical underpinnings for the deployment and operation of
cache networks. Indeed, we show that the caching problem
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can be formulated as a network information theory problem.
Applying information-theoretic tools for the analysis of cache
networks reveals that the conventional way to operate these
networks can be substantially suboptimal.

Cache networks have two distinctive features that differ-
entiate them from other problems in multi-user information
theory:

o Budget for side information: In information theory, we
often consider networks with side information, with the
objective to characterize system performance in the pres-
ence of given side information. In contrast, in cache
networks, the side information itself is subject to design
and optimization. Each cache has a fixed memory limit,
and the system designer is allowed to choose the side in-
formation in the cache subject to the memory constraint.

e Pre-recorded content: In network information theory,
we usually assume that each source locally generates a
message (e.g., voice) at transmission time for a particular
user/destination. However, over the last decade or so, the
bulk of traffic has shifted to content (e.g., movies), which
is typically recorded centrally well ahead of transmis-
sion time, and which is not generated for a particular
user/destination. It is this generation of messages ahead
of transmission time that allows their duplication across
the network.

In the remainder of this newsletter article, we discuss
various opportunities and challenges in the area of cache
networks with emphasis on the role of information theory
in offering a fundamental view on this problem. We start in
Section II with a canonical cache network, which provides
an information-theoretic framework for the analysis of such
systems. We then review an approximately optimal solution
for this problem and compare it to conventional approaches.
We proceed with recent results on cache networks in a variety
of scenarios, comparing offline versus online caching, delay-
tolerant versus delay-sensitive content (both in Section III),
single layer versus hierarchical caching, server-oriented versus
device-to-device settings (both in Section IV), among others.
Throughout, we point out open problems motivated by real-life
applications of caching.

II. CANONICAL CACHE NETWORK

We consider the following canonical cache network intro-
duced in [2]. A server is connected through a shared bottleneck
link to K users as shown in Fig. 1. The server has a database
of N files W1, ..., Wy each of size F bits. Each user k has
an isolated private cache memory of size M F' bits for some
real number M € [0, N]. In this article, we assume N > K
to simplify the exposition.

This setting can model a wireless network with an access
point and several users, all sharing the common wireless
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channel. It can also model a wireline network with several
caches connected to a common server; here the shared link
models a bottleneck along the path between the server and
the users.

The system operates in two phases: a content placement
phase and a content delivery phase. The placement phase
occurs during a time of low network traffic, say in the early
morning, so that network resources are abundant and cheap.
The main constraint during this phase is the limited cache
memory. We model this placement phase by giving each user
access to the entire database W7, ..., Wy of files. Each user
is thus able to fill its own cache subject only to the memory
constraint of A F' bits. Critically, in the placement phase,
the system is not aware of users’ future requests, so that the
content cached by the users cannot depend on them.

The delivery phase occurs after the placement phase during
a time of high network traffic, say in the evening. Network
resources are now scarce and expensive and become the main
constraint. We model this delivery phase as follows. Each user
k requests one of the files W, in the database. The server is
informed of these requests and responds by sending a signal of
size RF" bits over the shared link for some fixed real number
R called the rate. This signal sent from the server has to be
constructed such that each user can recover its requested file
from the signal received over the shared link and the contents
of its own cache.

We need to design both the content placed in the users’
caches during the placement phase and the signal sent by the
server during the delivery phase. The objective is to minimize
the rate R subject to the constraint that every possible set of
user demands can be satisfied. We again emphasize that, while
the signal sent over the shared link during the delivery phase is
a function of the users’ requests, the cache content designed
during the earlier placement phase cannot depend on those
requests (since they are unknown at the time). In addition,
since R is determined with respect to the worst possible user
requests, the cache content cannot be tuned for a specific set
of requests.

Example 1 (Uncoded Caching). As a baseline, let us review a
conventional uncoded solution, where in the placement phase
each user caches the same M /N fraction of each file. The
motivation for this approach is that the system should be ready
for any possible demand, therefore each user should give the
same fraction of its memory to each file. Moreover, since there
is no statistical difference in the user demands known during
the placement phase, the content of the caches for different
users should be the same.

In the delivery phase, the server simply transmits the
remaining 1 — M /N fraction of any requested file over the
shared link, and thus each user can recover its requested file.
Since, there are K requests to be delivered, the worst-case
delivery rate is

Ry(M)2 K -(1—M/N). (1)

The function Ry (M) describes the trade-off between rate and
memory for the baseline uncoded caching scheme. The factor
K in (1) is the rate that we would achieve without access
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Fig. 1. Canonical cache network from [2]: A server containing N files of
size I bits each is connected through a shared link to K users each with an
isolated cache of size M F' bits. The goal is to design the placement phase
and the delivery phase such that the peak rate of the shared bottleneck link
is minimized. In the figure, N = K =3 and M = 1.

to any caches. The factor 1 — M /N arises because an M /N
fraction of each file is locally cached at each user. We call this
second factor in (1) the local caching gain.

We refer to this caching strategy as uncoded caching, since
both the content placement and delivery are uncoded. From
the above discussion, we see that the role of caching in this
uncoded scheme is to deliver part of the requested content
locally. O

The uncoded caching scheme in Example 1 is just one
among a long list of conventional uncoded approaches, de-
veloped for different applications, scenarios, and objectives.
This includes popular schemes such as least-recently used
(LRU) and least-frequently used (LFU) (see, e.g., [3]). All
these conventional approaches share three main principles:

o The role of caching is to deliver part of the content

locally.

o Users with statistically identical demands have the same

cache contents.

o For isolated private caches, each user can only derive a

caching gain from its own cache.

As we will see next, these three main principles, which
are sensible for single-cache systems, do not carry over to
networks of caches. Indeed, we argue that the role of caching
goes well beyond local delivery and that local delivery only
achieves a small fraction of the gain that cache networks
can offer. We explain the main idea with two toy examples
from [2].

Example 2 (Coded Caching K = N = 3, M = 1). Consider
a system with K = 3 users, each with a cache large enough to
store one file, i.e., M = 1. Assume that the server has N = 3
files, A, B, and C. We split each file into three subfiles of
equal size, i.e., A = (A1, As, A3), B = (B, By, Bs), and
C = (Cy,C4,C3). In the placement phase, instead of placing
the same content in all caches, we place different content
pieces at the users’ caches as shown in Fig. 2. Formally, the
cache of user k is populated with (A, By, C). Since the size
of each subfile has 1/3 of the size of a whole file, the size
of (A, By, Cy) is equal to one file, satisfying the memory
constraint of M = 1.

17
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Ay, Az, As
B, B2, B3
Cy,C2,C3

Az ® B1, A3 ® C1, B3 ® Cs |

A B C

| A1, B1,Ch | | Az, Ba, Co | | Az, B3, C3 |

Fig. 2. Coded caching strategy for K = 3 users, N = 3 files, and
cache size M = 1. Each file is split into three subfiles of size 1 / 3, e.g.,
A = (A1, Az, A3). The content placement is not a function of the demands.
The delivery phase uses coding to satisfy two user demands with a single
transmission.

For the delivery phase, let us consider a generic case in
which user one requests file A, user two requests file B, and
user three requests file C'. Then the missing subfiles are As
and Aj for user one, B; and Bj for user two, and C7 and Cy
for user three. In other words, similar to the uncoded approach,
1/3 of a user’s requested file is available in that user’s private
cache and can therefore be delivered locally. The server could
now transmit the remaining 6 subfiles, each with size of 1/3,
for a total rate of 2. This would be the same rate as for the
uncoded scheme in Example 1. However, as we will see next,
making use of the particular pattern of the content placement
helps us achieve a better rate.

Note that user two has access to A, which user one needs,
and user one has access to By, which user two needs. These
two users would like to exchange this side information but
cannot since their caches are isolated. Instead the server can
exploit this situation by transmitting As & By over the shared
link, where @ denotes bitwise XOR. Since user one already
has B;j from its local cache, it can recover A; from As; @
B;. Similarly, since user two already has access to Ao, it can
recover By from As @ By. Thus, the signal A, @ By received
over the shared link helps both users to effectively exchange
the missing subfiles available in the cache of the other user.
Similarly, the server transmits A3 @ C over the shared link
to deliver A3 to user one and C; to user three. Finally, the
server transmits B & Cy to deliver Bs to user two and C5 to
user three as shown in Fig. 2. Since each server transmission is
simultaneously useful for two users, the load of the shared link
is reduced by a factor 2 compared to the uncoded approach.
The resulting delivery rate is equal to 1.

Here we have focused on the demand tuple (A4, B, C). It is
straightforward to verify that the same rate is also achievable
for all other 26 possible demand tuples. O

The above example highlights that, in addition to local
delivery of content, caching offers another benefit. The con-
tent placed into the caches creates multicasting opportunities

through coding that can further reduce the rate over the shared
link compared to the uncoded scheme of Example 1. Both

IEEE Information Theory Society Newsletter

schemes enjoy the gain of local delivery as 1/3 of the content
is delivered locally, but the coded scheme enjoys an additional
gain of a factor 2 due to coded multicasting.

How do these two caching gains, i.e., the gain of local
delivery and the gain of coded multicasting, scale with the
parameters of the problem? To get some insight, we increase
the size of the cache from M = 1 to M = 2 and see how
these two gains change.

A1z, A13, Aas
B2, B13, Bas
C12,C13,Ca3

A3 ® B3 © C12

A B C
Ai2, B12,C12 Ai2, B2, C12 A1, B13,C13
A13, B13, C13 A2z, Bas, Ca3 Asz, Bag, C23

Fig. 3. Coded caching strategy for K = 3 users, N = 3 files, and
cache size M = 2. Each file is split into three subfiles of size 1/3, e.g.,
A = (A1, Az, A3z). Here, the delivery phase uses coding to satisfy three
user demands with a single transmission.

Example 3 (Coded Caching K = N = 3, M = 2).
In the placement phase, we again split each file into three
subfiles of equal size. However, it will be convenient to
label these subfiles differently, namely A = (A2, A3, Aas),
B = (Blg,Blg,ng), and C' = (0127013,023). User k
caches those content pieces that have k in the index set as
shown in Fig. 3

For the delivery phase, let us again assume as an example
that user one requests file A, user two requests file B, and
user three requests file C' (see again Fig. 3). In this case, each
user can fetch 2/3 of its requested file from the local cache
and misses the remaining 1/3 of the file. In particular, user
one misses subfile A5z, which is available at both users two
and three. User two misses subfile B3, which is available
at both users one and three. And user three misses subfile
C12, which is available at both users one and two. In other
words, the three users would like to exchange the subfiles
Ass, B3, C1a, but are unable to do so because their caches are
isolated. The server can remedy this situation by transmitting
the signal Aoz @ Bi3 @ C12 over the shared link. Given its
cache content, each user can then recover the missing subfile.
Since the coded transmission is simultaneously useful for all
three users, the coded caching approach reduces the load of the
shared link by a factor of 3 compared to the uncoded scheme
of Example 1, resulting in a rate of 1/3. All other 26 possible
requests can be satisfied in a similar manner. O

From the last example we see that, as we increase the size
of the cache, both the local gain and the coded multicasting
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gain improve. For the general case, it is shown in [2] that
for arbitrary number N of files and K < N users each with
cache of size M € {0, N/K,2N/K,...,N}, coded caching
achieves a rate of

1

Ro(M)2 K - (1— M/N)- TR

2

For general 0 < M < N, the lower convex envelope of
these points is achievable. The case K > N can be handled
similarly, but the resulting expression is a bit more complicated
(see [2]). The function R (M) describes the trade-off between
rate and memory for the coded caching scheme.

We compare the three terms in the rate expression R¢ (M)
in (2) achieved by coded caching with the two terms in the
rate expression Ry (M) in (1) achieved by uncoded caching.

o The first term K, representing the rate without caching,
is the same in both rate expressions.

o The second term 1— M /N, representing the local caching
gain, is also the same in both rate expressions. Thus,
both the coded and uncoded schemes enjoy the gain
from having a fraction M /N of each file being locally
available.

o On top of this, the coded scheme alone enjoys a second
gain that is absent in the uncoded scheme. This gain is
quantified by the extra factor m, which captures
the gain resulting from creating and exploiting coded
multicasting opportunities. Perhaps surprisingly, we see
that this gain is a function of the cumulative memory size,
i.e., KM, even though the caches are isolated. We refer
to this gain as the global caching gain. To attain this gain,
we follow a particular pattern of content placement. In the
delivery phase, this pattern allows the creation of coded
packets each useful for 1 + KM /N users. This coded
multicasting opportunity is available simultaneously for
every one of the N¥ possible set of user demands, i.e., it
provides a simultaneous coded multicasting opportunity.

We next compare the two caching gains in more detail.

e The local caching gain 1 — M/N is significant if the
local cache size M is comparable to the size of the entire
content V.

o The global caching gain m is significant if the
cumulative cache size KM is comparable to the size of
the entire content N. As a result, the global caching gain
can reduce the load of the shared link in the order of the
number of caches K in the system.

Thus we see that, for networks of caches, the global gain can
be much more important than the local gain.

The order difference between the local and global gains is
illustrated in Fig. 4 for a system with K = 30 users. For
example, if each user has space to cache half of the content,
then uncoded caching reduces the load of the shared link from
30 files down to the equivalent of 15 files. On the other hand,
coded caching reduces the load of the shared link to less than
the equivalent of just a single file.

It can be shown that the rate Rc (M) of the coded caching
scheme is within a constant factor of the information-theoretic
optimum for all values of the problem parameters [2]. This
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Fig. 4. Rate R required in the delivery phase as a function of normalized
memory size M/N for K = 30 users from [2]. The figure compares the
performance of the proposed coded caching scheme with that of conventional
uncoded caching.

implies that the local and global gains identified above are
fundamental, i.e., there are no other gains that scale with the
system parameters.

Open Problem 1: Sharpening the approximation of the rate-
memory trade-off is of both theoretical and practical interest.
It is known that both the achievable scheme and the converse
can be improved [2]. For achievability, the first question is if
linear codes are sufficient for optimality or if nonlinear codes
are needed. The second question is if, within the class of linear
codes, larger field sizes can improve the performance. Finally,
the content placement presented so far is uncoded and only the
delivery is coded. It is known that coded content placement
can improve system performance for small cache sizes [2].
Whether coded content placement can increase performance
for larger cache sizes as well is unknown. There have also
been some recent efforts to improve the converse part [4], [5].

Open Problem 2: The rate-memory trade-off is known ex-
actly for a system with K = 2 users and N = 2 files [2].
Finding the exact trade-off for K = 3 and N = 3, the next-
bigger case, is of interest. There has been some recent progress
in this direction, and for some values of cache size M the
optimal trade-off is known [6]. However, for general M, the
K =3 and N = 3 case is still open.

III. OTHER SERVICE REQUIREMENTS

Practical applications and constraints may necessitate differ-
ent service requirements than the ones in the canonical model.
We next discuss several of those requirements.

A. Decentralized Caching

In the canonical cache network both the number and the
identity of the users in the delivery phase are already known
in the prior placement phase. This is clearly not a realistic
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assumption, because we would likely be unaware during the
placement phase, say in the early morning, which users will
be active in the following evening. In addition, users may join
or leave the network asynchronously, so that the number of
users in the delivery phase may also be time varying.

To deal with these issues, [7] develops a decentralized
caching scheme, in which the placement phase is independent
of the number and the identity of the users. In this scheme,
cache stores a randomly selected subset of the bits. The rate
of this decentralized scheme is shown to be within a constant
factor of optimal universally for any number of users K.
This universality property allows to address the problem of
asynchronous user requests. In addition, this decentralized
caching scheme is a key ingredient to handle online and
nonuniform demands discussed below.

Open Problem 3: It is shown analytically in [7] that the
rate of the decentralized caching scheme is within a constant
factor of the centralized scheme. Numerically, this factor can
be evaluated to be 1.6. This shows that there is at most a small
price to be paid for a placement phase that is universal with
respect to the number of users K. It is of interest to know if
there is, in fact, a cost for this universality at all.

B. Nonuniform Demands

Pn
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Fig. 5. File popularities p,, for the Netflix movie catalog from [8].

The canonical cache network focuses on the peak rate over
the shared link, i.e., the rate for the worst user demands. In
practice, the content files have different popularities, modeled
as the probabilities of being requested by the users (see Fig. 5).
Consequently, in some settings a more natural performance
criterion is the expected rate over the shared link.

If the file popularity is uniform, the coded caching scheme
from Section II also approximately minimizes the expected
rate (as opposed to peak rate) [8]. For nonuniform popu-
larity distributions, a different approach is needed. For such
nonuniform distributions, [8] suggests to split the content files
into several groups and to dedicate a fraction of the cache
memory at each user to each group. The placement phase
and delivery phase of the decentralized coded caching scheme
are then applied within each group of files. Since the number
and identity of users requesting files from each group is only
known during the delivery phase but not during the placement
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phase, the universality of the decentralized caching scheme is
critical for this file-grouping approach to work.

Subsequently, [9] proposed to use only two such file groups
with all memory dedicated to the first group. [9] also showed
that this approach is asymptotically within a constant factor
from optimal for the important special case of Zipf popularity
distributions in the limit as K, N — oo. Finally, [10] showed
that this approach with only two groups is in fact optimal to
within a constant multiplicative-plus-additive gap for all popu-
larity distributions and all finite values of K and N (assuming
M > 2). These two results thus show that, surprisingly, two
groups are sufficient to adapt to the nonuniform nature of the
popularity distribution.

This conclusion changes when, instead of a single user per
cache, many users are attached to each cache. In this scenario,
the grouping strategy with many groups is approximately
optimal [11].

C. Online Caching

The canonical caching problem in Section II has two distinct
phases: placement and delivery. The cache is updated only
during the placement phase, but not during the delivery phase.
In other words, caching is performed offline, meaning ahead
of delivery.

7500 H T
\ — Troy
NN —— Natl. Treasure
5000 —
2500 ~
1
1
1
0 T — T T T
0 10 20 30 40 50
week

Fig. 6. Number of ratings in the Netflix database for two movies (“Troy” and
“National Treasure”) as a function of week in 2005 from [12]. Each movie was
very popular upon release and then gradually reduced its popularity thereafter.

However, in many practical systems, the set of popular files
is constantly changing. Some new popular files can be added to
the content database, and some old files can become unpopular
or be removed from the content database (see Fig. 6). In order
to adapt to this dynamic content popularity, caching schemes
that update their cache content online, i.e., during the delivery
phase, are needed.

One popular cache update rule is least-recently used (better
known by its abbreviation LRU), in which the least-recently
requested file is evicted from the cache to open up space for a
newly requested file. While LRU is proven to be efficient for
single-cache systems [13], it is shown in [12] that for cache
networks it can be significantly suboptimal. Instead, a coded
version of LRU, in which the caches are updated during the
delivery phase such as to preserve the coding gain, is proposed.
For a probabilistic model of request dynamics, this update rule
is shown to be approximately optimal in [12].
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Open Problem 4: The approximate optimality result in [12]
holds only under a probabilistic model of request dynamics.
An open question is to develop schemes that have stronger
competitive optimality guarantees valid for any individual
sequence of users’ requests as shown in [13] for the single-
cache setting.

D. Delay-Limited Content

Fig. 7. Screenshot of video-streaming demo from [14]. The lower left window
shows the server process. The upper left window shows the decoding process
at a local cache. The three windows on the right show the reconstructed videos
being played in real time.

Video streaming is a popular application for caching. In
this setting each user sequentially requests small chunks of
content. Each such chunk has to be delivered within a limited
delay in order to enable continuous playback at the user.
Thus the server can only exploit coding opportunities among
the requested chunks within a given time window. In such
scenarios, the ultimate gain of coded caching, as seen in
the analysis of the canonical caching problem, is achievable
only if the tolerable delay is very large. [14] investigates
the trade-off between the performance of coded caching and
delay tolerance, and proposes a computationally efficient,
coded caching scheme that respects the delay constraint. This
approach was demonstrated in a practical setting with a video-
streaming prototype (see Fig. 7). The same approach also
works for settings with small files.

Open Problem 5: Approximately characterizing the funda-
mental trade-off between the rate versus cache size under a
delay constraint is of great interest.

Open Problem 6: The demo in [14] works for a small
number of caches and users. Scaling the system up to say
100 caches with 100 users per cache is of interest. This will
require addressing a significant number of systems issues such
as how to maintain state and how to handle disk reads both at
the server and at the caches, among others.

IV. OTHER NETWORK AND CHANNEL MODELS

The canonical cache network has a noiseless broadcast
channel topology. Here, we discuss other network and channel
models.
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Fig. 8. System setup for the hierarchical caching problem from [15].

A. Other Network Topologies

In practice, many caching systems consist of not only one,
but multiple layers of caches connected to each other to from a
tree. The objective is to minimize the transmission rates in the
various layers. [15] models this scenario as the network shown
in Fig. 8 and approximately characterizes the rate-memory
trade-off.

A different generalization of the broadcast topology is to
allow each user to connect to several close-by caches. This
scenario, particularly relevant for mobile users with caches
located at femtocells, is analyzed in [16].

Scenarios with multiple servers have been considered
in [17]. Coded caching for the device-to-device communica-
tion setting, where users help each other to deliver content,
has been analyzed in [18].

Another topology arising in the context of distributed com-
putation has been analyzed in [19]. This network topology
models a data center with multiple servers, each performing
part of a larger MapReduce job. Here the repetition in map
assignments is used to create coding opportunities and to
reduce the communication load of the shuffling phase.

Open Problem 7: An interesting open problem is to char-
acterize the rate-memory trade-off for hierarchical cache net-
works with multiple levels within a constant factor indepen-
dent of the number of levels.

Open Problem 8: Devising easily implementable and effi-
cient algorithms for hierarchical cache networks with nonuni-
form file popularities and online cache updating is of practical
interest.

Open Problem 9: Developing caching strategies with some
optimality guarantee for general network topologies is a likely
difficult but interesting open problem.

B. Noisy Channels

The noisy version of the noiseless broadcast channel in the
canonical cache network is considered in [20]. Here, the noise
is modeled as an erasure broadcast channel. The setting is

21
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particularly interesting for asymmetric erasure probabilities,
where unequal cache sizes can be used to improve system
performance. A similar setting but with feedback was analyzed
in [21].

cache 1 — X1 —> — Y1
cache 2 — Xo —| . — Yo
interference
channel
cache K — X —> — Yk

Fig. 9. K transmitters, each connected to a local cache, communicating to
K receivers over a Gaussian interference channel from [22].

To reduce load and delay of the backhaul, cache-aided cel-
lular base stations have received considerable attention [23]-
[25]. This raises the question if caches at the base stations
can also improve communication rate over the wireless links.
This question is investigated in [22] using the interference
channel model depicted in Fig. 9. It is shown that there are
three distinct gains from caching at the transmitters of an
interference channel: a load balancing gain, an interference
cancellation gain, and an interference alignment gain. The
load balancing gain is achieved through specific file place-
ment, creating a particular pattern of content overlap in the
caches. This overlap also enables interference cancellation
through transmitters’ cooperation. Finally, the cooperation
among transmitters creates many virtual transmitters, which
in turn increases interference alignment possibilities.

Open Problem 10: The rate-memory trade-off for cache-
aided interference channels is still unknown. Even character-
izing the degrees-of-freedom version of this trade-off is open.

Open Problem 11: Many multi-user channels could have a
cache-aided version, where caches can be at the transmitters’
side or at the receivers’ side or both. Cataloguing what type
of gains (similar to the coded multicasting, load balancing,
interference cancellation, and alignment gains seen so far)
caching can provide in these settings will be useful to guide
the design and operation of noisy cache networks.

V. CONNECTION WITH NETWORK AND INDEX CODING

Having surveyed the coded caching problem for various
network topologies and service requirements, we now return to
the basic canonical cache network and explore its connection
to network and index coding.

The canonical caching problem is related to the network
coding problem [26]. Indeed, the canonical cache network
with K users and N files can be expressed as a single-source
multiple-multicast problem with K N sinks and N multicast
groups (see Fig. 10). Unlike the single-source single-multicast
problem, the single-source multiple-multicast problem is a
hard problem in general [27]. It is the special structure of
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Fig. 10. The K = 2-user, N = 2-file canonical cache network expressed as
a single-source multiple-multicast network coding problem.

this network coding problem induced by the caching setting
that allows for the constant-factor approximation in [2].

The canonical caching problem is also related to the index
coding problem [28], [29]. Consider again the canonical cache
network with K users and NN files. Then for fixed and uncoded
cache content chosen in the placement phase and for fixed
user demands, the delivery phase of the caching problem is
exactly a K -user index coding problem. Since there are N X
possible user demands, the complete delivery phase consists of
N parallel such index coding problems. Unfortunately, the
general index coding problem is hard to solve even approxi-
mately [30]. The main difference with the canonical caching
problem is that here we are tasked with also designing the side
information (which may not be uncoded) subject to a memory
constraint. In other words, instead of fixed side information
as in index coding, we have a budget for side information.
Moreover, we have to be able to handle any possible user
demands. Interestingly, it is exactly this additional freedom to
design the side information that renders the canonical caching
problem more tractable.

VI. CONCLUDING REMARKS

In this newsletter article, we have argued that information
theory can play an important role in providing a fundamental
understanding of how to design and operate cache networks.
Many open questions remain to complete this understanding,
and we have pointed out a number of them.
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From 1.he Ed itor continued from page 2

Suhas Diggavi, Vijay Kumar, Pierre Moulin, David Tse, and Ray-
mond Yeung have prepared a report summarizing the new initia-
tives/experiments conducted in the organization of our flagship
conference ISIT that took place over the summer. Georg Bcherer,
Gianluigi Liva, and Gerhard Kramer have prepared a report on
the Munich Workshop on Coding and Modulation (MCM 2015).
Also from Munich, Stefan Dierks, Markus Jger, Gerhard Kramer,
and Roy Timo have prepared a report on the Munich Workshop
on Massive MIMO (MMM 2015). Vincent Tan, Matthieu Bloch,
and Merouane Debbah report on the Mathematical Tools of In-
formation-Theoretic Security Workshop that took place recently
in the Huawei Mathematical and Algorithmic Sciences Lab, Par-
is, France. Many thanks for all the contributors for their efforts!

With sadness, we conclude this issue with tributes to two promi-
nent members of our community, Oscar Moreno de Ayala who
passed away on July 14, and Victor Wei who passed away on Oc-
tober 17th. Thanks to Heeralal Janwa, P. Vijay Kumar and Andrew
Z. Tirkel; and to Lolita Chuang, Yu Hen Hu, Yih-Fang Huang, and
Ming-Ting Sun for preparing the tributes.

Please help to make the newsletter as interesting and informative
as possible by sharing with me any ideas, initiatives, or potential

newsletter contributions you may have in mind. I am in the process
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of searching for contributions outside our community, which may
introduce our readers to new and exciting problems and, in such,
broaden the influence of our society. Any ideas along this line will
also be very welcome.

Announcements, news and events intended for both the printed
newsletter and the website, such as award announcements, calls
for nominations and upcoming conferences, can be submitted at
the IT Society website http://www.itsoc.org. Articles and col-
umns can be e-mailed to me at mikel@buffalo.edu with a subject
line that includes the words IT newsletter.

The next few deadlines are: January 10, 2016 for the issue of March
2016. April 10, 2016 for the issue of June 2016.

Please submit plain text, LaTeX or Word source files; do not worry
about fonts or layout as this will be taken care of by IEEE layout
specialists. Electronic photos and graphics should be in high reso-
lution and sent as separate files.

I'look forward to hearing your suggestions and contributions.

With best wishes,
Michael Langberg.
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Concentiration of Measure Inequalities and
Their Communication and Information-Theoretic

Applications

Abstract—During the last two decades, concentration of mea-
sure has been a subject of various exciting developments in convex
geometry, functional analysis, statistical physics, high-dimensional
statistics, probability theory, information theory, communications
and coding theory, computer science, and learning theory. One
common theme which emerges in these fields is probabilistic
stability: complicated, nonlinear functions of a large number of
independent or weakly dependent random variables often tend
to concentrate sharply around their expected values. Information
theory plays a key role in the derivation of concentration inequal-
ities. Indeed, both the entropy method and the approach based
on transportation-cost inequalities are two major information-
theoretic paths toward proving concentration.

This brief survey is based on a recent monograph of the authors
in the Foundations and Trends in Communications and Informa-
tion Theory, and a tutorial given by the authors at ISIT 2015.
It introduces information theorists to three main techniques for
deriving concentration inequalities: the martingale method, the
entropy method, and the transportation-cost inequalities. Some
applications in information theory, communications, and coding
theory are used to illustrate the main ideas.

I. INTRODUCTION

Concentration inequalities bound from above the probability
that a random variable Z deviates from its mean, median
or some other typical value by a given amount. These in-
equalities have been studied for several decades, with some
fundamental and substantial contributions during the last two
decades. Very roughly speaking, the concentration-of-measure
phenomenon can be stated in the following simple way: “A
random variable that depends in a smooth way on many
independent random variables (but not too much on any of
them) is essentially constant” [1]. Informally, this amounts to
saying that such a random variable Z concentrates around its
expected value, E[Z], in such a way that the probability of the
event {|Z—E[Z]| > t}, for a given t > 0, decays exponentially
in some power of . Detailed treatments of the concentration-
of-measure phenomenon, including historical accounts, can be
found, e.g., in [2]-[9].

In recent years, concentration inequalities have been in-
tensively studied and used as a powerful tool in various
areas. These include convex geometry, functional analysis,
statistical physics, probability theory, statistics, information
theory, communications and coding theory, learning theory,
and computer science. Several techniques have been developed

Maxim Raginsky is with Department of Electrical and Computer Engi-
neering, Coordinated Science Laboratory, University of Illinois at Urbana-
Champaign, Urbana, IL 61801, USA (e-mail: maxim@illinois.edu).

1. Sason is with the Department of Electrical Engineering, Technion—Israel
Institute of Technology, Haifa 32000, Israel (e-mail: sason@ee.technion.ac.il).
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so far to prove concentration inequalities. This survey paper
focuses on three such techniques which are studied in our
tutorial [9] and references therein:

e The martingale method (see, e.g., [6], [10], [11], [8,
Chapter 7], [12], [13]), and its information-theoretic
applications (see, e.g., [14] and references therein, [15]).

e The entropy method and logarithmic Sobolev inequali-
ties (see, e.g., [3, Chapter 5], [4] and references therein).

e Transportation-cost inequalities which originated from
information theory (see, e.g., [3, Chapter 6], [16], [17]
and references therein).

Our goal here is to give the reader a quick preview of the
vast field of concentration inequalities and their applications
in information theory, communications and coding. Therefore,
we state most of the theorems and lemmas without proofs;
occasionally, we provide sketches or brief outlines. More
details can be found in our monograph [9] and the slides of
our ISIT’15 tutorial.!

II. THE BASIC TOOLBOX

Our objective is to derive tight upper bounds on the tail
probabilities

P[Z > E[Z] + t] and P[Z < E[Z] — {]

where Z = f(Xi,...,X,) is an arbitrary function of n
independent random variables X7, ..., X,. To get an idea of
what we can expect, let us first recall Chebyshev’s inequality:
Var[Z]
t2
This inequality shows that the tail probability decays with ¢,
and that the rate of decay is proportional to the variance of
Z. Thus, the variance of Z gives an idea about how tightly Z
concentrates around its mean. In fact, if Z takes values in a
bounded interval, then we can upper-bound the variance of Z
only in terms of the length of this interval:

vt >0

P[|Z —E[Z]| > ] < . viso.

Lemma 1. Let Z be a random variable taking values in an
interval [a,b]. Then

Var[Z] < % (b—a)®. (1

This bound is sharp: if Z only takes the two values a and b
with equal probability, then Var[Z] = } (b — a)?.

'Part 1 (The martingale method):
http://webee.technion.ac.il/people/sason/raginsky_sason_ISIT_2015_tutorial _
part_1.pdf.

Part 2 (The entropy method and transportation-cost inequalities):
http://webee.technion.ac.il/people/sason/raginsky_sason_ISIT_2015_tutorial _
part_2.pdf.
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Proof: Recall that Var[Z] < E[(Z — ¢)?] for all ¢ € R.
Letting ¢ = “TH’, we obtain (1). The case of equality is an
easy calculation. [ ]

Thus, for a bounded Z in an interval [a,b], Chebyshev’s
inequality gives

(b—a)?
42

Much stronger concentration inequalities can be derived, how-
ever, for bounded random variables. Using Markov’s inequal-
ity, for every A > 0 we have

Pl|Z —E[Z]] > 1] <

P[Z-E[Z]>{] =P [e’\(Z_E[Z]) > eﬂ
< e—(At—w()\)),

where 1p(\)2 log E[eMZ~ElZD] is the logarithmic moment-
generating function of Z. Optimizing over )\, we get the
Chernoff bound

P[Z >E[Z] +t] <e ¥ ®),

where 1* ()2 sup,~q [\ — ¥(A)] is the Legendre dual of .
For example, if Z ~ N(0,02) (Gaussian with mean 0 and
variance 02), we have ¥(\) = A\20%/2, and ¥*(t) = t?/20°.
With this in mind, we say that a random variable 7 is o2-
subgaussian if 1(\) < M\20%/2. For a subgaussian random
variable, we obtain 1)*(t) > t2 /202, which gives the tail bound

P[Z > E[Z]+1] <e ©/2°,  vi>o.

Thus, the whole affair hinges on our ability to prove that the
random variable Z of interest is subgaussian.
To start with, a bounded random variable is subgaussian:

Lemma 2 (Hoeffding [11]). For a random variable Z taking
values in an interval [a,b], we have

log E[e*Z~EZD) < 1)\2(b — a)?. 2)

Proof: We give a simple probabilistic proof, which has
the additional benefit of highlighting the role of the tilted dis-
tribution. Let P = £(Z),? and introduce its exponential tilting
P®): for an arbitrary sufficiently regular function f: R — R,

B [f(2)EHE0.

Since Z is supported on [a, b] under P, the same holds under
P® as well. Therefore, by Lemma 1,

Varpw[Z] < 1 (b—a)?.
On the other hand,

Varpe [Z] = Eg}[DZ[etez] ] - (EEF[,[Z;Z]]>

_ W/(t)-

2The notation L(Z) stands for the law, or probability distribution, of the
random variable Z.
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Therefore,
W'(t) < 3 (b—a)?
for all ¢. Integrating and using the fact that
¥(0) = ¢'(0) =0,

we get (2). [ |

Both the martingale method and the entropy method are
just elaborations of these basic tools, which are applicable to
an arbitrary bounded real-valued random variable. However,
one should keep in mind that concentration of measure is a
high-dimensional phenomenon: we are interested in situations
when Z is a function of many independent random variables
X1,...,X,, and we can often quantify the “sensitivity” of f
to changes in each of its arguments while the others are kept
fixed. This suggests that we may get a handle on the high-
dimensional concentration properties of Z by breaking up the
problem into n one-dimensional subproblems involving only
one of the X;’s at a time. Whenever such a divide-and-conquer
approach is possible, we speak of fensorization, by which we
mean that some quantity involving the distribution of

Z=f(X1,...,X,)

(e.g., variance or relative entropy) can be related to the sum
of similar quantities involving the conditional distribution of
each X; given

X2 (X, ., Xio, Xig1, .., X)),

III. THE MARTINGALE METHOD

The basic idea behind the martingale method is to start with
the Doob martingale decomposition

Z-RlZ) =) &, 3)
k=1
where
& 2E[Z|XY] — E[Z]X"] “
with
XE& (X, ..., X})

and then to exploit any information about the sensitivity of f
to local changes in its arguments in order to control the sizes
of the increments £;. As a warm-up, consider the following
inequality, first obtained in a restricted setting by Efron and
Stein [18] and generalized by Steele [19]:

Lemma 3 (Efron-Stein-Steele). Let Z =
X1,...,X,, are independent, then

F(X™) where

Var[Z] < Zn:E [Var[Z|X"]] . (5)
k=1

Proof: We exploit the fact that {£;}7_, in (4) is a
martingale difference sequence with respect to X, i.e.,

E[&k X" =0 (6)
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for all k € {1,...,n}. Hence, since E[¢&] = 0 for k # 1,
Var[Z] = ) _E[&). (M
k=1

The independence of Xi,...,X,, in (4) yields

& = E[Z — E[Z]X*]| X*]
and, from Jensen’s inequality,
& <E[(Z - ElZ|X*)*| X*].

Due to the independence of X1, ..., X, this in turn yields

E[&}] < E[(Z - E[2|X*)’]

= E[Var[Z|X*]]. ®)

Substituting (8) into (7) yields (5). [ |
The Efron—Stein—Steele inequality is our first example
of tensorization: it upper-bounds the variance of Z =
f(X1,...,X,) by the sum of the expected values of the
conditional variances of Z given all but one of the variables. In
other words, we say that Var[f(X1,...,X,,)] tensorizes. This
fact has immediate useful consequences. For example, we can
use any convenient technique for upper-bounding variances to

control each term on the right-hand side of (7), and thus obtain
many useful variants of the Efron-Stein—Steele inequality:

1) For every random variable U with a finite second moment,
Var[U] = 3 E[(U - U")?]
where U’ is an i.i.d. copy of U. Thus, if we let
Zp = f( X1, Xpm1, X gy X1 -5 X)),
where X is an i.i.d. copy of X}, then Z and Zj, are i.i.d.
given X*. This implies that
Var[Z|X*] = L E [(Z - Z,g)ﬂ)?’f}

for k € {1,...,n}, yielding the following variant of the
Efron-Stein—Steele inequality:

Var(Z] < 1 Y E[(Z - 2;)7). )
i=1
This inequality is sharp: if Z = )",'_, X}, then
E[(Z — Z})?] = 2 Var[X4],

and (9) holds with equality. This shows that sums of
independent random variables X1,..., X, are the least
concentrated among all functions of X™.

2) For every random variable U with a finite second moment
and for all ¢ € R,

Var[U] < E[(U — ¢)?].

Thus, if we condition on X*, we can let Z;, = f,(X*)
for arbitrary functions f (k € {1,...,n}) of n — 1
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variables, and obtain another variant of the Efron—Stein—
Steele inequality:

Var[Z] < ZE[(Z — Zi)?). (10)

3) Suppose we know that, by varying just one of the ar-
guments of f while holding all others fixed, we cannot
change the value of f by more than some bounded
amount. More precisely, suppose that there exist finite
constants cq,...,c, > 0, such that

SUpP f(X1, e ey Bty &y Tig1y e ey L)
xr
—igff(ﬂﬁl,--~,$i—1,$,$i+1,-~-,$n)Sci (11)
for all ¢ and all z4,...,2;-1,%4+1,...,2Z,. Then

Var[Z|X*] < 1 ¢}
by Lemma 1, and therefore from (5), (8)
Var[Z] <

> a. (12)

k=1

N

Example: Kernel Density Estimation

As an example of Efron—Stein—Steele inequalities in action,
let us look at kernel density estimation (KDE), a nonpara-
metric procedure for estimating an unknown pdf ¢ of a real-
valued random variable X based on observing n i.i.d. samples
Xi,...,X, drawn from ¢ [20, Chap. 9]. A kernel is a function
K: R — R™T satisfying the following conditions:

1) It is integrable and normalized: [*._ K (u)du = 1.

2) Itis even: K(u) = K(—u) for all u € R.
3) limpy K (5%) = 6(z — u), where & is the Dirac
function.
The KDE is given by

1 & - X;
Qf)n(l'):leK(xh >’

where h > 0 is a parameter called the bandwidth. From the
properties of K, for each x € R we have

Bl = 5 [ & (5 otu)du 2 o(0)

— 0o

Thus, we expect the KDE ¢,, to concentrate around the true
pdf ¢; to quantify this, let us examine the L; error

Zn= 1Ko X) = [ Jonle) - ool

A simple calculation shows that f satisfies (11) with
2

:cn:—’
n

C1 — ...
and therefore (12) yields

Var[Z,] <

1
n
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Now, to take full advantage of the martingale method, we
need to combine the martingale decomposition (3) with the
Chernoff bound. To proceed, we first note that the sequence
of random variables Z,2E[Z|X¥], for k = 0,1,...,n, is a
martingale with respect to X1,..., X,,,i.e., E[Zy 1| X*] = Z;
for each k. Here is one frequently used concentration result:

Theorem 1 (Azuma—Hoeffding inequality [10], [11]). Let
{Zi}}_ be a real-valued martingale sequence. Suppose that
the martingale increments &, = Zy, — Zi—1, fork=1,...,n,
are almost surely bounded, ie., |&| < di as. for some
constants dy, . ..,d, > 0. Then

t2
2> 4

The main idea behind the proof is to apply Hoeffding’s lemma
to each term & in the Doob martingale decomposition (3),
conditionally on X*~1: for all A > 0

n
I
k=1

n—1
H Nk E[e/\ﬁn
k=1

P(|Z, — Zo| > 1] < 2exp <— ) vt > 0. (13)

E[e)\(zn—Z(])] — E

=E

X"l]] .

2 32
Since [&,| < dn, we have InE[e*|X"~1] < Aan’ by

Hoeffding’s lemma. Continuing in this manner and peeling
off the terms & one by one, we can apply the Chernoff bound
and obtain (13). However, the Azuma-Hoeffding inequality is
not tight in general (e.g., if ¢ > Ezzl dy,, then the probability
in the left side of (13) is zero, due to the boundedness of the
&k’s, whereas its bound in the right side of (13) is strictly
positive). One way to tighten it is to make use of additional
information on the conditional variances along the martingale
sequence [21]:

Theorem 2 (McDiarmid). Ler {Z;}7°, be a martingale
satisfying the following two conditions for some constants
d,o > 0:

o |&] < d forall k.

o Var[Z,| X+ = E[|&|? X*Y) < o2 for all k.

Then, for every a > 0,

J
Pl =iz <2 (i)

where v = 0% /d?, 6 = a/d, and d(p||q)ZpIn +(1-p)In %
is the binary relative entropy function.

Note that, in contrast to Theorem 1, the martingale incre-
ments {{;} in Theorem 2 should be bounded by a constant d
which is independent of k.

A prominent application of the martingale method is a
powerful inequality due to McDiarmid [21], also known as
the bounded difference inequality:
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Theorem 3 (McDiarmid’s inequality). If f satisfies the
bounded difference property (11), and X, ..., X, are inde-
pendent random variables, then for all t > 0
212
) . (14)

> ket Ci
The strategy of the proof is similar to the one used to derive
the Azuma—Hoeffding inequality. In fact, we could have used
the Azuma—Hoeffding inequality to bound the tail probability
in (14); however, McDiarmid’s inequality provides a factor of
4 improvement in the exponent of the bound when f is a
function of n independent random variables.

Here is a nice information-theoretic application of Mc-
Diarmid’s inequality [22]. Consider a discrete memoryless
channel (DMC) with input alphabet X, output alphabet Y, and
strictly positive transition probabilities 7'(y|x). Fix an arbitrary
distribution Px~ of the input n-block X", and let Py~ denote
the resulting output distribution. Then, for every input n-block
" e X",

B(I£(X™) — B[f(X™)]| > ] < 2exp (

Pyn ‘Xﬂ,zzn (Y’I’L)

2
> D(Pynxoon [Pyn) +1] < exp (—nifT)) |
(15)
where
T(ylx)
T(yla')
Proof: Let us consider the function

¢(T)22 max maxlog
z,x' €X yeY

(16)
Py n|xn=yn(y")
Py (y™)

(recall that the input block x™ is fixed). A simple calculation
shows that this f has bounded differences with

=c, =c(T).

f(yl""ayn)élog

Cl — ...

Moreover, since the channel is memoryless, Yi,...,Y,, are
independent random variables under Pyn|xn»—,n~ (although not
under Py, unless Pxn» is a product distribution). Applying
McDiarmid’s inequality, we get (15). ]

The martingale method has also been used successfully to
analyze concentration properties of random codes around their
ensemble averages. The performance analysis of a particular
code is usually difficult, especially for codes of large block
lengths. Availability of a concentration result for the perfor-
mance of capacity-approaching code ensembles under low-
complexity decoding algorithms, as it is the case with low-
density parity-check (LDPC) codes [14], validates the use of
the density evolution technique as an analytical tool to assess
the performance of individual codes from a code ensemble
whose block length is sufficiently large, and to assess their
asymptotic gap to capacity. However, it should be borne in
mind that the current concentration results for codes defined on
graphs, which mainly rely on the Azuma—Hoeffding inequality,
are weak since in practice concentration is observed at much
shorter block lengths.
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Here are two illustrative examples of the use of martingale
concentration inequalities in the analysis of code performance.
The first result, due to Sipser and Spielman [23], is useful for
assessing the performance of bit-flipping decoding algorithms
for expander codes:

Theorem 4 (Sipser and Spielman). Let G be a bipartite graph
that is chosen uniformly at random from the ensemble of
bipartite graphs with n vertices on the left, a left degree [, and
a right degree r. Let a € (0,1) and § > 0 be fixed numbers.
Then, with probability at least 1 — exp(—dn), all sets of an
vertices on the left side of G are connected to at least

n [w — /2l (h(a) + 6)

vertices (neighbors) on the right side of G, where h is the
binary entropy function to base e (ie., h(x) = —xIn(x) —
(1 —-2)In(l —x), x € [0,1]).

The proof revolves around the analysis of the so-called neigh-
bor exposure martingale via the Azuma—Hoeffding inequality
to bound the probability that the number of neighbors deviates
significantly from its mean value.

Let LDPC(n, A, p) denote an LDPC code ensemble of
block length n, respectively, and with left and right degree
distributions A and p from the edge perspective (i.e., \;
designates the fraction of edges which are connected to a
variable node of degree ¢, and p; designates the fraction of
edges which are connected to parity-check nodes of degree ).

The second result, due to Richardson and Urbanke [24],
concerns the performance of message-passing decoding algo-
rithms for LDPC codes.

Theorem 5 (Richardson-Urbanke). Let C, a code chosen
uniformly at random from the ensemble LDPC(n, A, p), be
used for transmission over a memoryless binary-input output-
symmetric (MBIOS) channel. Assume that the decoder per-
forms { iterations of message-passing decoding, and let
Py(C,£) denote the resulting bit error probability. Then, for
every § > 0, there exists some o = a(\ p,0,¢) > 0
(independent of the block length n), such that

P [|Po(C,€) — ELppc(nap [Po(C, 0] = 8] <e

The proof also applies the Azuma—Hoeffding inequality to a
certain martingale sequence. Some additional references on the
use of the martingale method in the context of codes include
[14], [23]-[29]. For more details, we refer the reader to our
monograph [9].

IV. THE ENTROPY METHOD AND LOGARITHMIC SOBOLEV
INEQUALITIES

The entropy method, as its name suggests, relies on
information-theoretic techniques to control the logarithmic
moment-generating function 1 directly in terms of certain rela-
tive entropies. Recall our roadmap for proving a concentration
inequality for Z = f(X), where X is an arbitrary random
variable:
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e Derive a tight quadratic bound on :
A2g2
5

PY(N) = log E[eMZ~ElZD] <
e Use the Chernoff bound to get
P[Z > E[Z] +1] < e t/2.
Let P = £(X), and introduce the tilted distribution P(*f):

aptn = AP
Ep[e’\f]

The entropy method revolves around the relative entropy
D(PWX)||P), and has two ingredients: (1) the Herbst argu-
ment, and (2) tensorization.

We start with the Herbst argument (the name refers to an
unpublished note by I. Herbst that proposed the use of such an
argument in the context of mathematical physics of quantum
fields). Let us examine the relative entropy:

dPAX)

D(PAM)||P) = /dp(kf) log
= ECS DF(X) = ()]
= X' (A) = (),

where E(*/)[.] denotes expectation with respect to the tilted
distribution PAf), Now, with a bit of foresight, we rewrite
the last expression as

M)~ () = ¥ (wgm) .

Thus, we end up with the identity

p(POD|py =22 L (M) .

dA A
Integrating and using the fact that limy_,o @ = 0 (which
can be proved using 1’Hopital’s rule), we get
A
D(PUD|| P
o= [ 2PN,
0

Appealing to the Chernoff bound, we end up with the follow-

ing:

Lemma 4 (The Herbst argument). Suppose that Z = f(X) is

such that

A2o?
2 )

Then Z is o®-subgaussian, and therefore

D(PXD|P) < YA > 0. (18)

PIA(X)>E[f(X)] +]<e /2 vi>0. (19

In fact, it can be shown that the reverse implication holds as
well, but with some loss in the constants [30]: if Z = f(X)
is 02 /4-subgaussian, then

A2g2

DPPN|P) < 2,

A>0.
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In other words, subgaussianity of Z = f(X) is equivalent
to D(PA||P) = O(\?). It seems, therefore, that we have
not really accomplished anything, apart from arriving at an
equivalent characterization of subgaussianity. However, the
relative entropy has one crucial property: it tensorizes. Recall
that we are interested in the high-dimensional setting, where
X = (Xi,...,X,) is a tuple of n independent random
variables. Thus, P = L£(X) is a product distribution: Px =
Px, ®...® Px, . Using this fact together with the chain rule
for relative entropy, we arrive at the following:

Lemma 5 (Tensorization of the relative entropy). Let P and
Q be two probability distributions of a random n-tuple X =
(X1,...,X,), such that the coordinates of X are independent
under P. Then

D(@Q|IP) < Z (Qx,xi 1 Px.1Qx:)- (20)

The quantity on the rlght-hand side of (20) is the erasure
divergence between () and P [31]. We now particularize this
general bound to our problem, where () is given by the tilted
distribution P*/)_ In that case, using Bayes’ rule and the fact
that the X;’s are independent, we can express the conditional

distributions P! If ) , as follows: for each zt,

M (@151, @ig 1)

(Af)
ar E [eAf(xlr--:xi—l7Xi;$i+17~-1$n):|

s = dPy,.

i

This looks formidable; nevertheless, it reveals that the condi-
tional distribution P)(( s ))(L - 1s the exponential tilting of the
marginal distribution Px, with respect to the random variable
fi(X3) = f(@1,.. s 21, Xis@is, .-, 2,), which depends
only on X; because Z' is fixed. Thus, we arrive at the following
bound:

DPON|P) < 3TE [D(PQ Py, |
=1

where the expectation on the right-hand side is with respect to
the tilted distribution.
We can now distill the entropy method into a series of steps:

1) We wish to derive a subgaussian tail bound

Pf(X™) > E[f(X™)]+t] <et/2°, >0,

where X7, ...,X,, are independent random variables.
2) Suppose that we can prove that there exist constants
Cly...,Cp > 0, such that
. Ne?
D(PM P < 555 Vi 1)
3) Then, by the tensorization lemma,
/\2 2
D(PM||P) < %,

and therefore, by the Herbst argument Z = f(X™) is
o?-subgaussian with 02 = Y"1 | 2.

The main benefit of passing to the relative-entropy charac-
terization of subgaussianity is that now, via tensorization,
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we have broken up a difficult n-dimensional problem into
n presumably easier 1-dimensional problems, each of which
boils down to analyzing the behavior of the function f;(X;) =
flay,.ooo 21, X5, %41, ..., @), where only the ith input
coordinate is random, and the remaining ones are fixed at some
arbitrary values.

Of course, the problem now reduces to showing that (21)
holds. One route, which often yields tight constants, is via
so-called logarithmic Sobolev inequalities. In a nutshell, a
logarithmic Sobolev inequality (or LSI, for short) ties together
a probability distribution P, some function class A that con-
tains the function f of interest, and an “energy” functional
E : A — R with the property

E(af) = aE(f),

With these ingredients in place, a log-Sobolev inequality takes
the form

Ya>0,f € A

D(PY|P) < SE(f),

Then we readily get the bound

2 2 2
LB () < i

so f(X), X ~ P, is 02-subgaussian with 02 = cL?.

There is a vast literature on log-Sobolev inequalities, and an
interested reader may consult our monograph for more details
and additional references. Here we will give the two classic
examples: the Bernoulli LSI and the Gaussian LSI, due to
Gross [32].

Theorem 6 (Bernoulli LSI). Let Xi,...,X, be iid
Bern(1/2) random variables. Then, for every function
7:{0,1}" = R, we have

c
= v .
5 feA
Now suppose that E(f) < L. T

D(POD|IP) < SE(Af) =

LE [|Df(X™)]?e/X]
)] -

where P = Bern(1/2)®",

"= Zlfx” -

and x" @ e; is the XOR of =™ with the bit string of all zeros,
except for the ith bit. In other words, x™ ® e; is x™ with the
ith bit flipped.

The proof, which we omit, is to first establish the n = 1 case
via a straightforward if tedious exercise in calculus, and then to
extend to an arbitrary n by tensorization. Note that the mapping
f +— Df has the desired scaling property: D(af) = aD(f)
for all a > 0.

Theorem 7 (Gaussian LSI). Let X1,..., X, be i.id. N(0,1)
random variables. Then, for an arbitrary smooth function
TR >R

flam &),

E [[IVF(X™)[I3e" )]

1
D(PDOIP) < =
(POIP) < e

(23)
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Note that the mapping f — ||V f]|2 has the scaling property:
IV(af)ll2 = a||V ]2 for all @ > 0. By now, there are at least
fifteen different ways in the literature for proving the Gaussian
LSI. The original proof by Gross was to apply the Bernoulli
LSI to the function

f<X1+...+Xn—n/2

d

) ) X; "R Bern(1/2),

n/4

and then pass to the Gaussian limit by appealing to the Central
Limit Theorem.

The Gaussian LSI can be used to give a short proof of
the following concentration inequality for Lipschitz functions
of Gaussians, which was originally obtained by Tsirelson,
Ibragimov, and Sudakov [33] using different methods:

Theorem 8 (Tsirelson-Ibragimov—Sudakov). Let Xq,..., X,
be i.i.d. N(0,1) random variables, and let f: R™ — R be a
function which is L-Lipschitz:

[f (@) = Fy") < Lifz" = 4",

Then, f(X™) is L2-subgaussian, which yields

PLA(X™) > E[f(X™)] +1] < e 322 (24)

forall t > 0.

Proof: By a standard approximation argument, we may
assume that f is differentiable. Since it is also L-Lipschitz,
|[Vfll3 < L? everywhere. Substituting this bound into the
Gaussian LSI for Af, we obtain

A2

DPON ) < 25
By the Herbst argument, Z = f(X™), X" ~ N(0,I,), is
L2—subgaussian, and we are done. |

This result is remarkable in two ways: It only assumes Lips-
chitz continuity of f, and gives dimension-free concentration
(i.e., the exponent in (24) does not depend on n).

Deriving log-Sobolev inequalities, especially with tight con-
stants, is a subtle art. A commonly used method is to realize P
as an invariant distribution of some continuous-time reversible
Markov process and to extract a suitable energy functional
E from the structure of the infinitesimal generator of the
process. In many cases, however, it is possible to derive a
log-Sobolev inequality via tensorization and a nice and simple
variance-based representation of the relative entropy due to
A. Maurer [34]:

Theorem 9 (Maurer). Let X be a random variable with law
P. Then, for every real-valued function f and all A > 0

A A
D(PW>||P)—/O /t Var®H[F(X)]ds dt,

where Var(sf)gf(X)] is the variance of f(X) under the tilted
distribution PGf).
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Proof: As before, let 1)(\) = log E[e*/CO)=Ef(X)]] pe
the logarithmic moment-generating function of f(X). Then

D(PAIP) = A/ (A) — p(N)
A
- / WY (A) — (1))

= /0/\ /t/\ Y’ (s)dsdt,

where we have used the fact that ¢)(0) = ¢/(0) = 0 and
the fundamental theorem of calculus. Recalling that ¢ (s) =

Var®*H)[f(X)], we are done. [ |
The following result is a direct consequence of Theorem 9:

Theorem 10. Let A be a class of functions of X, and suppose
that there is a mapping T : A — R, such that:

1) Forall f € Aand a >0, I'(af) = al'(f).

2) There exists a constant ¢ > 0, such that

VarM[F(X)] < eT(f)]?,  VfeA A>0.
Then
AT 2
D(PM||P) < % VfeAN>0.
To illustrate Maurer’s method, let’s use it to derive the
Bernoulli LSI. It suffices to prove the n = 1 case, and

then to scale up to an arbitrary n by tensorization. Thus, let
P = Bern(1/2), and for every function f: {0,1} — R define

T(f)2(£(0) — f(1)|. By Lemma 1,
Var®M[F(X)] < 11£(0) - F()? = LD

Thus, the conditions of Theorem 10 are satisfied with ¢ =
1/4, and we get precisely the Bernoulli LSI. One can also
use Maurer’s method to prove McDiarmid’s inequality (see
Theorem 3).

V. TRANSPORTATION-COST INEQUALITIES
At this point, we notice a common theme running through
the above examples of concentration phenomena:
e Let f: R®™ — R be 1-Lipschitz with respect to the
Euclidean norm || - ||z, and let Xy,...,X,, be iid.
N(0,1) random variables. Then

P[f(X") > E[f(X™)] +1] < e /2

e Let X be an arbitrary space, and consider a function
f: X" = R, which is 1-Lipschitz with respect to the
weighted Hamming metric

n

dc<xn7 yn)é Z Cl]-{lﬁéyl}v
i=1
where cj,...,c, > 0 are some fixed constants. It is
easy to see that such a Lipschitz property is equivalent

to the bounded difference property (11), and in that case
McDiarmid’s inequality tells us that

BLf(X™) > E[f(X™)] +1] < e/ Tim et
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for every tuple Xi,...
random variables.

Thus, metric spaces and Lipschitz functions seem to be a
natural setting to study concentration. To make this statement
more precise, let (X,d) be a metric space. We say that a
function f: X — R is L-Lipschitz (with respect to d) if

[f(x) = f(y)] < Ld(z,y),

Denoting by Lip; (X, d) the class of all L-Lipschitz functions,
we can pose the following question: What conditions does a
probability distribution P on X have to satisfy, so that f(X)
with X ~ P is o%-subgaussian for every f € Lip;(X,d)?

Through the pioneering work of Katalin Marton [17], [35]-
[39], the answer to the above question has deep links to
information theory via the notion of so-called transportation-
cost inequalities [40]. In order to introduce them, we first need
some definitions. A coupling of two probability distributions
P and @ on X is a probability distribution 7 on the Cartesian
product X x X, such that for (X,Y) ~ 7 we have X ~ P and
Y ~ Q. Let TI(P, Q) denote the set of all couplings of P and
Q. For p > 1, the LP Wasserstein distance between P and ()
is defined as

Wy (P, @)= Treliir(lzfv Q)

, X,, of independent X-valued

Vr,y € X.

(Ex[d?(X,Y)))7.

The name “transportation cost” comes from the following
interpretation: Let P (resp., ()) represent the initial (resp.,
desired) distribution of some matter (say, sand) in space, such
that the total mass in both cases is normalized to one. Thus,
both P and @) correspond to sand piles of some given shapes.
The objective is to rearrange the initial sand pile with shape
P into one with shape ) with minimum cost, where the cost
of transporting a grain of sand from location = to location y
is given by dP(z,y). If we allow randomized transportation
policies, i.e., those that associate with each location x in the
initial sand pile a conditional probability distribution 7(dy|x)
for its destination in the final sand pile, then the minimum
transportation cost is given by W,(P,Q). We say that P
satisfies an LP transportation-cost inequality with constant c,
or T, (c) for short, if

Wy (P, Q) < v2cD(Q|P),  VQ.

The well-known Pinsker’s inequality 1is, in fact, a
transportation-cost inequality: If we take X to be an
arbitrary space and equip it with the metric d(z,y) = 152y},
then the L' Wasserstein distance Wy (P, Q) is simply the total
variation distance

1P = Qlirv = sup |P(4) = Q(A)],
and Pinsker’s inequality

[P —Q[Tv < %D(QHP)

(in nats) is then a T1(i) inequality, which is satisfied by all
probability measures P, () where () < P (i.e., ) is absolutely
continuous with respect to P). Various distribution-dependent
refinements of Pinsker’s inequality where the constant is
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optimized for a fixed P while varying only @ [41], [42] can
be interpreted in the same vein as well. Another well-known
transportation-cost (TC) inequality is due to Talagrand [43]:
Let X be the Euclidean space R", equipped with the Euclidean
metric d(z,y) = ||x — y||2. Then P = N(0,1,,) satisfies the
T5(1) inequality: W5(P, Q) < /2D(Q||P). The remarkable
thing here is that the constant is independent of the dimension
n.

With these preliminaries out of the way, we can now state
the theorem, due to Bobkov and Gotze [44], which provides
an answer to the question posed above:

Theorem 11 (Bobkov-Goétze). Let X be a random variable
taking values in a metric space (X,d) according to a proba-
bility distribution P. Then, the following are equivalent:

1) f(X) is o®-subgaussian for every f € Lip;(X,d).
2) P satisfies Ty(0?), i.e.,

Wi(P,Q) < v202D(Q| P)

for all Q.

At this point, one may wonder what we have gained —
verifying that a given P satisfies a TC inequality, let alone
determining tight constants, is a formidable challenge. How-
ever, once again, tensorization comes to the rescue. Marton’s
insight was that TC inequalities tensorize [40]:

Theorem 12. Let (X;, P;,d;), 1 < i < n, be probability metric
spaces. If for some 1 < p < 2 each P; satisfies T,(c) on
(Xi,d;), then the product measure P = P; ® ... ® P, on
X =Xy % ...x X, satisfies T,(cn®P~1) w.r.t. the metric

n 1/p
dzp(fﬂnayn)é (Z df(fi,yz‘)) :
i=1

In particular, if each P; satisfies 71 (¢), then P = P ®...Q P,
satisfies 77 (cn) with respect to the metric ) . d;. Note that
the constant deteriorates with n. On the other hand, if each P;
satisfies T5(c), then P satisfies T5(c) with respect to />, d2.
Note that the latter constant is independent of n.

To give a simple illustration of all these concepts, let us
outline yet another proof of McDiarmid’s inequality. Consider
a product probability space (X1 X...xX,,, Pi®...® P,). For
a fixed choice of constants ¢y, ..., ¢, > 0, equip X; with the
metric d;(2;,v;) = Cil{g,2y,}- Then, by rescaling Pinsker’s
inequality, we see that P; satisfies a T3 (c?/4) inequality with
respect to the metric d;:

Wi 4, (P, Qi) </ 5 c2D(Qi||Py), VQ;. (25)

By the tensorization theorem for TC inequalities, the prod-
uct distribution P satisfies a 7i(c) inequality with ¢ =
(1/4) 3", ¢? with respect to the weighted Hamming metric
dc. By the Bobkov—-Goétze theorem, this is equivalent to the
subgaussianity of all f(Xy,...,X,) with f € Lip,(X,d) and
mutually independent X; € X;, 1 <7 < n. But this is precisely
McDiarmid’s inequality.
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VI. SOME APPLICATIONS IN INFORMATION THEORY

We end this survey by briefly describing some information-
theoretic applications of concentration inequalities.

A. The Blowing-up Lemma and Information-Theoretic Conse-
quences

The first explicit appeal to the concentration phenomenon in
information theory dates back to the 1970s work by Ahlswede
and collaborators, who used the so-called blowing-up lemma
for deriving strong converses for a variety of communications
and coding problems.

Consider a product space Y™ equipped with the Hamming
metric d(y",z") = Y1 1yy, 2.3 For r € {0,1,...,n},
define the r-blowup of a set A C Y™ as

: u”'eA 2yt = T}

[A],2 {z” € Y" : min d(

The following result, in a different (asymptotic) form was first
proved by Ahlswede, Gics, and Korner [45]; a simple proof,
which we sketch below, was given by Marton [35]:

Lemma 6 (Blowing-up). Let Y1,...,Y, be independent ran-
dom variables taking values in Y. Then for every set A CY"
with Pyn(A) > 0

2
2 n 1
Pyn{[A],} =1 —exp “n <7“ - §log Pyn(A)> )
+

where (u);= max{0,u}.

Proof: We sketch the proof in order to highlight the role
of TC inequalities. For each i € {1,...,n}, let P, = L(Y}).
By tensorization, the product distribution P = Pyn satisfies
the TC inequality

where
Wi (P, = inf 1rx. 2y | .
1(P,Q) eith o) ; {X,L#YL}‘|

Now, for an arbitrary B C Y™ with P(B) > 0, consider
the conditional distribution Pp ()= ;( B)) Then D(Pg||P) =
log ﬁ, and in that case using (26) with Q = Ppg, we get

1(P, Pg) log P (27)

Applying (26) to B = A and B = , we get

W1(P,Py) <

Wi (P, Paje)

&T
|3

1-P([4],)
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Adding up these two inequalities, we obtain

" og - M log L
2 %P T\ 21— P(A])
> Wi(Pa, P) + Wi(Pae, P)

> Wi(Pa, Paje)

min d(z™, y"
xneA,yne[Ale ( ,y)

T

V

v

where the first step holds due to (27), the second step is verified
by the triangle inequality, and the remaining steps follow from
definitions. Rearranging, we obtain the lemma. ]

Informally, the lemma states that every set in a product space
can be “blown up” to engulf most of the probability mass.
Using this fact, one can prove strong converses for channel
coding in single-terminal and multiterminal settings. Here is
the simplest consequence of the blowing-up lemma in the
context of channel codes: Consider a DMC with input alphabet
X, output alphabet Y, and transition probabilities T'(y|x),
z € X,y €Y. An (n, M, e)-code for T consists of an encoder
f:{1,...,M} — X" and a decoder g : Y™ — {1,..., M},
such that

n - n -
e Plo(Y™) # j11(X") = j] < &,

Lemma 7. Let uj = f(j), 1 < j < M, denote the M code-
words of the code, and let D ég_l(j) be the corresponding
decoding regions in Y". There exists some 0, > 0, such that
1

T”([Dj]nén‘X" = Uj) >1-—,

n
Informally, this corollary of the blowing-up lemma says that
“any bad code contains a good subcode.” Using this result,
Ahlswede and Dueck [46] established a strong converse for
channel codlng as follows: Consider an (n, M, ¢e)-code C =

{(u;, D; )} ” .. Each decoding set D; can be ‘blown up” to a
set D C Y™ with

j=1,...,M.

= 1
T (Dj\uj) 2 1-— ﬁ

The object C = {(uj, D )};‘41 is not a code (since the sets

D are no longer disjoint), but a random coding argument can
be used to extract an (n, M’ e") “subcode” with M’ slightly
smaller than M and & < e. Then one can apply the usual
(weak) converse to the subcode. Similar ideas have found use
in multiterminal settings, starting with the work of Ahlswede—
Gécs—Korner [45].

B. Empirical distribution of good channel codes with non-
vanishing error probability

Another recent application of concentration inequalities to
information theory has to do with characterizing stochastic
behavior of output sequences of good channel codes. On a
conceptual level, the random coding argument originally used
by Shannon (and many times since) to show the existence of
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good channel codes suggests that the input/output sequence
of such a code should resemble, as much as possible, a
typical realization of a sequence of i.i.d. random variables
sampled from a capacity-achieving input/output distribution.
For capacity-achieving sequences of codes with asymptotically
vanishing probability of error, this intuition has been analyzed
rigorously by Shamai and Verdd [47], who have proved the
following remarkable statement [47, Theorem 2]: given a
DMC T, any capacity-achieving sequence of channel codes
with asymptotically vanishing probability of error (maximal
or average) has the property that

o1 .

Jim = D(Pyn|Pyn) =0, (28)
where, for each n, Py~ denotes the output distribution on
Y™ induced by the code (assuming that the messages are
equiprobable), while Py, is the product of n copies of the
single-letter capacity-achieving output distribution. In a recent
paper [48], Polyanskiy and Verdi extended the results of [47]
for codes with nonvanishing probability of error.

To keep things simple, we will only focus on channels with
finite input and output alphabets. Thus, let X and Y be finite
sets, and consider a DMC T with capacity C. Let P% € P(X)
be a capacity-achieving input distribution (which may be
nonunique). It can be shown [49] that the corresponding output
distribution P € P(Y) is unique. Consider any (n, M )-code
C = (f,g), let P\ denote the distribution of X™ = f(.J),
where J is uniformly distributed in {1,..., M}, and let P\)
denote the corresponding output distribution. The central result
of [48] is that the output distribution P}(,C;) of any (n, M, e)-
code satisfies

D(PY)

Py.) < nC —log M + o(n); (29)

moreover, the o(n) term was refined in [48, Theorem 5] to
O(y/n) for any DMC, except those that have zeroes in their
transition matrix. Using McDiarmid’s inequality, this result is
sharpened as follows [22]:

Theorem 13. Consider a DMC T with positive transition
probabilities. Then any (n, M, e)-code C for T, with ¢ €
(0,1/2), satisfies

p(P

P{;n) <nC —logM
1

1 n

log — T)y/ = log ——

+og€+c() 5108 T
where ¢(T) is defined in (16).

Proof (Sketch):
Px(/cn) and t = ¢(T),/ % log =5, we get

Using the inequality (15) with Py~ =

Pyn |X":$” (Yn)

> D (Pyn |Xn —xrn
C pe x
P (vn)

1
+¢(T) log ] <1-2

n
2 1—2¢
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Now, just like Polyanskiy and Verdd, we can appeal to a strong
converse result due to Augustin [50] to get

1
log M < log - + D(Pyn‘xn P3(/C;) P)((Cn),)
n 1
T)4/ =1 .
el loe 5 0)
Therefore,
p(PS||Py)
1 1
<nC —logM + logg +¢(T) glog T o0

where the first step is by the chain rule, the second follows
from the properties of the capacity-achieving output distribu-
tion, and the last step uses (30). |

A useful consequence of this result is that a broad class of
functions evaluated on the output of a good code concentrate
sharply around their expectations with respect to the capacity-
achieving output distribution:

Theorem 14. Consider a DMC T with ¢(T) < oo. Let d be
a metric on Y", and suppose that Pyn|xn—gn, " € X", as
well as Py, satisfy Ti(c) for some ¢ > 0. Then, for every
e €(0,1/2), every (n, M, e)-code C for T, and every function
£+ Y™ = R which is L-Lipschitz on (Y",d), we have

PE(1£0rm) —ELF (™) 2 t)

4 2
Sg exp(nC—lnM—i—a\f—

t
- > 1
SCLQ),vr_o 31)

where Y™ ~ Py, and a=c(T) /4 1In 2.

As pointed out in [48], concentration inequalities like (31)
can be very useful for gaining insight into the performance
characteristics of good channel codes without having to ex-
plicitly construct such codes: all one needs to do is to find
the capacity-achieving output distribution Py and evaluate
E[f(Y*™)] for an arbitrary f of interest. Consequently, the
above theorem guarantees that f(Y"™) concentrates tightly
around E[f(Y™*™)], which is relatively easy to compute since
Py, is a product measure.
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The Historian’s Column

By the time you read today’s column we are probably already in
the year 2016, although, formally, this issue of the Newsletter is
still the last one of 2015. The reason this matters is that 2016 is
the Centennial Anniversary of Claude E. Shannon’s birthday. As
explained elsewhere in this issue, the Society has numerous plans
for observing this milestone. Shannon was born on April 29, 1916
and died in February of 2001. His life and accomplishments left
an indelible mark on the History of Science and Technology. In
particular, starting with his monumental paper of 1948 (“A Math-
ematical Theory of Communication”), he established the field of
Information Theory.

The number of people who have known him personally and who
have learned from him directly keeps dwindling. Most of our
readers have only heard of him indirectly through the words of
their mentors and, of course, have learned from Shannon’s own
works. In 1998, when we celebrated the Golden Anniversary of the
founding of our Society, among the many festive activities there
was a special issue of this Newsletter that Jim Massey and I co-
edited that was dedicated to Shannon and which is available on-
line and contains a wealth of retrospective information about him
provided by many of the most prominent members of our Society.
Also, a few years earlier, the complete works of Shannon were col-
lected and published in a volume edited by Aaron Wyner and Neil
Sloane. So, the technical side of Shannon’s heritage has been well-
covered and never ceases to be invoked time-and-again by more
and more people working in several diverse fields. The depth and
impact of his work have been simply formidable.

Here, today, I would like to only recall and offer a few glimpses
of Shannon, the man who, even to those who knew him relatively
well, was a reclusive and inscrutable individual. Thus, any por-
trait of Shannon will be fuzzy and incomplete and, hence, like
many works of Art, it will allow for different interpretations, ex-
tensions, and appreciation of his persona.

I met Shannon in 1973 at the landmark ISIT in Ashkelon, Israel.
He gave the first Shannon Lecture there in observation of the
25" Anniversary of the birth of Information Theory. The idea to
establish the Shannon Lecture (and subsequent Shannon Award)
was the brainchild of Jacob Ziv and Aaron Wyner and proved to
be a visionary one. On that occasion, Shannon was rather ner-
vous but this was only detected by those who were physically
in close proximity to him and chatted with him before his talk.
His lecture, which was on the subject of feedback with a fanciful
twist to it, was actually delightful, informative, and entertaining.
Although he was already famous he had not yet acquired the
aura of a genius and a legend. That happened gradually after
he slowly withdrew and receded from the spotlight of the pro-
fessional arena, where he had been active for only a little over
a decade or two. We know now of some of his famous quotes
from that period. When he left Bell labs to go to MIT he is said
to have exclaimed “Oh, God, it feels good to be back in Indus-
try!” And when he visited the Technion in Haifa for the first
time he quipped that MIT was the Technion of the United States,
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Anthony Ephremides

reversing the popular slogan that
the Technion was the MIT of Israel.

We would only hear about Shan-

non rather rarely after that. For ex-

ample, he had given some famous

and broadly quoted interviews, like

the one to Robert Price in 1982 and

some others in which he revealed

that he loved juggling, liked to build and ride monocycles, and
liked drinking beer. Then we heard of his winning the prestigious
1985 Kyoto Prize. Unfortunately the Nobel Prize does not have a
category that includes Information Theory, or else he would have
been a slam-dunk candidate for winning it.

It was in 1985 and 1986 that the Society reached out to him again
and invited him to attend the ISIT’s in Brighton, England, and in
Ann Arbor, Michigan respectively. In 1985 he was already not rec-
ognized by most of the attendees. It is not a fable that before the
banquet a young researcher told him in confidence that apparent-
ly Claude Shannon was in attendance at the Symposium. He was
introduced to a tumultuous applause by Bob McEliece, a talented
Thespian in our midst, who was then President of the Society. And
in 1986 he was actually called upon to deliver the Award plaques
to the various recipients during the award ceremony at the ban-
quet. I had the privilege of handing him the plaques and diplomas
as I was at the time the 1% Vice-President of the Society and hence
responsible for handling the Awards. In retrospect, I could already
see some early signs of confusion and forgetfulness on his part
that, as we know, developed later to a full-blown case of Alzheim-
er’s disease. This unfortunate development drew slowly (but in
a dignified, albeit protracted, fashion) the curtain over what had
been an amazing lifetime of contributions.

Shannon had a complex and very private personality and led an
equally private life. Only small fragments of that life and char-
acter became ever visible to his close associates and friends. He
remained a mystery to most. His friendly and amiable expression
with a trace of benevolent smile was the “brand” of his image. But
there was also remoteness in that expression. He always down-
played the significance of his work and was always a champion
of modesty and self-effacing behavior. All these traits together
compose an appropriate figure for the founder and leader of our
fascinating field.

My closing comment, as the year of celebration of Shannon be-
gins, is that the impact of his work on technology and applica-
tions has not been fully appreciated. Shannon was NOT a math-
ematician. Even Doob had said that in his landmark paper, “his
mathematical intentions were not honorable!” Above all he was
an engineer. In fact he was a truly ultimate type of engineer who
could dissect the complexity of a problem into simple pieces and
who would solve these pieces in order to then put them together
to reconstruct the full solution to the original problem. This is the
essence of Shannon’s legacy.
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GOLOMB'’S PUZZLE COLUMN™

Numerical Oddities

Solomon W. Golomb

1) Find integers a, b, c with 1 <a < b < c such that a! b! = ¢! (Two solutions.)
2) Find integers k and n with 1 < k < n such that k! + 1 = n2. (Three solutions.)
3) In each of these cases, find two primes p and g, both <17, and different in each case, that satisfy:
a) pP-g’=1 e) p’-q’ =10
b) p®-g>=2 f) 22 -¢g?=1
Qp-q=3 g pr-24=1
d) p>-g*=4
4) Find an integer a > 1 where a® + 1 is a k-digit number, k > 1, with all k of its digits the same. (Two solutions.)
5) Find 1 <k < n with () =3 (1) =3 (7).
6) Find 1 <k <n with (1) = (}1)-
7) Find 1 <k <nwith (§)+(})+(5)=2~
8) Find 1 <k <nwith (§)+(})+(5)+(5)=2

9) Find integers a > 1 and b > 1 such that (2° - 1) + (3" — 1) = m, where m is a 5-digit prime such that 2" - 1 is a (Mersenne)
prime.

10)Find asetS={n+1,n+2,...,n+k} of k consecutive integers, 1 < k < n, such that each element of S has a prime factor in
common with at least one other element of S.

GOLOMB’S PUZZLE COLUMN™
Simple Theorems About Prime
Numbers Solutions

Solomon W. Golomb

1) “The number of primes of the form 4n — 1 is infinite.”

Proof by contradiction. Suppose not. Then the primes of this form are a finite set, say S = {g,, q,, ..., 4,,} is all of them. Let
Q=4 4Gy ---,4q,, and consider the number K = 4Q — 1. Since each g, divides Q, none of them can divide K. If K is prime,
since it is of the form 41 — 1 and is bigger than any g, this contradicts the assumption that the list S is complete. If K,which
is odd, is not prime, it must be a product of odd primes, each of which is either of form 4a — 1 or 4a + 1. If all the prime
factors of K had form 4a + 1, their product would also have form 4a + 1, so at least one prime factor of K must have form
4a — 1, a prime of form 4n — 1 not on the assumed complete list S. O
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2) “The number of primes of the form 6n — 1 is infinite.”

Proof by contradiction. Suppose not. Then the primes of this form are a finite set, say T = {r, 7,, ..., r,,} is all of them. Let
R=r,71y...,7,,and consider the number L = 6R — 1. Since each 7, divides R, none of them can divide L. If L is prime, since
itis of the form 67 — 1 and is bigger than any r,, this contradicts the assumption that the list T is complete. If L is not prime,
it can be divisible by neither 2 nor 3, and all other primes are either of the form 6a — 1 or 6a + 1. If all prime factors of L
had form 6a + 1, their product would also have form 6a + 1, so at least one prime factor of L must have form 6a — 1, a prime
of the form 671 — 1 which is not on the assumed complete list L. O

NOTE. These two are special cases of a far more general, and far deeper theorem of Dirichlet, which states that the arith-
metic progression {an + b}, as n runs through all positive integers, takes on infinitely many prime values, so long as the
obvious necessary condition, that a and b have no common prime factor, is satisfied.

“There are infinitely many “twin primes” if and only if there are infinitely many positive integers n NOT of the form are
6ab + a + b, where a and b are positive integers, and all combinations of the + signs are allowed.”

Proof. Every twin prime except (3, 5) must be of the form (6n — 1, 6n + 1). If either 6n — 1 or 61 + 1 factors, it must be a
product of two numbers, say 6a + 1 and 6b + 1, since all numbers divisible by neither 2 nor 3 are of these forms. Thus, 61
+ 1 fails to be a twin prime if and only if 61 + 1 = (6a = 1)(6b + 1) = 36ab + 6a + 6b + 1. Considering the two sides of this
equation modulo 6, the +1 terms must match, so 611 = 36ab + 6a + 6b, and n = 6ab + a + b, for some choices of 2 and b, in
order for (6n — 1, 6n + 1) to fail to be a twin prime. ]

NOTE. This was my first published result. It appeared as a Problem I submitted in the May, 1951, issue of the American
Mathematical Monthly.

“Every positive integer is either of the form n + 77 (1) or p, + n — 1 (but not both), as n takes on all positive integers.”

Proof. Imagine a land where the sales tax on n (cents) is 7(n), so the “total price” is n + 71(n). This tax increases by 1 (cent)
whenever 7 is a prime, so if the pre-tax price is p,, then the total price is p, + n. But when the pre-tax price was p, - 1, the
tax was n — 1, for a total price of (p, — 1) + (n — 1) = p, + n — 2. So the numbers that never appear as the total price are
precisely the numbers p, +n — 1. O

NOTE. This result was the substance of my paper “The ‘Sales Tax” Theorem”, Mathematics Magazine, September—October,
1976.

“The ratio % takes on every positive integer value > 1 at least once, as 7 > 1 runs through the positive integers.”

Proof. This result depends on only two properties of 7();

i) That 7z7(n + 1) is either 7z(n) or 71(n) + 1; and ii) that ™ 7 = 0. Now % = % =2, s0 the value 2 occurs and since '™ - =

N oo 1 n— oo 7n)

oo, arbitrarily large value of % occur. Our task is to prove that no integer values of this ratio are skipped. For any m > 2,
there is a unique largest prime p; = p;,, for which 7(p)) = k = p;/m. Thus m7(p,) = mk > p,. Either mk < p,, or mk 2 p; ,. If
M, < P,y since p, < mk, 7(p,) < A(mk) < 7(p,,,), from which 7(mk) = k, and mk/7(mk) = m, so that n = mk is an integer for
which n/7(n) = m.

If mk > p,,, then 7(p,,;) = k + 1 > k = mk/m > p, ,/m, which contradicts the choice of p, as the largest prime for which
7(p) = p/m. U

NOTE. This result was the substance of my paper “On the ratio of N to 77(N)”, American Mathematical Monthly, January,
1962. I suspect (but have not proved) that the ratio 1n/7(1) takes on every integer value m > 2 at least three times, for
alln>1.
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The Students’ Corner

I recently came across an article on the arXiv that I believe could
be of interest to students looking for new topics to work on, or
thinking of pursuing a long-term career in information theory—
http://arxiv.org/abs/1507.05941. It is written by a diverse range
of leading experts, and overviews a number of future directions
of information theory, including in particular applications to ar-
eas such as statistics, machine learning, biology, physics, and net-
worked systems.

The field of information theory has been going strong for nearly
70 years now, and year after year we see an impressive range of
problems and solutions appearing in our conferences and journals.
Shannon theory itself offers a seemingly endless number of inter-
esting open problems—of course varying greatly in difficulty—
but research in new directions overlapping with other fields now
seems to be becoming more popular than ever.

Having worked on “core” topics in Shannon theory during my
PhD, I am now looking into some of these interdisciplinary con-
nections. I find it quite fascinating how many statistical problems
can be interpreted as source or channel coding problems—albeit
oftentimes unconventional ones! To name just a few, I have seen
and worked on the development of these connections in com-
pressive sensing, group testing, graphical model selection, and

Jonathan Scarlett

community detection. With so many previous solutions in these
areas relying on ad-hoc methods and incremental improvements,
one should expect the fundamental limits provided by informa-
tion theory to be of great importance.

On the other hand, as Shannon himself warned, we must be cautious
and aware of the limitations of information theory in fields that it
was not originally intended for. It is, of course, crucial to check the
underlying assumptions and practical issues. One key difference in
many interdisciplinary areas is that the analytically tractable models
are often simply too crude, making it rather questionable as to how
worthwhile it is to nail down the precise thresholds, as information
theorists love to do. Despite this, in my view, there is often good
reason to do this beyond the theoretical interest alone — the quest to
achieve the thresholds often provides great insight and leads to new
algorithms, as well as shining new light on existing ones.

Perhaps information theory will not impact these areas quite as
much as it has impacted communication, nor provide results that
are quite as elegant as Shannon’s source and channel coding theo-
rems. Nevertheless, I believe that with the right amount of care
and the correct assumptions and interpretations, information the-
ory can still play a fundamental role in ways that we never would
have imagined previously.

From the Field

In 2014, the IEEE Israel Section Information Theory Chapter re-
ceived the IEEE Information Theory Society Chapter of the Year
Award. Back then, we felt that the award reflects advance recogni-
tion of current efforts and anticipated activities no less than rec-
ognition for past accomplishments. Indeed, 2015 was a very busy
year for us.

In April, we held the Information Theory Workshop in Jerusalem.
It was the first major IT conference in Israel since ITW 1996 which
was held in Haifa. The organizing Committee, led by the general
co-chairs Yossi Sternberg, Rami Zamir and Jacob Ziv, consisted of
members from all Israeli universities, as well as Alexander Barg
from Maryland. The workshop was attended by about 160 par-
ticipants, three quarters of them coming from abroad. We aimed
at creating a rich experience, both from a technical perspective
and from a cultural one. The technical program featured over 120
talks, including 5 plenary sessions. A special history session, led
by our society historian Anthony Ephremides, featured David
Forney, Robert Gallager, Sergio Verdu, Andrew Viterbi and Jacob
Ziv. The fascinating stories concentrated on Claude Shannon, in-
cluding the renowned first Shannon lecture that he himself gave
in Ashkelon, Israel, in 1973. A video of the session can be found
in the workshop website.
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We made every effort to enable the workshop participants to have
a taste of the country as well. That started from the location of the
conference—Mishkenot Shadnanim, a historical building with a
beautiful panorama of the Old City walls. Then, we had a walking
tour inside the walls, introducing the diverse cultural heritage of
the city. A full-day tour (in excruciating heat that was beyond our
control) took the participants to the Judean Desert and the Dead
Sea, culminating in a Beduin feast. The banquet was held in the
Israel Museum, where dinner was preceded by a tour of the mu-
seum and followed by a musical show, with guest star Rami Zamir
playing the keyboard.
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After ITW, some of the participants continued directly to the
Technion workshop on coding for emerging memories and stor-
age technologies, which featured as speakers world-leading
coding and information theorists, as well as Technion graduate
students. The talks dealt with many of the fundamental subjects
and useful techniques for storage reliability and efficiency: LDPC
codes (Costello), constrained coding (Siegel), new channel mod-
els (Jiang, Jaggi), new data representations (Schwartz), funda-
mental limits (Verdu), efficient data recovery (Hollanti, Tamo).
The workshop attracted a lot of interest inside and outside the
Information-Theory community. In particular, the audience in-
cluded a large representation from the thriving storage industry

in Israel, as well as from related high-tech fields in computer and
electrical engineering.

We at the Israel Chapter were delighted with the presence of so
many visitors, and will be happy to host more in the future. We
would like to take this opportunity and remind the community
that every two years, IEEE Israel is holding a conference in the
beautiful Red-Sea resort of Eilat. The conference always includes
some lively IT sessions, as well as ones in neighboring fields such
as signal processing and communications. The next IEEEI confer-
ence will be held around November-December 2016, and all of
you are welcome!

PreSidenils COIU mn continued from page 1

information theory. The committee has enlisted the creative talent
of our student community to create posters telling students what
they love about information theory. The committee is also compil-
ing and editing archival material to create a 3-minute video about
Shannon for use in exhibits and events.

We are proud to announce that the current list of institutions
that have signed on to hold Shannon Day events includes 20
universities, museums, and labs located in over a dozen coun-
tries. Please see the website https://en.wikipedia.org/wiki/
Claude_Shannon where details are being posted as they emerge.
And there is still time to get involved! For more information about
adding your institution to our list, please contact Lav Varshney at
varshney@illinois.edu.

The Broader Outreach committee has enlisted the help of Greg
Wornell and Emre Telatar to petition IEEE to get Shannon’s 1948
paper added to the IEEE honor roll of historical Milestones. The
Shannon stamp petition (http://www.itsoc.org/about/shan-
nons-centenary-us-postal-stamp) to the United States Postal
Service (USPS) now has over 1000 signatures, and Ninoslav Ma-
rina has proposed a Shannon stamp for Macedonia. Christina
Fragouli and Anna Scaglione are exploring the possiblity of cre-
ating a cartoon about Shannon’s work for children. Eric Graves,
Joerg Kliewer, Anand Sarwate, and Aaron Wagner are organiz-
ing a series of information theory discussions on Reddit AMA
(http:/ /www.reddit.com/r/science/wiki/scienceamaseries).
The website enables science presentations and conversations for
participants around the world, regularly drawing audiences of
1000 or more. Eren Sasoglu and Ardan Arac have proposed to
Google a special Google homepage theme to mark Shannon’s
100th birthday. Let’s keep our fingers crossed that Google will
make such a page and that billions of people will get to see it.
Plans are also underway to contact local museums, radio shows,
and newspapers with the hopes of garnering publicity for this
important day.
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The Conference Committee, under the leadership of Elza Erkip, has
been working to support workshops and conferences that explore
connections between information theory and other fields and to
develop guidelines and procedures for soliciting and handling re-
quests for support in the future. The Online Committee, chaired by
Anand Sarwate, has been working to update our website, making
it possible to support more multimedia content such as talks and
educational materials and to support a more dynamic and interac-
tive online community. The Newsletter editor, Michael Langberg,
has established a series of Newsletter articles on topics that connect
information theory to other fields. The first article in that sequence,
written by Mark Braverman, Rotem Oshman, and Omri Weinstein
and published in the September Newsletter, explores the connec-
tions between information theory and communication complexity.

Looking forward, the officers, led by our future President
Alon Orlitsky and future 1st Vice President Ruediger Urban-
ke, are already discussing potential broad outreach efforts for
future years. These activities are likely to involve educational
initiatives that take advantage of the web’s ability to harness
the talents of individuals to reach anyone anywhere. But I will
leave the fun of telling you about those ideas to our future
president. Perhaps he will talk about them in an upcoming
President’s Column.

And so, I sign off on my final President’s Column here. It has been
an honor and a pleasure to serve as the 2015 President of the IEEE
Information Theory Society. As you can see by the long list of
names included in this and prior columns and can surmise from
the even longer list of people who make this Society what it is, I
have benefited from the help, generosity, guidance, and wisdom
of a huge number of our Society’s members. I am so grateful to all
of them and all of you for your support.

As always, I am happy to hear from you. Please send me your
thoughts at effros@caltech.edu.
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ISIT 2015: Experiments in a Time of Change

Suhas Diggavi, Vijay Kumar, Pierre Moulin, David Tse, and Raymond Yeung

The field of information theory is undergoing a period of change,
as existing areas become mature and efforts are made to explore
new directions in new domains. In keeping with the spirit of the
times, we the ISIT 2015 organizers decided to do a few experi-
ments with our field’s flagship conference, whose organization
and format have remained largely unchanged for the past two
decades. During the conference, we conducted a survey on what
the participants thought of the experiments, and we got over 400
responses. The experiments include:

e introduction of semi-plenary sessions to highlight results
that are of broad interest, particularly those that explore
new directions;

o 57% of the respondees indicated that they would defi-
nitely like to see the semi-plenary experiment continue,
29% said maybe.

e introduction of a new mobile app (on both iOS and
Android platforms) to help participants navigate around
the conference;

o 89% of the respondees indicated that they would like to
see a similar mobile app in future ISITs;

¢ introduction of an online (confidential) forum for TPC
members to discuss papers during the review period;

o Approximately 450 papers were part of this online dis-
cussion process, where multiple TPC members gave
input after the review process. This was found to be very
helpful in arriving at the final decisions; in many
instances, the comments elicited were so detailed and
valuable that with the permission of the relevant TPC
members, these comments were passed on to the authors.

The semi-plenaries are the most significant change to the conference, and we
will describe this experiment in more detail below.

Semi-plenary Sessions

Semi-plenary sessions were introduced for the first time in ISIT
2015. They were comprised of time slots where only two parallel
sessions (instead of the nine as was the case in ISIT 2014) were
scheduled. Each paper in these sessions was selected from the
submissions pool and received the same 20 minutes for oral pre-
sentation and 5 pages in the Proceedings as all other papers in the
conference. We were able to schedule the semi-plenary talks with-
out an increase in the number of parallel sessions (this was kept at
9 as was the case in ISIT 2014), and without affecting the overall
acceptance rate (which was similar to ISIT 2014).

The main motivation to try this experiment was to highlight work
that explores new directions, presents new ideas and makes in-
teresting connections. By highlighting such work, we hoped to
encourage the information theory community to further broaden
the boundaries of the field. The semi-plenary sessions were envis-
aged to promote such research. The semi-plenary sessions were
also used to showcase papers that contain results that deserve ex-
posure to a broader audience. The finalists for the 2015 IEEE Jack
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Question Yes Somewhat | No

Did you feel that the semi-
plenary sessions enhanced 46% 33% 20%
your ISIT 2015 experience?

Question Yes Maybe No
Would you like to see this
experiment continue at a 57% 29% 15%

future ISIT?

Keil Wolf ISIT Student Paper Award were also presented in the
semi-plenary sessions.

Overall, we believe that this was a successful experiment, as evidenced
by the feedback we received from a pre-banquet survey that was con-
ducted and which is presented in the table above. Of the roughly 750
registered participants for ISIT 2015, 411 took part in the survey.

A three-tier process was employed to select semi-plenary pre-
sentations: In the first stage, each reviewer was asked whether a
paper should be considered for a semi-plenary (SP) session. The
reviewer was permitted to choose from among 3 options, ‘Yes’,
‘Maybe’ and ‘No’ and this input was made available to the TPC
member handling the paper. In the second stage, the TPC member
was asked whether the paper should be considered for a SP ses-
sion and was only permitted to provide a hard decision, “Yes’ or
‘No’. In the third stage, the TPC Co-Chairs forwarded the papers
that were recommended by the TPC members for inclusion in a SP
session to a special 12-person sub-committee of the TPC, termed
the SP Sub-Committee (SP-SC), and chaired by Rob Calderbank.
Of the 63 papers that were recommended by the TPC members, we
eliminated 3 that were co-authored by one of the TPC Co-Chairs
or General Co-Chairs (to avoid any conflict of interest). Thus in
all, 60 papers were forwarded to the SP-SC. This committee, com-
posed of senior members of the IT society, carefully examined the
papers and after thorough deliberations, recommended a set of
17 papers to be presented in the SP sessions.

In addition to these 17 papers, another 5 papers, which were 2015
IEEE Jack Keil Wolf ISIT Student Paper Award finalists, were pre-
sented in the SP sessions. The selection of the candidates for the
finalists was handled by a separate sub-committee of the TPC (the
JWA-SC) headed by Andi Loeliger. The committee, composed again
of 11 senior members of the IT society, sent a rank-ordered recom-
mendation of 10 papers to IT-Society Awards Committee Chair
Alon Orlitsky. The IT-Society committee then selected the 5 finalists
which were included in the semi-plenary sessions and which were
clearly identified as Jack Wolf student paper award finalists. In this
way, a total of 17 + 5 = 22 papers were presented in the SP sessions.

As with any other experiment, it takes a few iterations to get ev-
erything perfectly right. We believe that we got off to a good start
but also that there is scope for improvement through refinement
and iteration. Overall, our feeling is that the feedback on the semi-
plenary experiment was largely positive. We very much hope that
the community will continue to experiment at future ISITs. Our
flagship conference must evolve as the field evolves.
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Report on the Munich Workshop on Coding and

Modulation (MCM 2015)

Organizers
Georg Bocherer, Gianluigi Liva, and Gerhard Kramer

The Institute for Communications Engineering (LNT) at the Tech-
nische Universitit Miinchen (TUM) and the German Aerospace
Center (DLR) organized a Munich Workshop on Coding and Modu-
lation (MCM 2015) on July 30-31, 2015. The technical program com-
prised 19 talks by global leaders on the topic. On Thursday, July 30,
the speakers were Giuseppe Caire, Riidiger Urbanke, Rick Wesel,
Michael Lentmaier, Rami Zamir, Jean-Claude Belfiore, Gottfried
Ungerbock, Guido Montorsi, Albert Guillén i Fabregas, and Georg
Bocherer. On Friday, the speakers were Robert Fischer, Sebastian
Cammerer, Marco Baldi, Johannes Huber, Erdal Arlkan, Enrico
Paolini, Mark Flanagan, Stephan Pfletschinger, and Jossy Sayir. The
talk topics included spatial coupling, polar codes, lattice codes, short
codes, Reed-Solomon codes, high-order modulation, probabilistic
shaping, and codes for MIMO, relaying, and synchronization. Doc-
toral students and postdocs from LNT and DLR presented posters.
Over 70 researchers from academia and industry attended the event.

The social program on Thursday included a Bavarian dinner at
the Spatenhaus, which is a traditional restaurant facing the Bavar-
ian State Opera. On Friday after the workshop there was a guided
tour of the Lenbachhaus that has a large collection of paintings
from the Munich artist group Der Blaue Reiter. The program end-
ed with a relaxed get-together at the Park Café beergarden in the
botanic garden close to the main train station.

Funding for the workshop was provided by LNT, DLR, and the
Alexander von Humboldt Foundation. The program, presenta-
tions, posters, and photos are available at the web address http://
www.Int.ei.tum.de/en/events/munich-workshop-on-coding-
and-modulation-2015

Group photo of participants of MCM 2015.
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Michael Lentmaier, Erdal Arikan, and Georg Bocherer
enjoying a MaB.

Active discussion on coding and modulation.
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Report on the Munich Workshop on Massive

MIMO (MMM 2015)

Organizers
Stefan Dierks, Markus Jager, Gerhard Kramer, Roy Timo

The Institute for Communications Engineering (LNT) at the
Technische Universitdt Miinchen (TUM) organized a Munich
Workshop on Massive MIMO (MMM 2015) on October 7,
2015. The technical program consisted of two talks by Mas-
sive MIMO pioneers Tom Marzetta (Bell Labs) and Erik Lars-
son (Linkdping University), a 5G real-time demo by Berthold
Panzner (Nokia), and a poster session with presentations by

Erik Larsson, Tom Marzetta, and Giuseppe Caire discuss
the limits of Massive MIMO.

Stefan Dierks (TUM), Andrei Nedelcu (TUM), and Muhammad
Bilal Amin (Nokia). Over 50 researchers from academia and
industry attended the event.

The social program included a lunch with the speakers at Il Muli-
no, a local Italian restaurant.

Funding for the workshop was provided by LNT and the Alexan-
der von Humboldt Foundation. The program, presentations, and
photos are available at the web address http://www.Int.ei.tum.
de/en/events/munich-workshop-on-massive-mimo-2015/

Berthold Panzner presenting Nokia’s 5G demo to partici-
pants from academia and industry.

Report on the Mathematical Tools of Information-
Theoretic Security Workshop, September 23-25, 2015

Huawei Mathematical and Algorithmic Sciences Lab, Paris, France

Organizers
(i) Vincent Tan (NUS, Singapore),
(ii) Matthieu Bloch (Georgia Tech-CNRS UMI 2958),
(iii) Merouane Debbah (Mathematical and Algorithmic Sciences
Lab, France Research Center, Huawei Technologies)

With the advent of inexpensive hardware for transmission and
storage of information, information technologies have become an
integral part of our modern society. Individuals not only rely on
the services provided by these technologies for their daily com-
munications, but also store and exchange an increasing amount
of sensitive information, including medical records data, financial
records, etc. Concurrently, the widespread use of social networks
encourages end-users to share private information with often
misperceived privacy guarantees. As the general public has be-
come increasingly aware of the importance of privacy and con-
fidentiality issues inherently associated to modern information
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systems, there have been significant research efforts in various
scientific communities to understand the fundamental mecha-
nisms required to secure communications, to quantify the amount
of privacy and confidentiality that could be guaranteed, and to
characterize the tradeoffs between privacy and utility in various
settings. In particular, while the cryptography community had
long spearheaded the design of cryptosystems, there have been
renewed research efforts in this direction in the information theo-
ry, signal processing, theoretical computer science, and quantum
information theory communities. In particular, these communities
have developed abstractions of fundamental information pro-
cessing tasks, which are amenable to quantitative and fundamental
analysis. Specific successful examples of such approaches include:
secure quantum communications and quantum key distribution;
information-theoretic security and physical-layer security; differ-
ential privacy in theoretical computer science; the use of random-
ness extractors in theoretical computer science as a building block
for cryptographic primitives.
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However, many of the mathematical tools and techniques have
remained confined to the scientific communities in which they
have been developed. The purpose of this 3-day workshop was to
provide a common venue for researchers in different communities
to get together, interact, exchange views, and share ideas with one
another. Approximately 80 participants, including faculty, indus-
try researchers, postdocs, and students attended the workshop in
beautiful Paris in September 22-25 2015.

The main themes of the workshop included information-theoretic
security, coding techniques for security applications, differential
privacy and the tradeoff between utility and privacy, and quan-
tum information and its applications to security. We were pleased
to have 25 invited speakers including 5 plenary speakers: Ying-
bin Liang, Frédérique Oggier, Zhenjie Zhang, Andreas Winter and

Shlomo Shamai (Shitz). The participants got the opportunity to
appreciate talks on diverse topics, which provided the ground for
numerous interactions and exchanges. In particular, participants
discussed and debated the similarities and differences between
privacy and security. The participants also benefited from several
coding-theoretic talks showing how to construct and evaluate the
performance of practical codes. The audience was also greatly ap-
preciative of the tutorial-style lecture by Andreas Winter on the
basics of quantum Shannon theory and leading all the way to
more advanced topics such as quantum key distribution.

We acknowledge the kind and generous support from the Merlion
Programme, a joint Franco Singaporean collaboration,I’Agence
Nationale de Ia Recherche (ANR), and Huawei Labs, without
which the worshop would not have been possible.

In Memoriam: Oscar Moreno de Ayala (1946-2015)

We pay tribute here to an eminent coding

theorist and mathematician, Oscar Moreno

de Ayala, who sadly passed away on July 14,

2015. Oscar was born on January 5, 1946 in

Camagtiey, Cuba, to parents Eva Garcia and

Oscar Moreno de Ayala. He moved from Cuba

to Colombia in 1962 and then to Puerto Rico

the following year. He obtained his Bachelor’s

degree in Mathematics at the Rio Piedras cam-

pus of the University of Puerto Rico (UPR) in

1967 and his M.A. and Ph.D. degrees in Math-

ematics in 1968 and 1973, respectively, from the

University of California at Berkeley (UCB). At

UCB, Oscar was the first Ph.D. student in Mathematics of Elwyn
Berlekamp. He returned to UPR in 1974 where he had previously
served as a teacher, and became a Professor at that institution until
his retirement in 2007. He was initially with the Department of
Mathematics, but later moved to the Department of Computer Sci-
ence, a department that he helped found.

Oscar’s varied research interests included exponential sums, cod-
ing theory, graph theory and pseudorandom sequence design

with applications to sonar, optical and wireless communication.
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Heeralal Janwa, P. Vijay Kumar and Andrew Z. Tirkel

His early work related to binary Goppa codes
where he along with co-author Elwyn Berle-
kamp showed that extended double-error-cor-
recting Goppa codes are cyclic. He had a strong
interest in, and made significant contributions
to, the theory of exponential sums. By making
a connection with Goppa codes, Oscar and co-
author Carlos Moreno established the true min-
imum distance of a large class of Goppa codes,
thereby contributing, in part, to the solution
of an open research problem appearing in the
book on error-correcting codes by McWilliams
and Sloane. Other major results by the same
two co-authors included improvements of the Chevalley-Warning
and the Ax-Katz theorems. Oscar had a similarly strong interest
in the construction of low-correlation pseudorandom sequences
for various applications. In connection with a class of arrays with
application to sonar known as Costas arrays, Solomon W. Golomb
conjectured the existence of a primitive quadratic over any finite
field whose roots had trace 1, a conjecture subsequently shown to
be true by Oscar in 1989 (JCT-A). Oscar was elected a Fellow of the
IEEE in 1999, “for contributions to the theory of error-correcting
codes and to the design of sequences”.
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All through his academic life, Oscar maintained a strong interest
in promoting and mentoring undergraduate, masters, and doc-
toral students attending the UPR. He created the Gauss Research
Lab that served as the venue for the mentoring of many future
Puerto Rican Mathematicians and Computer Scientists. Many of
today’s Puerto Rican mathematicians including those working in
prestigious research centers, owe much of their academic prog-
ress to the guidance and encouragement received from Oscar
Moreno as well as the exposure to the rigorous scientific stan-
dards he exemplified. Professor Richard Tapia from Rice Uni-
versity, nationally known for his effort to promote participation
of Hispanics in Applied Mathematics, once said that Oscar had
done outstanding work in mentoring a new generation of Puerto
Ricans to obtain a Ph.D. in Mathematics. Oscar was also a key
member in the creation of the Intercampus Computer and Infor-
mation Science and Engineering (CISE) Ph.D. program. Several
members of the Department of Computer Science received their
Ph.D. in CISE thanks to his direct supervision and/or mentor-
ship of their thesis research.

In 1985, the Resource Center for Science and Engineering (RCSE)
of the University of Puerto Rico System, with help from Oscar
and other UPR scientists, received funding from the Experi-
mental Program to Stimulate Competitive Research (EPSCoR)
for the Jurisdiction of Puerto Rico; the EPSCoR Programs had
been created by NSF in 1980. This funding permitted professors
throughout the university system of the UPR, as well as other
universities of the island, to finance and carry out research proj-
ects, with the cooperation and guidance of qualified scientists
from RCSE. Oscar oversaw many of the projects that related to
the field of mathematics. He was also the first to bring to the
island parallel computing, through the acquisition and use of Al-
liant (1985), Paragon (1990) and Cray XD1 (2000) computers, the
best in their respective eras.

In 1988, Oscar, in collaboration with the EPSCoR project, con-
nected Puerto Rico to the NSENET. During this period many sci-
entists and researchers from across the world visited the island
to collaborate on various math projects. One such well-known
researcher, the late Professor Leon Henkin, summed it up very
well during one of his visits to the island when he was asked
“What do you think of the spirit of mathematics in Puerto Rico ?”
He replied “Oscar is the spirit of mathematics in Puerto Rico!”
In 2009, Puerto Rico’s mathematics and scientific computation
community dedicated its annual meeting, SIDIM XXIV in Rio
Piedras, to Oscar.

Oscar was also one of the pioneers of Puerto Rican Internet histo-
ry. He founded and led the administration of the .pr domain name
registry, a responsibility that he had carried on without interrup-
tion from 1989. Oscar touched many people in his life, comments
from some of them are reproduced below. The authors would like
to thank the many people who contributed to the writing of this
article.

* “Oscar was my first PhD student in mathematics at UC
Berkeley. He was highly motivated and very indepen-
dent. He wrote a fine thesis on coding theory, and he
co-authored a paper with me on a portion of his thesis in
which I was also heavily involved. He then spent his
entire career in Puerto Rico. I visited him there on at
least three occasions, where it became clear to me that he
had become a leader, both in education and in
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implementation of technologies and organizations to
expand internet access.

He established research connections with several coding
theorists in southern California, including Prof. Solomon
Golomb. Oscar made many visits there over the years.”
Elwyn R. Berlekamp.

“Oscar Moreno was very inventive, and had a creative
approach to research. He was always a pleasure to work
with.” Solomon W. Golomb.

“Oscar’s creativity in research and in leadership impressed
me. He contributed strong results in Costas arrays, expo-
nential sums, and several other areas.” H. F. Mattson, Jr.

“Oscar was a dynamo of research activity, and I will miss
his visits to USC.” Robert A. Scholtz.

“Oscar had a great mathematical intuition combined with a
wonderful and unique sense of humor. I always felt well in
his company and will surely miss him.” Tor Helleseth.

“Oscar’s empathy and kindness have been very important
for me.” Tom Hoeholdt.

“I am saddened by his passing and disappointed that I missed
him at the ISIT conference last month.” Alexander Barg.

“We will miss his dedication to the development of
Mathematics and Computer Science at UPR. It is now up to
all of us to honor his memory by continuing his pioneering
work.” Carlos I. Gonzélez Vargas, (Dean, College of Natural
Sciences, UPR, Rio Piedras).

“I met him in 1975, when he was my professor in the new
course on Combinatorial Algorithms, then Math 350. Since
then, he has been my professor, mentor, colleague and
friend. He will be sorely missed, I will miss him calling us
“mijito”. His accomplishments will live on.” Pedro Juan
Rodriguez Esquerdo (Dean of Graduate Study and
Research, UPR, Rio Piedras).

“Oscar Moreno is the father of mathematics research in
Puerto Rico. He did not only produce high-quality research
himself, he inspired many others to get involved and pur-
sue research careers. We have lost an example of hard work
and determination.” Ivelisse Rubio Canabal.

“He inspired other people to give their best” Domingo
Goémez-Pérez.

“Oscar was a friend, a research collaborator and a colleague
at UPR-RP (since 1997). He became a part of our family, and
we miss him dearly.” Heeralal Janwa.

“Ilearnt a great deal from Oscar and was looking forward to his
planned visit to Bengaluru. He will be missed!” P. Vijay Kumar.

His enthusiasm and passion for work was contagious, and if
not for Oscar, I would have retired. I will miss him!”

Andrew Z. Tirkel.
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In Memoriam: Victor K. Wei

Victor K. Wei (S'77-M’80-SM’93-F95) passed
away on October 17th 2015 in Hong Kong. He was
61. Victor was born and raised in Taipei, Taiwan.
He received the B.S. degree in electrical engineer-
ing from National Taiwan University in 1976 and
the Ph.D. degree in electrical engineering from the
University of Hawaii, Manoa, in 1980.

Dr. Wei was a Member of the Board of Gover-
nors (1991-1994) of the IEEE Information Theory
Society, an Associate Editor for Coding Theory
(1989-1992) for the IEEE Transactions on Information
Theory, and a Guest Editor for the Special Issue on
Algebraic-Geometric Codes (Vol. IT-41, No. 6, No-
vember 1995). He was elected a Fellow of the IEEE
in 1995 “for his contributions to coding theory and its applications”.

From 1980 to 1983, he was with the Mathematical Research Center
of Bell Laboratories, Murray Hill, NJ. From 1984 to 1994, he was
with Bellcore, Morristown, NJ, and became Director of Communi-
cation and Computation Principles Research in 1987. As a director,
Victor demanded high quality standards for his team’s research
and created an environment conducive to world-class research. In
1994, he joined the Department of Information Engineering at The
Chinese University of Hong Kong at the rank of Professor until his
retirement at the end of 2011. During this period, Victor focused
his research on cryptography and cultivated a young generation
of cryptographers for Hong Kong.

Victor was a brilliant researcher with a keen intellect, broad inter-
ests, and creative ideas. He has made note-worthy contributions
to several fields, particularly coding theory and data compres-
sion. Among his notable contributions, his single-author paper on
“generalized Hamming weights for linear codes” (IEEE Transac-
tions on Information Theory, Vol. 37, No. 5, pp. 1412-1418, 1991) was
considered a breakthrough in coding theory. He introduced this
innovative concept, totally new at the time, in response to a chal-
lenging problem in information-theoretic security dealing with
transmission over a wire-tap channel. Victor’s idea on the general-
ized Hamming weights has had significant impacts to cryptogra-
phy and data security. He also co-authored with Fan R.K. Chung
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Ming-Ting Sun, University of Washington

and Jawad Salehi the well-cited paper, “Optical
orthogonal codes—design, analysis and applica-
tions,” (IEEE Transactions on Information Theory, Vol.
35, No. 3, pp. 595-604, 1989).

Victor’s work in the 1980’s was influential in prov-
ing that universal source coding algorithms could
compress at the entropy rate of the source, a fun-
damental barrier. The paper that he co-authored
with Bentley, Sleator, and Tarjan (“A locally adap-
tive data compression scheme,” Communications
of the ACM, Vol. 29, No. 4, pp. 320-330, 1986), for
example, is directly related to the move-to-front
algorithm (aka book stack algorithm). According to
the SCI-JCR, the Science Citation Index iV Journal
Citation Report (2003), Victor was among the top 250 most cited
computer scientists in the 20 years prior to that. He continued
to do research after retirement, working on topics that included
the minimum rank distance of Gabidulin codes, as well as error
control coding for random network coding. Prior to his passing,
he had prepared two manuscripts entitled, “Revisiting the mini-
mum rank distance of Gabidulin codes,” and “An intractability
approach to error control in random network coding.”

Victor was a person with many talents and interests. Since his
youth, he was ingenious, with a particular facility in mathemat-
ics. In the 1972 Joint College Entrance Examination in Taiwan,
he attained the highest score, among more than 30,000 entrants.
Victor was an unconventional and innovative thinker, a skill-
ful player of both Go and Bridge, and he once made Chinese
riddles from the names of his college classmates. Victor was also
fun-loving and adventurous. He cherished outdoor activities
and ran marathons during his graduate school years in Hawaii.
In his later years, he became passionate about history. Victor
was dearly loved and will be greatly missed by his colleagues,
friends, and family.

Victor is survived by his wife, Betty, and two daughters, Fran-
cine and Chloe. A memorial service, Celebrating Victor Wei’s Life,
was held on November 6, 2015 at The Chinese University of
Hong Kong.
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Call for Nominations
(ordered by deadline date)
Thomas M. Cover Dissertation Award

The IEEE Information Theory Society Thomas M. Cover Dissertation Award, established in 2013, is awarded annually to the author
of an outstanding doctoral dissertation.

NOMINATION PROCEDURE: Nominations and letters of endorsement must be submitted by January 15, 2016. All nominations
should be submitted using the online nomination forms. Please see http:/ /www.itsoc.org/cover-award for details.

IEEE Joint ComSoc/ITSoc Paper Award

The Communications Society/Information Theory Society Joint Paper Award recognizes outstanding papers that lie at the intersec-
tion of communications and information theory. Any paper appearing in a ComSoc or ITSoc publication during the preceding three
calendar years is eligible for the award.

NOMINATION PROCEDURE: Nominations and letters of endorsement must be submitted by February 15, 2016. All nominations
should be submitted using the online nomination forms. Please see http://www.itsoc.org/honors/comsoc-information-theory-
joint-paper-award /comsoc-itsoc-paper-award-nomination-form for details. Please include a statement outlining the paper’s con-
tributions.

IEEE Information Theory Society Claude E. Shannon Award

The IEEE Information Theory Society Claude E. Shannon Award is given annually to honor consistent and profound contributions
to the field of information theory.

NOMINATION PROCEDURE: Nominations and letters of endorsement must be submitted by March 1, 2016. All nominations
should be submitted using the online nomination forms. Please see http://www.itsoc.org/shannon-award for details.

IEEE Information Theory Society Aaron D. Wyner Distinguished Service Award

The IT Society Aaron D. Wyner Service Award honors individuals who have shown outstanding leadership in, and provided long
standing exceptional service to, the Information Theory community.

NOMINATION PROCEDURE: Nominations and letters of endorsement must be submitted by March 1, 2016. All nominations
should be submitted using the online nomination forms. Please see http:/ /www.itsoc.org/wyner-award for details.

IEEE Fellow Program

Do you have a colleague who is a senior member of IEEE and is deserving of election to IEEE Fellow status? If so, please submit a
nomination on his or her behalf to the IEEE Fellow Committee. The deadline for nominations is March 1 2016.

IEEE Fellow status is granted to a person with an extraordinary record of accomplishments. The honor is conferred by the IEEE
Board of Directors, and the total number of Fellow recommendations in any one year is limited to 0.1% of the IEEE voting member-
ship. For further details on the nomination process please consult: http://www.ieee.org/web/membership /fellows/index.html

IEEE Information Theory Society Paper Award

The Information Theory Society Paper Award is given annually for an outstanding publication in the fields of interest to the Society
appearing anywhere during the preceding two calendar years. The purpose of this Award is to recognize exceptional publications
in the field and to stimulate interest in and encourage contributions to fields of interest of the Society.

NOMINATION PROCEDURE: Nominations and letters of endorsement must be submitted by March 15, 2016. All nominations

should be submitted using the online nomination forms. Please see http://www.itsoc.org/honors/information-theory-paper-
award/itsoc-paper-award-nomination-form for details. Please include a statement outlining the paper’s contributions.
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ISEEEIInformation Theory Society James L. Massey Research & Teaching Award for Young
cholars

The purpose of this award is to recognize outstanding achievement in research and teaching by young scholars in the Information
Theory community. The award winner must be 40 years old or younger and a member of the IEEE Information Theory Society on
January 1st of the year nominated.

NOMINATION PROCEDURE: Nominations and supporting materials must be submitted by April 30, 2016. All nominations
should be submitted using the online nomination forms. Please see http://www.itsoc.org/honors/massey-award/nomination-
form for details.

IEEE Awards

The IEEE Awards program pays tribute to technical professionals whose exceptional achievements and outstanding contributions
have made a lasting impact on technology, society and the engineering profession. For information on the Awards program, and for
nomination procedures, please refer to http://www.ieee.org/portal / pages/about/awards/index.html
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CALL FOR PAPERS

2016 Australian Communications
Theory Workshop (AusCTW’16)

Melbourne, Victoria
20 - 22 January 2016

General Co-Chairs

Jamie Evans
Monash University

Emanuele Viterbo
Monash University

Technical Program Committee

Phee Lep Yeoh (Chair)
University of Melboume
Wibowo Hardjawana
University of Sydney
YiHong

Monash University

Min Li

Macquarie University

Robby McKilliam
University of South Australia

Lawrence Ong

The University of Newcastle
Parastoo Sadeghi

The Australian National University
Nan Yang

The Australian National University

Jinhong Yuan
University of New South Wales

Local Arrangements Chairs

Shuiyin Liu & Lakshmi Natarajan
Monash University

Finance & Registration Chairs
Katrina He & Rajitha Senanayake
Monash University

Website & Publicity Chair

Bhathiya Pilanawithana
Monash University

Steering Committee

lain Collings
Macquarie University

Linda Davis
University of South Australia

Jamie Evans
Monash University

Alex Grant

Cohda Wireless

Rod Kennedy

The Australian National University
Lars Rasmussen

KTH Royal Institute of Technology

Graeme Woodward
University of Canterbury

7% MONASH University §pIEEE  4F)
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Workshop Announcement

Monash University is pleased to host the 16t Australian Communications Theory Workshop. The
workshop will bring together researchers and post-graduate students in physical layer communications
and information theory for two and a half days of technical presentations, tutorials and networking. Past
workshops have provided formal and informal environments to successfully foster collaborative research.

Invited Talks

Invited talks will be given by leading researchers and outstanding graduate students.

Contributed Papers

Papers presenting original and unpublished contributions are solicited (maximum length is 6 pages). All
contributed papers will be subject to peer review. Topics of interest include, but are not limited to:

coded modulation

coding theory and practice
communication systems

channel modelling

detection and estimation

ultra-wide band communications
OFDM & DMT processing techniques
blind signal separation techniques

information theory and statistics

network coding

compressed sensing

iterative decoding algorithms

multiuser detection

cross-layer PHY-MAC-NET optimisation

DSP for communications

molecular, biological and multi-scale communications

We are pleased to announce technical co-sponsorship by the IEEE Information Theory Society ACT
Section Chapter. All accepted papers are to be presented as posters during the conference. Accepted and
appropriately presented papers will appear in full in the conference proceedings and will be submitted to
|EEEXplore for archival. Please see conference website (www.ausctw.org.au) for paper submission details.

Non-Peer Reviewed Contributions

To facilitate maximum participation, all attendees are invited to present a poster at the workshop for which
only an abstract need be submitted. Abstracts are not subject to peer review and appear in the workshop
book of abstracts. Please see conference website (www.ausctw.org.au) for abstract submission details.

2016 Australian School of Information Theory

The 2016 Australian School of Information Theory will be held at the same venue on 17-19 January 2015.
Please see conference website for registration details (www.ecse.monash.edu.au/staff/ejamie/AusSIT 16).

Key Dates

Paper submission deadline:
Friday, October 16, 2015

Notification of decisions:
Friday, November 20, 2015

Camera-ready papers due:
Friday, December 18, 2015

Poster abstracts due:
Friday, December 18, 2015

Early registration closes:
Friday, January 8, 2015

® e
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Call for Papers

2016 International Zurich Seminar on Communications
March 2 — 4, 2016

The 2016 International Zurich Seminar on Communications will be held at the Hotel Zirichberg in Zurich, Switzerland,
from Wednesday, March 2, through Friday, March 4, 2016.

High-quality original contributions of both applied and theoretical nature are solicited in the areas of:

Wireless Communications Optical Communications

Information Theory Fundamental Hardware Issues

Coding Theory and its Applications Network Algorithms and Protocols
Detection and Estimation Network Information Theory and Coding
MIMO Communications Cryptography and Data Security

Invited speakers will account for roughly half the talks. In order to afford the opportunity to learn from and communi-
cate with leading experts in areas beyond one’s own specialty, no parallel sessions are anticipated. All papers should
be presented with a wide audience in mind.

Papers will be reviewed on the basis of a manuscript (A4, not exceeding 5 pages) of sufficient detail to permit reason-

able evaluation. Authors of accepted papers will be asked to produce a manuscript not exceeding 5 pages in A4
double column format that will be published in the Proceedings. Authors will be allowed twenty minutes for presenta-
tion.

The deadline for submission is September 27, 2015.
Additional information will be posted at

http://www.izs.ethz.ch/

We look forward to seeing you at IZS.

Amos Lapidoth and Stefan M. Moser, Co-Chairs. E" I
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Call for Papers CISS 2016

i s s i i i i i i i e i i

50th Annual Conference on
Information Sciences and Systems

= g i g i o g

March 16, 17, & 18, 2016

Princeton University - Department of Electrical Engineering
and Technical Co-sponsorship with

IEEE Information Theory Society

Authors are invited to submit previously unpublished papers describing theoretical advances, applications,
and ideas in the fields of: information theory, coding theory, communication, networking, signal processing,
image processing, systems and control, security and privacy, machine learning and statistical inference.

Electronic submissions of up to 6 pages (in Adobe PDF format) including 3-4 keywords must be submitted
by December 15, 2015. Submissions should be of sufficient detail and length to permit careful reviewing.
Authors will be notified of acceptance no later than January 11, 2016. Final manuscripts of accepted
papers are to be submitted in PDF format no later than January 25, 2016. These are firm deadlines that
will permit the distribution of Electronic Proceedings at the Conference. Accepted Papers will be allotted 20
minutes for presentation, and will be reproduced in full (up to six pages) in the conference
proceedings. IEEE reserves the right to exclude a paper from post-conference distribution (e.g., removal
from IEEE Xplore) if the paper is not presented at the conference.

For more information visit us at: http://ee-ciss.princeton.edu/

CONFERENCE COORDINATOR PROGRAM DIRECTORS IMPORTANT DATES
. . . Submission deadline:
Lisa LeW|s. ' ' Prof. Mung Chiang December 15, 2015
Dept. of Electrical Engineering Prof. Peter Ramadge
Princeton University Dept. of Electrical Engineering Notification of acceptance:
Phone: (609) 258-6227 Princeton, NJ 08544

Final manuscript due:

Email: CISS@princeton.edu January 25, 2016
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About the Program

Recently,a number of advances in the theory of computation have been made by using information-theoretic
arguments. Conversely, some of the most exciting ongoing work in information theory has focused on
problems with a computational component. The primary goal of this three-month IHP thematic program is
to explore the rich interplay between information theory and the theory of computation, and ultimately
create new connections and collaborations between both scientific communities.

* Core of the Program: eight weeks, split across four major themes (see below for details).
* Central Workshop (February 29 - March 4): broadly spanning the interface between CS and IT.
* Tutorial Week (January 25 - 29) at CIRM (Marseille): designed for students, but all are welcome.

Registration

Researchers and students who are considering attending any part of the program must register on the
website as soon as possible. Registration is free but mandatory given the limited number of places. During
the registration process, one can choose amongst the thematic weeks and/or the central workshop.

Program Organizers
Mark Braverman (Princeton)
Bobak Nazer (Boston University)
Anup Rao (University of Washington)
Aslan Tchamkerten (Telecom Paristech)

About IHP

The Henri Poincare Institute (IHP)
is a research institute dedicated to
mathematics and theoretical physics.
Each quarter, the institute hosts a
thematic program that brings
together researchers from a
particular discipline to foster the
exchange of ideas.

December 2015

Theme Organizers

Distributed Computation (February | - 12)
Péter Gacs (Boston Univeristy)

Janos Korner (Sapienza University of Rome)
Leonard Schulman (Caltech)

Fundamental Inequalities (February 15 - 26)
Kasper Green Larsen (Aarhus University)

Babak Hassibi (Caltech)

lordanis Kerenidis (University Paris Diderot 7)
Raymond Yeung (Chinese University of Hong Kong)

Inference Problems (March 7 - 18)
Amit Chakrabarty (Dartmouth College)
Andrew McGregor (UMass Amherst)
Henry Pfister (Duke University)
Devavrat Shah (MIT)

David Woodruff (IBM)

Secrecy and Privacy (March 21 - April 1)
Prakash Narayan (University of Maryland)
Aaron Roth (University of Pennsylvania)
Anand Sarwate (Rutgers University)

Vinod Vaikuntanathan (MIT)

Salil Vadhan (Harvard University)
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CALL FOR PAPERS

2016 IEEE Radar Conference

Enabling Technologies for Advances in Radar
www.radarconf16.org

Key Dates
Paper Summaries Due: 14 November 2015

Notification of Acceptance: 04 January 2016
Paper Submission Due: 05 February 2016
2016 Radar Conference: May 2 — 6, 2016
Loews Philadelphia Hotel, 1200 Market Street, Philadelphia, Pennsylvania, USA

Guide to Paper Submissions

Authors are required to submit a three to four page (inclusive of figures) summary. Electronic
submission is required in Adobe pdf format. The cover page must include the title, names of authors
(with the contact author identified), organizational affiliation, address, telephone and fax numbers, and
email addresses. Authors are permitted to indicate paper suitability for a poster format presentation.
Student papers (two to four pages) are also strongly encouraged to be submitted.

All papers must be electronically submitted to the Technical Program Chairman at the
radarconf16.org web site (available to upload not later than 90 days before the deadline). The deadline
for submission of summaries is 14 November 2015. Authors will be notified of acceptance by 4 January
2016, and will receive instructions and forms for publication at that time. Authors will be limited to
orally presenting at most two papers at the
conference. Your electronically submitted
papers in final form will be required by 5
February 2016. They are limited to six pages
inclusive of text, figures, and tables. If
applicable, government approval for publication
as an unclassified, public-release paper will also
be required with the final paper submission.

Main tracks
A list of topics within these tracks is on the web site <www.radarconf16.org>.
Authors can indicae preference for a track.

Component & Subsystem Development

Radar Signal & Data Processing Technical Program Chair
Antenna Technolog David J. Farina
Phenomenology Lockheed Martin MST
Radar Systems djfarina@radarconf16.org

Emerging Technologies
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2016 IEEE International Symposium on Information Theory
“"" Barcelona, Spain | July 10-15, 2016

ISITE2L8

raphy © Turisme de Barcelona | Espai d'Imatge

Call for papers

The 2016 IEEE International Symposium on Information Theory will take place in Barcelona, Spain, from July 10 to 15, 2016.
A lively city, known for its style, architecture, culture, gastronomy and nightlife, Barcelona is one of the top tourist
destinations in Europe. Interested authors are encouraged to submit previously unpublished contributions from a broad
range of topics related to information theory, including but not limited to the following areas:

Topics

Big Data Analytics Detection and Estimation Physical Layer Security

Coding for Communication and Storage  Emerging Applications of IT Quantum Information and Coding Theory
Coding Theory Information Theory and Statistics Sequences

Communication Theory Information Theory in Biology Shannon Theory

Complexity and Computation Theory Network Coding and Applications Signal Processing

Compressed Sensing and Sparsity Network Information Theory Source Coding and Data Compression
Cryptography and Security Pattern Recognition and Learning Wireless Communication and Networks

Researchers working in emerging fields of information theory or on novel applications of information theory are especially
encouraged to submit original findings.

The submitted work and the published version are limited to 5 pages in the standard IEEE conference format. Submitted
papers should be of sufficient detail to allow for review by experts in the field. Authors should refrain from submitting
multiple papers on the same topic.

Information about when and where papers can be submitted will be posted on the conference web page. The paper
submission deadline is January 24, 2016, at 11:59 PM, Eastern Time (New York, USA). Acceptance notifications will be sent
out by April 3,2016.

We look forward to your participation in ISIT in the centennial year of Claude Shannon's birth.

General Co-Chairs TPC Co-Chairs Finance
Albert Guillén i Fabregas Venkat Anantharam Stefan Moser
Alfonso Martinez loannis Kontoyiannis L
Sergio Verdu Yossef Steinberg Publications
Pascal Vontobel Tobias Koch
< nee, o
@lEEE g http://www.isit2016.org/
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Expand Your Network, Get Rewarded /

Your personal and professional experiences with IEEE make you uniquely
qualified to help bring in new members. With the Member Get-A-Member
(MGM) Program you can get rewarded for word-of-mouth referrals.

Earn incentives and awards while helping to grow IEEE Membership.

Visit www.ieee.org/mgm

to learn more about the MGM I E E E

program and get started today.
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Conference Calendar

DATE

December 6-10, 2015

December 7-8, 2015

December 14-16, 2015

December 15-17, 2015

January 10-12, 2016

January 20-22, 2016

January 25—
April 1,2016

March 24, 2016

March 16-18, 2016

May 2-6,2016

May 4-5,2016

May 9-13, 2016

July 10-15, 2016

CONFERENCE

IEEE GLOBECOM

2015 Munich Workshop on
Information Theory of Optical
Fiber (MIO 2015)

IEEE Global Conference on
Signal and Information Processing
(GlobalSIP)

DIMACS Workshop on Network
Coding: the Next 15 Years

ACM-SIAM Symposium on
Discrete Algorithms

Australian Communications
Theory Workshop (AusCTW)

IHP Thematic Program on the
Nexus of Information and
Computation Theories

2016 International Zurich Seminar
on Communications

50th Annual Conference on
Information Sciences and Systems

IEEE Radar Conference: Enabling
Technologies for Advances in Radar

4rd Iran Workshop on
Communication and
Information Theory IWCIT)

14th International Symposium on
Modeling and Optimization in
Mobile, Ad-Hoc, and Wireless
Networks (WiOpt)

2016 IEEE International
Symposium on Information Theory

LOCATION

San Diego, California,

USA

Munich, Germany.

Orlando, Florida, USA

Rutgers University,
New Jersey, USA

Arlington, Virginia,
USA

Melbourne, Australia

Paris, France

Zurich, Switzerland
Princeton University
Philadelphia,

Pennsylvania, USA

Sharif University of

Technology, Tehran, Iran.

Arizona State University
Tempe, Arizona, USA

Barcelona, Spain

Major COMSOC conferences: http:/ /www.comsoc.org/confs/indexhtml
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WEB PAGE

http:/ /globecom2015.
ieee-globecom.org

http:/ /www.Int.ei.tum.de/
en/events/munich-
workshop-on-information-
theory-of-optical-fiber-2015/

http://2015.ieeeglobalsip.org

http://dimacs.rutgers.edu/
Workshops/Next15/

http:/ /www.siam.org/
meetings/dal6/index.php
http:/ /www.ausctw.org.au

http:/ /csnexus.info

http:/ /www.izs.ethz.ch

http:/ /ee-ciss.princeton.edu

http:/ /radarconf16.org/#/

http:/ /www.iwcit.org

http:/ /www. wi-opt.org

http:/ /www.isit2016.org

DUE DATE

Passed

Passed

Passed

October 16, 2015

September 27, 2015

December 15, 2015

Passed

January 11, 2016

December 18, 2015

January 24, 2016,

December 2015



