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The International Symposium on Information 
Theory (ISIT), our Society’s flagship confer-
ence, took place a few weeks ago in Paris. 
It was there, in la ville-lumière, that many of 
us were able to discern some light at the end 
of the tunnel we felt we entered more than a 
year ago. But some have told me that they did 
not think we got completely out of the (Vail) 
woods yet. I am now at home, looking at the 
skyline of Manhattan, the city that never sleeps, 
and reflecting back on the ISIT and the time 
from the beginning of the year.

The ISIT was a great success by all measures. 
(Alright, I know, many would use different 
words for the banquet, and I will come back 
to that.) We had a record number of attendees and a very ex-
citing plenary and regular program. We had five special ses-
sions on information theory and related fields, as a part of this 
year’s new initiative I wrote about in the March issue. The 
membership events were, as always, well attended and well 
received. We had a superb Shannon lecture, delivered flaw-
lessly by Erdal Arıkan followed by a very lively discussion.

The annual Society’s awards, listed later in this issue, were 
presented at the ISIT award ceremony. Our small Society (by 
the IEEE membership measure), as usual, received a dispro-
portionately large number of IEEE level recognitions. This 
year, we were honored to have the IEEE President José Moura 
present some of these awards to our members.

The 2020 Shannon Award, our Society’s most prestigious rec-
ognition, went to Charles Bennett, a researcher at IBM, New 
York. As nicely stated by Andreas Winter, one of Bennett’s col-
laborators, Charles Bennett has been instrumental in the creation 
of modern quantum information from the 1980s. Even if he didn’t 
create the new information science on his own, Charlie had his hand 
in every fundamental conceptual breakthrough, and they all show his 
signature thinking about information, which is informed by his in-
terest in the physical representation of information and by his unique 
way of looking at information theory as a physical theory.

You may think that quantum information 
theory is an exotic area, and at most an eso-
teric subfield of information theory. Never-
theless, it is classical information theory that 
is a special (non-contextual) case of quantum 
information theory. You may want to check 
with Google in which class of papers the term 
“information theory” is used the most often 
nowadays. You may be surprised. It has been 
alleged that the mathematician David Hilbert 
had said that physics is too important to be left 
to the physicists to which the physicist John 
Wheeler, several decades later in retaliation, 
responded that Gödel is too important to be left 
to the mathematicians [1]. Today, I dare say, they 
would both agree that information theory is 

too important to be left to the information theorists. And so 
would many contemporary physicists, mathematicians, and 
computer scientists.

Now back to the banquet. I was disappointed too. I had a lit-
tle speech, which could not be heard because of the acoustics 
in the space. I had prepared jokes and hints to help the audi-
ence guess the 2020 Shannon award winner’s identity, which 
I did not have a chance to say. But, what I was truly sorry 
about was the lost opportunity for our society members to sit 
together and enjoy a well deserved rest and food. That would 
have provided a further chance for our Society to heal.

Yet, I realize how much work it takes to organize an ISIT. 
So much so that I never ventured into serving as a gener-
al chair to one, in spite of having extensive experience in 
organizing smaller workshops. I would like to once again 
thank the entire organizing committee of the ISIT’19. I hope 
they are proud of their work and accomplishments, and if 
they are not, I hope they do not feel too bad about that. I 
also would like to remind our members that this technical 
society is run by elected volunteers, rather than hired ex-
perts or career politicians. We all strive to do our best on a 

President’s Column
Emina Soljanin

(continued on page 24) 
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Robert J. McEliece and Elwyn Berlekamp who have recently 
passed away.

As a reminder, Announcements, news, and events intend-
ed for both the printed newsletter and the website, such as 
award announcements, calls for nominations, and upcom-
ing conferences, can be submitted at the IT Society website 
http://www.itsoc.org. Articles and columns can be e-mailed 
to me at salim.elrouayheb@rutgers.edu with a subject line 
that includes the words “IT newsletter.”

The next few deadlines are:

Oct 10, 2019 for the issue of December 2019.

Jan 10, 2020 for the issue of March 2020.

April 10, 2020 for the issue of May 2020.

Please submit plain text, LaTeX, or Word source files; do not worry about fonts or layout as 
this will be taken care of by IEEE layout specialists. Electronic photos and graphics should 
be in high resolution and sent as separate files.
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I hope you have enjoyed the summer, in 
particular our flagship conference, the 2019 
IEEE International Symposium on Infor-
mation Theory (ISIT), which was held in 
Paris this year. We start this fall issue with 
the awards given to members of our soci-
ety. Congratulations to all the award win-
ners. This issue features an article by Erdal 
Arıkan, the 2018 Shannon awardee, titled 
“From Sequential Decoding to Chan-
nel Polarization and Back Again”, which 
is a written and extended version of his 
Shannon Lecture delivered at ISIT. Gireeja 
Ranade and Christina Lee Yu, the new of-
ficers of Women in The Information Theory 
Society (WITHITS), update us on the latest 
activities within WHITHITS. We also have 
reports from the 11th Asia-Europe work-
shop (AEW11) on “Concepts in Information 
Theory and Communications”, the 40th 
Symposium on Information Theory in the 
Benelux and The Fifth London Symposium 
on Information Theory (LSIT). With sad-
ness, we conclude this issue with tributes to 

From the Editor
Salim El Rouayheb
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Awards

Congratulations to the members of our community that have recent-
ly received recognition for their exceptional scholarly contributions.

CHARLES BENNETT: The 2020  
Claude E. Shannon Award

The Claude E. Shannon Award is the highest honor from the IEEE 
Information Theory Society. The award has been instituted to hon-
or consistent and profound contributions to the field of informa-
tion theory.

JOACHIM HAGENAUER: 2019 Aaron  
D. Wyner Distinguished Service Award

The Aaron D. Wyner Distinguished Service Award of the IT Soci-
ety has been instituted to honor an individual who has shown out-
standing leadership in, and provided long-standing, exceptional 
service to, the Information Theory community.

Information Theory Society Paper Award

The purpose of the Information Theory Paper Award is to recog-
nize exceptional publications in the field and to stimulate interest 
in and encourage contributions to fields of interest of the Society.

The 2019 award winning publication is:

• E. Candes, X. Li, M. Soltanolkotabi, “Phase Retrieval via 
Wirtinger Flow: Theory and Algorithms”, IEEE Transactions 
on Information Theory, Apr. 2015.

2018 IEEE Communications Society & 
Information Theory Society Joint Paper Award

Recognizes the author(s) of outstanding papers appearing in any pub-
lication of the IEEE Communications Society or the IEEE Information 
Theory Society in the previous three calendar years.

Arash Gholami Davoodi and Syed Ali Jafar
“Aligned Image Sets Under Channel Uncertainty: Settling Con-
jectures on the Collapse of Degrees of Freedom Under Finite Pre-
cision CSIT,” IEEE Transactions on Information Theory, Volume 62, 
No. 10, pp. 5603–5618, October 2016.

2019 IEEE Communications Society & 
Information Theory Society Joint Paper Award

Yuyi Mao, Jun Zhang, and Khaled B. Letaief
“Dynamic Computation Offloading for Mobile-Edge Comput-
ing With Energy Harvesting Devices,” IEEE Journal on Selected 
Areas in Communications, Volume 34, No. 12, pp. 3590–3605, 
December 2016.

SALMAN AVESTIMEHR: 2019 James L. Massey

Research & Teaching Award for young scholars recognizes out-
standing achievement in research and teaching by young scholars 
in the Information Theory community.

DAVID SUTTER: 2019 Thomas M. Cover 
Dissertation Award

The IEEE Information Theory Society Thomas M. Cover Disserta-
tion Award, established in 2013, is awarded annually to the author 
of an outstanding doctoral dissertation contributing to the math-
ematical foundations of any of the information sciences within the 
purview of the Society.

• D. Sutter, “Approximate Quantum Markov Chains’’, Springer -
Briefs in Mathematical Physics, vol 28. Springer, Cham, 
April 2018.

Jack Keil Wolf ISIT Student Paper Award

The IEEE Jack Keil Wolf ISIT Student Paper Award is given to up 
to 3 outstanding papers for which a student is the principal author 
and presenter. The award is based on the paper’s technical con-
tribution as well as the quality of its presentation. The prize was 
awarded to 2 papers this year:

• P. Pandit, M. Sahraee, S. Rangan and A. K. Fletcher, 
“Asymptotics of MAP Inference in Deep Networks”, 
IEEE International Symposium on Information Theory 
(ISIT), Paris, France, 2019.

• J. Sima and J. Bruck, “Optimal k-Deletion Correcting Codes”, 
IEEE International Symposium on Information Theory 
(ISIT), Paris, France, 2019.

2019 Chapter of the Year Award

The Chapter of the Year Award recognizes a chapter that has pro-
vided their membership with the best overall set of programs and 
activities. The 2018 winner is the

• Japan Section Chapter: Hiroki Koga (chair) and Yuichi Kaji 
(vice-chair) 

KANNAN RAMCHANDRAN:  
2019 Padovani Lecturer

The Padovani Lecture is held annually at the North-American 
School of Information Theory.

H. VINCENT POOR: Benjamin Garver  
Lamme Award

H. Vincent Poor has been awarded the Benjamin Garver Lamme 
Award, honoring more than four decades of contributions to 
engineering education.

The Lamme Award comes from the American Society for En-
gineering Education, established by a group of professors, 
during the 1893 Chicago World's Fair, who believed engineer-
ing education should eschew then-popular apprenticeship 
models to stress teaching the fundamentals of science and 
mathematics.
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From Sequential Decoding to Channel Polarization
and Back Again

Erdal Arıkan
Department of Electrical and Electronics Engineering

Bilkent University, Ankara, 06800, Turkey

Abstract—This note is a written and extended version of the
Shannon Lecture I gave at 2019 International Symposium on
Information Theory. It gives an account of the original ideas that
motivated the development of polar coding and discusses some
new ideas for exploiting channel polarization more effectively in
order to improve the performance of polar codes.

I. INTRODUCTION

We begin with the usual setup for the channel coding
problem, as shown in Fig. 1. A message source produces a
source word d = (d1, . . . , dK) uniformly at random over
all possible source words of length K over a finite set, the
source word d is encoded into a codeword x = (x1, . . . , xN ),
the codeword x is transmitted over a channel, the channel
produces an output word y = (y1, . . . , yN ), and a decoder
processes y to produce an estimate d̂ = (d̂1, . . . , d̂K) of the
source word d. The performance metrics for the system are
the probability of frame error Pe = Pr(d̂ �= d), the code
rate R = K/N , and the complexity of implementation of the
encoder and decoder.

Encoder
d

Channel
x

Decoder
y d̂

Fig. 1. Channel coding system.

Shannon [1] proved that for a broad class of channels,
there exists a channel parameter C, called capacity, such that
arbitrarily reliable transmission (small Pe) is attainable at
any given rate R if R < C (and unattainable if R > C).
Shannon’s theorem settled the question about the trade-off
between the rate (R) and reliability (Pe) in a communication
system. However, the random-coding analysis Shannon used
to prove the attainability part of his theorem left out com-
plexity issues. Below, we present a track of ideas, as shown
in Fig. 2, for constructing practically implementable codes
that meet Shannon’s capacity bound while providing reliable
communication.

For the rest of the note, we restrict attention to binary-input
memoryless channels (BMCs). By convention, the channel
input alphabet will be {0, 1}, the channel output alphabet
will be arbitrary, and the channel transition probabilities will
be denoted by W (y|x). We will also assume that the source
alphabet is binary so that d ∈ {0, 1}K .

Channel coding
problem

Convolutional codes
and sequential decoding

Complexity

Pinsker’s scheme

Cutoff rate bottleneck

Polar codes
Complexity

Polarization-adjusted
convolutional codes and
sequential decoding

Performance

Fig. 2. Order of main topics discussed in the note.

Two channel parameters of primary interest will be the
symmetric versions of channel capacity and cutoff rate, which
are defined respectively as

C(W ) =
∑

y

∑

x∈{0,1}

1

2
W (y|x) log2

W (y|x)
1
2W (y|0) + 1

2W (y|1)

(1)
and

R0(W ) = 1− log2

(

1 +
∑

y

√

W (y|0)W (y|1)

)

. (2)

If the BMC under consideration happens to have some sym-
metry properties as defined in [4, p. 94], then the symmetric
capacity and symmetric cutoff rate coincide with their true
versions (which are obtained by an optimization over all
possible distributions on the channel input alphabet). For our
purposes, the symmetric versions of the capacity and cutoff
rate are more relevant than their true versions since throughout
this note we will be considering linear codes. Linear codes
are constrained to use the channel input symbols 0 and 1 with
equal frequency so they can at best achieve the symmetric
capacity and symmetric cutoff rate. For brevity, in the rest of
the note, we will omit the qualifier “symmetric” when referring
to C(W ) and R0(W ); the reader should remember that all
such references are actually to the symmetric versions of these
parameters as defined by (1) and (2).

A third channel parameter that will be useful in the follow-
ing is the Bhattacharyya parameter defined as

Z(W ) =
∑

y

√

W (y|0)W (y|1). (3)

We note the relation R0(W ) = 1 − log2
[

1 + Z(W )
]

, which
will be important in the sequel.
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II. CONVOLUTIONAL CODES AND SEQUENTIAL DECODING

Convolutional codes are a class of linear codes introduced
by Elias [2] with an encoder mapping of the form x = dG

where the generator matrix G has a special structure that
corresponds to a convolution operation. An example of a
convolutional code is one with the generator matrix

G =













1 1 1 0 1 1
1 1 1 0 1 1

1 1 1 0 1 1
1 1 1 0 1 1













,

for which the encoding operation can be implemented using
the convolution circuit in Fig. 3.

· · · , d2, d1

+

· · · , x3, x1

+
· · · , x4, x2

Fig. 3. Example of a convolutional code.

The codewords of a convolutional code can be represented
in the form of a tree. For example, the first four levels of
the tree corresponding to the convolutional code of Fig. 3 are
shown in Fig. 4. Each source word d = (d1, . . . , dK) defines
a path through the code tree (take the upper branch if di is 0,
the lower branch otherwise). Branches along a path are labeled
with the codeword symbols corresponding to that path.

The tree representation of a convolutional code turns the
decoding problem into a tree search problem. One of the paths
through the tree is the correct path and all other paths are
incorrect paths. Exhaustive search of the tree for the correct
path corresponds to optimum decoding but is too complex
to implement. There is need for low-complexity tree search
heuristics that can be used as decoders. A reasonable choice
is a depth-first search heuristic. Sequential decoding is a depth-
first search heuristic developed by Wozencraft [3] for decoding
arbitrary tree codes.

The computational complexity in sequential decoding (the
number of steps it takes to complete decoding) is a random
variable whose statistical properties (mean, variance, distribu-
tion) depend on the code rate and the channel characteristics.
Sequential decoding achieves the capacity C(W ) of any given
BMC W if no limit is placed on its search complexity. How-
ever, the average complexity in sequential decoding becomes
prohibitive for practical purposes if the code rate is above
the cutoff rate R0(W ). More precisely, at rates R > R0(W ),
the average complexity of decoding the first nR source bits
correctly is lower-bounded roughly as 2n[R−R0(W )], while

0

1

00

11

00

11

10

01

00

11

10

01

11

00

01

10

00

11

10

01

11

00

01

10

00

11

10

01

11

00

01

10

Fig. 4. Tree representation of a convolutional code.

at rates R < R0(W ) virtually error free communication
is possible at constant average complexity per decoded bit.
Detailed accounts of the sequential decoding algorithm and its
complexity may be found in [4, pp. 263-286] and [5, pp. 425-
476].
My interest in sequential decoding goes back to 1983 when

I was a doctoral student at M.I.T. and my thesis supervisor
Bob Gallager asked me to look at sequential decoding for
multiaccess channels. This subject became my PhD thesis [6].
Multiaccess communications was an emerging subject and
sequential decoding was a good starting point for assessing
the practical viability of coding for multiaccess channels (see
[7] for the broader context of this problem). Historically,
sequential decoding had been a method of choice briefly (used
in space communications (Pioneer 9, 1968)) before being
superseded by Viterbi decoding in the 1970s. Despite having
fallen out of favor, sequential decoding was still an interesting
subject with rich connections to information theory and error
exponents. In studying sequential decoding, I came across two
fascinating papers by Pinsker [8] and Massey [9]. These papers
showed how to “boost” the cutoff rate of sequential decoding
in a sense described below. An extended discussion of both
papers as they relate to my later work on polar coding can
be found in [10]. In the following, I will focus mainly on [8]
because of its general nature. However, before proceeding to
[8], I will review [9] since it contains some of the essential
ideas in this note in a very simple setting.
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III. MASSEY’S EXAMPLE

Let M = 2m for some integer m ≥ 2, and consider
an M ’ary erasure channel (MEC) with input alphabet X =
{0, 1, . . . , 2m − 1}, output alphabet Y = X ∪ {?} (where
? is an erasure symbol), and transition probabilities W (y|x)
such that, when x ∈ X is sent, the channel output y has
two possible values, y = x and y =?, which it takes with
conditional probabilities W (x|x) = 1 − ǫ and W (?|x) = ǫ.
The capacity and cutoff rate of the MEC are readily calculated
as C(m) = m(1− ǫ) and R0(m) = m− log2

(

1+(2m−1)ǫ
)

.
Massey observed that the MEC can be split into m binary

erasure channels (BECs) by relabeling its inputs and outputs
with vectors of length m. A specific labeling that achieves
this is as follows. Each input symbol x ∈ X is relabeled with
its binary representation (x1, . . . , xm) ∈ {0, 1}m so that x =
∑m

i=1 xi2
m−i. Each output symbol y ∈ Y is relabeled with a

vector (y1, . . . , ym) which equals the binary representation of
y if y ∈ X and equals (?, . . . , ?) if y =?. With this relabeling,
a single transmission event {(x1, . . . , xm) → (y1, . . . , ym)}
across the MEC can be thought of as a collection of m
transmission events {xi → yi} across the coordinate channels.
An erasure event in the MEC causes an erasure event in all
coordinate channels; if there is no erasure in the MEC, there is
no erasure in any of the coordinate channels. Each coordinate
channel is a BEC with erasure probability ǫ. The coordinate
channels are fully correlated in the sense that when an erasure
occurs in one of them, an erasure occurs in all of them.

The capacity and cutoff rate of the BECs are given by
C(1) = 1− ǫ and R0(1) = 1− log2(1 + ǫ). It can be verified
readily that C(m) = mC(1) (capacity is conserved), while
R0(m) ≤ mR0(1) with strict inequality unless ǫ equals 0 or
1. Thus, splitting the MEC does not cause a degradation in
channel capacity but “improves” or “boosts” the cutoff rate.
This example shows that one may break the cutoff rate barrier
for the MEC by employing a separate convolutional encoder
– sequential decoder pair on each coordinate BEC. The reader
is advised to see [7] for an alternative look at this important
example from the perspective of multiaccess channels. To
learn about the communications engineering context in which
Massey’s example arose, we refer to [9].

Massey’s example provides a basis for understanding the
more complex schemes presented below. These more complex
schemes begin with independent copies of a binary-input
channel (raw channels), build up a large channel (akin to the
MEC) through some channel combining operations, and then
split the large channel back to a set of correlated binary-input
channels (synthesized channels). One speaks of a “boosting” of
the cutoff rate if the sum of the cutoff rates of the synthesized
channels is larger than the sum of the cutoff rates of the raw
channels.

IV. PINSKER’S SCHEME

Pinsker [8] observed that, for the binary symmetric channel
(BSC) with crossover probability p (a BMC with output

1E-5 1E-4 0.001 0.01 0.1 0.2 0.5
Crossover probability p

0.5

0.75

1

Cutoff rate / Capacity

Fig. 5. Ratio of cutoff rate to capacity for the BSC.

alphabet {0, 1} and W (1|0) = W (0|1) = p), the ratio of
the cutoff rate to capacity approaches 1 as p goes to 0,

R0

C
=

1− log2
[

1 + 2
√

p(1− p)
]

1 + p log2(p) + (1− p) log2(1 − p)
→ 1 as p → 0,

as illustrated in Fig. 5. Pinsker combined this observation with
Elias’ product coding idea [11] to construct a coding scheme
that boosted the cutoff rate to capacity.

Pinsker’s scheme, as shown in Fig. 6, uses an inner block
code and K identical outer convolutional codes. Each round
of operation of the inner block code comprises the encoder
for the inner block code receiving one bit from the output of
each outer convolutional encoder (for a total of K bits) and
encoding them into an inner code block of length N bits. The
inner code block is then sent over a BMC W by N uses of W .
Since successive bits at the output of each outer convolutional
encoder are carried in separate inner code blocks, they suffer
i.i.d. error events. So, each outer convolutional code sees a
memoryless bit-channel, as depicted in Fig. 7. We denote
by Wi : Ui → Ûi the (virtual) BMC that connects the ith
convolutional encoder to the ith sequential decoder.1

To show that this scheme is capable of boosting the cutoff
rate arbitrarily close to channel capacity, we may fix the rate
K/N of the inner block code as (1 − δ)C(W ) for some
constant 0 < δ < 1 and consider increasing the block length
N and choosing a good enough inner block code so as to
ensure that the bit-channels W1, . . . ,WK become near-perfect
with R0(Wi) > 1 − ǫ for each i, where ǫ > 0 is a second
constant independent of N and i. This ensures that each outer
convolutional code can operate at a rate 1 − ǫ and still be
decoded by a sequential decoder at an average complexity
bounded by a third constant, where the third constant depends
on δ and ǫ but not on N . The overall rate for this scheme
is K(1 − ǫ)/N = (1 − δ)(1 − ǫ)C(W ), which can be made

1We use capital letters Ui and Ûi to denote the random variables corre-
sponding to ui and ûi. This convention of using capital letters to denote
random variables is followed throughout.
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Fig. 6. Pinsker’s scheme.
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Fig. 7. Bit-channels created by Pinsker’s scheme.

arbitrarily close to C(W ) by choosing δ and ǫ sufficiently
small. In Pinsker’s words, his scheme shows that “[f]or a
very general class of channels operating below capacity it is
possible to construct a code in such a way that the number
of operations required for decoding is less than some constant
that is independent of the error probability”.

Pinsker’s result complements Shannon’s result by showing
that, at any fixed rate R below channel capacity C(W ), the
average complexity per decoded bit can be kept bounded
by a constant while achieving any desired frame error rate
Pe > 0. Unfortunately, the recipe for choosing a good enough
inner block code in Pinsker’s scheme is to pick the code at
random. The non-constructive nature of Pinsker’s scheme and
the complexity of ML decoding of a randomly chosen block
code make Pinsker’s scheme impractical. For our purposes,
the takeaway from Pinsker’s scheme is the demonstration that
there is no “cutoff rate barrier to sequential decoding” in a
fundamental sense. Our next goal will be to find a way of
breaking the cutoff rate barrier in a practically implementable
manner.

Before we end this section, it is instructive to compare
Pinsker’s scheme with Massey’s example. In Massey’s ex-
ample, a given channel is split into multiple correlated bit-
channels. In Pinsker’s scheme, the first step is to synthesize a
large channel from a collection of independent bit-channels;
the large channel is then split back into a number of dependent

bit-channels. Massey’s example appears to be a very special
case that cannot be generalized to arbitrary BMCs, while
Pinsker’s scheme is entirely general. Massey’s example boosts
the cutoff rate almost effortlessly but cannot boost it all the
way to channel capacity. Pinsker’s scheme is much more
complex but can boost the cutoff rate to capacity. Both
schemes use multiple sequential decoders. The use of multiple
sequential decoders is a crucial aspect of both schemes. If a
single sequential decoder were used in Pinsker’s scheme to
decode all K convolutional codes jointly (using a joint tree
representation), then a “data-processing” theorem by Gallager
[4, pp. 149-150] would limit the achievable cutoff rate to
R0(W ). For more on this point, we refer to [10].

V. MULTI-LEVEL CODING

In order to reduce the complexity in Pinsker’s scheme,
in this section, we look at multi-level coding (MLC) with
multi-stage decoding (MSD), a scheme due to Imai and
Hirakawa [12]. The MLC/MSD system makes better use of
the information available at the receiver and hence it has the
potential to boost the cutoff rate at lower complexity. The
particular MLC/MSD system we consider here is shown in
Fig. 8. The mapper in the figure is a one-to-one transformation.
The demapper is a device that calculates sufficient statistics in
the form of log-likelihood ratios (LLRs) and feeds them to a
MSD unit. Each decoder in the MSD chain is able to benefit
from the decisions by the previous decoders in the chain.

In effect, the MLC/MSD system creates N bit-channels
W1, . . . ,WN , as shown in Fig. 9, where the ith bit-channel
is of the form Wi : Ui → YÛi−1. More precisely, Wi is
the channel whose input Ui is a bit taken from the output of
the ith convolutional encoder and whose output YÛi−1 is the
input to the ith sequential decoder in the MSD chain. Here,
Y = (Y1, . . . , YN ) is the entire channel output vector and
Ûi−1 = (Û1, . . . , Ûi−1) is the vector of decisions provided
by the decoders that precede decoder i in the MSD chain.
If the MLC/MSD system is configured so that the sequential

decoders provide virtually error-free decisions, then the bit-
channel Wi takes the form Wi : Ui → YUi−1 where
the decisions fed forward by the previous stages are always
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1

SD2

d̂2

dN
CEN

uN yû
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correct. For purposes of deriving polar codes, it suffices to
consider only this ideal case with no decision errors. Hence,
from now on, we suppose that Wi has this ideal form.

An important property of the MLC/MSD scheme is the
conservation of capacity,
N
∑

i=1

C(Wi) =
N
∑

i=1

I(Ui;YUi−1) = I(UN ;YN ) = NC(W ),

where the second equality is obtained by writing
I(Ui;YUi−1) = I(Ui;Y|Ui−1) based on the assumption
that Ui and Ui−1 are independent and then using the chain
rule.
The MLC/MSD scheme conserves capacity at any finite

construction size N while Pinsker’s scheme conserves capacity
only in an asymptotic sense. Thus MLC/MSD uses informa-
tion more efficiently and hence may be expected to achieve a
given performance at a lower construction size (leading to a
lower complexity).

On the other hand, unlike Pinsker’s scheme in which the
outer convolutional codes are all identical, the natural rate
assignment for the MLC/MSD scheme is to set the rate Ri

of the ith convolutional code to a value just below R0(Wi).
Using convolutional codes at various different rates {Ri} as
dictated by {R0(Wi)}, and decoding them using a chain of
sequential decoders is a high price to pay for the greater

information efficiency of the MLC/MSD scheme. Fortunately,
this complexity issue regarding outer convolutional codes and
sequential decoders is not as severe as it looks thanks to a
phenomenon called channel polarization.

Theorem 1: Consider a sequence of MLC/MSD schemes
over a BMC W , with the nth scheme in the sequence having
size N = 2n and a mapper of the form

Pn =

[

1 0
1 1

]⊗n

, (4)

where the exponent “⊗n” indicates the nth Kronecker power.
Fix 0 < δ < 1

2 . As n increases, the idealized bit-channels
{Wi}

N
i=1 for the nth MLC/MSD scheme polarize in the sense

that the fraction of channels with C(Wi) > 1 − δ tends to
C(W ) and the fraction with C(Wi) < δ tends to 1− C(W ).
For each bit-channel Wi that polarizes, its cutoff rate Ro(Wi)
polarizes to the same point (0 or 1) as its capacity C(Wi).
Furthermore, the mapper and demapper functions can be
implemented at complexity O(N logN) per mapper block u.
⋄

We refer to [13] for a proof of this theorem.
The most important aspect of Theorem 1 is its statement

that polarization can be achieved at complexity O(logN) per
transmitted bit. In the absence of a complexity constraint,
polarization alone is not hard to achieve. A randomly chosen
mapper is likely to achieve polarization but is also likely to
be too complex to implement. The recursive structure of the
mappers {Pn} used in Theorem 1 make it possible to obtain
polarization at low complexity. We will see below that the
polarization effect brought about by the transforms {Pn} is
strong enough to simplify the rate assignment {Ri} while also
maintaining reliable transmission of source data bits after the
MLC/MSD scheme is simplified. However, we first wish to
illustrate the polarization phenomenon of Theorem 1 by an
example.

In Fig. 10, we show a plot of C(Wi) v. i for the bit-
channels {Wi} created by an MLC/MSD construction of size
N = 128 using the transform Pn with n = 7. The channel in
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the example is a binary-input additive white Gaussian noise
(BIAWGN) channel, which is a channel that receives a binary
symbol x ∈ {0, 1} as input, maps it into a real number s
by setting s = 1 if x = 0 and s = −1 otherwise, and
generates a channel output y = s+ z, where z ∼ N(0, σ2) is
additive Gaussian noise independent of s. The signal-to-noise
ratio (SNR) for the BIAWGN channel is defined as 1/σ2. The
SNR in Fig. 10 is 3 dB. The capacity C(W ) of the BIAWGN
channel W at 3 dB SNR is 0.72 bits; hence, by Theorem 1,
we expect that roughly a fraction 0.72 of the capacity terms
C(Wi) in Fig. 10 will be near 1.
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Fig. 10. Channel polarization for BIAWGN channel at 3 dB SNR.

An alternative view of the channel polarization effect in the
preceding example is presented in Fig. 11 where cumulative
distributions (profiles) of various information parameters are
plotted as a function of an index variable i which takes
values from 0 to N = 128. The polarized capacity profile
is defined as the sequence of cumulatives

{
∑i

j=1 C(Wj)
}

indexed by i. Likewise, the polarized cutoff rate profile is
defined as

{
∑i

j=1 R0(Wj)
}

, the unpolarized capacity pro-
file as

{

iC(W )
}

, and the unpolarized cutoff rate profile as
{

iR0(W )
}

. By convention, we start each profile at 0 at i = 0.
The two other curves in the figure (Reed-Muller and polar code
rate profiles) will be discussed later.
The unpolarized capacity and cutoff rate profiles in Fig. 11

serve as benchmarks, corresponding to the case where the
mapper in the MLC scheme is the identity transform. The
polarized capacity and cutoff rate profiles demonstrate the
polarization effect due to the transform P7. The polarized and
unpolarized capacity profiles coincide at i = 0 and i = N , but
a gap exists between the two for 0 < i < N due to channel
polarization. Ideally, the polarized capacity profile would stay
zero until i is around [1 − C(W )]N = 35.8 and then climb
with a slope of 1 until i = N . A mapper chosen at random
is likely to create a near-ideal polarized capacity profile, but
the corresponding demapper function is also likely to be too
complex. By using P7 as the mapper, we settle for a non-ideal
polarized capacity profile in return for lower implementation
complexity.
A beneficial by-product of channel polarization is the boost-

ing of the cutoff rate, which is clearly visible in Fig. 11. The
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Fig. 11. Capacity and cutoff rate profiles over BIAWGN channel.

polarized cutoff rate profile has a final value
∑N

i=1 R0(Wi) =
86.7 compared to a final value NR0(W ) = 69.8 for the
unpolarized cutoff rate profile. Theorem 1 ensures that, asymp-
totically as N becomes large, the normalized sum cutoff
rate 1

N

∑N

i=1 R0(Wi) approaches C(W ). So, the MLC/MSD
scheme, equipped with the transforms {Pn}, reproduces
Pinsker’s result by boosting the cutoff rate to channel capac-
ity, with the important difference that here the mapper and
demapper complexity per transmitted source bit is O(logN)
for a construction of size N (while the similar complexity in
Pinsker’s scheme is exponential in N ).

Despite the reduced mapper/demapper complexity, the
MLC/MSD scheme (with the transforms {Pn}) is still far from
being practical since it calls for using N outer convolutional
codes at various code rates. At this point, we take advantage
of the polarization effect and constrain the rates Ri to 0 or
1. Such a 0-1 rate assignment in effect eliminates the outer
codes. Setting Ri = 0 corresponds to fixing the input to the
ith bit channel Wi. Setting Ri = 1 corresponds to sending
information in uncoded form over the ith bit-channel Wi. In
either case, the MSD decisions can be made independently
from one mapper block (of length N ) to the next, eliminating
the need for a sequential decoder.

The 0-1 rate assignment leads to a new type of stand-
alone block code, which we will call a polar code. The
simplified MSD function under the 0-1 rate assignment will
be called successive cancellation (SC) decoding. An important
new question that arises is whether polar codes, obtained by
such drastic simplification of the MLC/MSD scheme, can
provide reliable transmission of source data. An answer to
this question is provided in the next section.

VI. POLAR CODES

In this section we will study polar codes as a stand-alone
coding scheme. For simplicity, we will consider polar coding
only for BMCs that are symmetric in the sense defined in [13]
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or [4, p. 94]. We begin by restating the definition of polar codes
without any reference to their origin.

A polar code is a linear block code characterized by three
parameters: a code block-length N , a code dimension K , and
a data index set A. The code block-length is constrained to
be a power of two, N = 2n for some n ≥ 1. The code
dimension can be any integer in the range 1 ≤ K ≤ N .
The data index set A is a subset of {1, . . . , N} with size
|A| = K . (This set corresponds to the set of indices i for which
Ri = 1 in the MLC/MSD context.) A method of choosing
A will be given below. The encoder for a polar code with
parameters (N,K,A) receives a source word d of length K
and embeds it in a carrier vector u so that uA = d and
uAc = 0. (Here, uA = (ui : i ∈ A) is a subvector of u

obtained by discarding all coordinates outside A.) Encoding
is completed by computing the transform x = uPn, where
Pn is as defined in (4). Henceforth, we will refer to Pn as a
polar transform.

The standard decoding method for polar codes is SC decod-
ing. For details of SC decoding, we refer to [13]. As shown in
[13], for a symmetric BMC W , the probability of frame error
Pe for a polar code under SC decoding is bounded as

Pe ≤
∑

i∈A

Z(Wi) (5)

where Z(Wi) is the Bhattacharyya parameter of channel Wi.
From now on, we will assume that the data index set A is
chosen so as to minimize the bound (5) on Pe, i.e., that A
is selected as a set of K indices i such that Z(Wi) is among
the K smallest numbers in the list Z(W1), . . . , Z(WN ). Since
Z(Wi) = 21−R0(Wi) − 1, an equivalent rule for constructing
a polar code is to select A as a set of K indices i such
that R0(Wi) is among the K largest cutoff rates in the list
R0(W1), . . . , R0(WN ).

Theorem 2: A polar code with length N , dimension K , and
rate R = K/N over a symmetric BMC W has the following
properties.

• It can be constructed (the data index set A can be
determined) in O(Npoly(logN)) steps [14], [15], [16].

• It can be encoded and SC-decoded in O(N logN) steps
[13].

• Its frame error rate Pe under SC decoding is bounded as
O(e−N0.499

) for any fixed rate R < C(W ) [17].
⋄

In summary, polar coding achieves the capacity of sym-
metric BMCs with low-complexity encoding, decoding, and
construction methods. For a precise discussion of the novelty
of polar codes as a capacity-achieving code construction, we
refer to [18].

The performance of polar codes is far from optimal. Fig. 12
illustrates the frame error rate (FER) Pe under SC decoding
of a polar code with block-length N = 128 and rate R =
1/2 over a BIAWGN channel with the SNR ranging from 0
to 5 dB. This and other FER curves in Fig. 12 have been
obtained by computer simulation. Also shown in Fig. 12 is
the BIAWGN dispersion approximation [19] at block-length

N = 128 and rate R = 1/2, which is an estimate of the
average ML-decoding performance over the BIAWGN channel
of a code chosen uniformly at random from the ensemble of
all possible binary codes of block-length N = 128 and rate
R = 1/2.
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Fig. 12. Performance curves over the BIAWGN channel.

The weak performance of polar codes is due in part to
the suboptimality of the SC decoder and in part to the poor
minimum distance of polar codes. An effective method to fix
both of these problems has been to use a concatenation scheme
in which a high-rate outer code is used to pre-code the source
bits before they go into an inner polar code. A particularly
powerful example of such methods is the CRC-aided SC list
decoding (CA-SCL) [20], whose FER performance is shown
in Fig. 12 for the case of N = 128, R = 1/2, CRC length
8, and list size 32. In the next section, we consider improving
the polar code performance still further by shifting the burden
of error correction entirely to an outer code.

VII. POLARIZATION-ADJUSTED CONVOLUTIONAL CODES

In this section, we consider a new class of codes that we will
refer to as polarization-adjusted convolutional (PAC) codes.
The motivating idea for PAC codes is the recognition that 0-1
rate assignments waste the capacities C(Wi) of bit-channels
Wi whose inputs are fixed by the rate assignment Ri = 0.
The capacity loss is especially significant at practical (small
to moderate) block-lengths N since polarization takes place
relatively slowly. In order to prevent such capacity loss, we
need a scheme that avoids fixing the input of any bit-channel.
PAC codes achieve this by placing an outer convolutional
coding block in front of the polar transform as shown in
Fig. 13.

As with polar codes, the natural block lengths for PAC codes
are powers of two, N = 2n, n ≥ 1. The code dimension K
can be any integer between 1 and N . The encoding operation
for PAC codes is as follows. A rate-profiling block inserts the
source word d into a data carrier word v in accordance with
a data index set A so that vA = d and vAc = 0. The PAC
codeword x is obtained from v by a one-to-one transformation
x = vTPn where T is a convolution operation and Pn is the
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polar transform. A low-complexity encoding alternative is to
compute first u = vT and then x = uPn.

As usual, we characterize the convolution operation by an
impulse response c = (c0, · · · , cm), where by convention we
assume that c0 �= 0 and cm �= 0. The parameter m + 1 is
called the constraint length of the convolution. The input-
output relation for a convolution with a given impulse response
c = (c0, · · · , cm) is

ui =

m
�

j=0

cjvi−j

where it is understood that vi−j = 0 for j ≥ i. The same
convolution operation can be represented in matrix form as
u = vT where T is an upper-triangular Toeplitz matrix,

T =


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To illustrate the above encoding operation, consider a
small example with N = 8, K = 4, A = {4, 6, 7, 8},
and c = (1, 1, 1). The rate-profiler maps the source word
d = (d1, . . . , d4) into v = (v1, . . . , v8) so that

v = (0, 0, 0, d1, 0, d2, d3, d4).

The convolution u = vT generates an output word u with
u1 = v1, u2 = v1 + v2, and ui = vi−2 + vi−1 + vi for
i = 3, . . . , 8. (This convolution can be implemented as in
Fig. 3 by taking the upper part of that circuit.) Encoding is
completed by computing the polar transform x = uP3.

Unlike ordinary convolutional codes, the convolution opera-
tion here generates an irregular tree code due to the constraint

vAc = 0. Fig. 14 illustrates the irregular tree code generated
by the convolution in the above example. The tree in Fig. 14
branches only at time indices in the set A, i.e., only when there
is a new source bit di going into the convolution operation.
When there is a branching in the tree at some stage i ∈ A,
by convention, the upper branch corresponds to vi = 0 and
the lower branch to vi = 1. Leaf nodes of the tree in Fig. 14
are in one-to-one correspondence with the convolution input
words v satisfying the constraint vAc = 0. The branches on
the path to a leaf node v are labeled with the symbols of the
convolution output word u = vT.
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Fig. 14. Irregular tree code example.

To summarize, a PAC code is specified by four parameters
(N,K,A, c). In simulation studies we observed that the per-
formance of a PAC code is more sensitive to the choice of A
than to c. As long as the constraint length of the convolution is
sufficiently large, choosing c at random may be an acceptable
design practice. Finding good design rules for A is a research
problem.

A heuristic method of choosing A is to use a score function
s : {1, . . . , N} → R and select A as a set of indices i
such that s(i) is among the largest K scores in the list
s(1), . . . , s(N) (with ties broken arbitrarily). Two examples
of score functions (inspired by polar codes) are the capacity
score function s(i) = C(Wi) and the cutoff rate score function
s(i) = R0(Wi) where {Wi} are the MLC/MSD bit-channels
created by the polar transform Pn. The cutoff rate score
function recovers polar codes when T is set to the identity
transform (corresponding to c = 1). A third example of
a score function is the Reed-Muller (RM) score function
s(i) = w(i− 1) where w(i− 1) is the number of ones in the
binary representation of i−1, 0 ≤ i−1 ≤ N−1. For example,
w(12) = 2 since 12 has the binary representation 1100. We
refer to this score function as the RM score function since it
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generates the well-known RM codes [22], [23] when T is the
identity transform.

We now turn to decoding of PAC codes. For purposes of
discussing the decoding operation, it is preferable to segment
the PAC coding system into three functional blocks as shown
by dashed-rectangles in Fig. 13. According to this functional
segmentation, a source word d is inserted into a data carrier
v, the data carrier v is encoded into an codeword u from an
irregular tree code, the codeword u is sent over a polarized
channel, a sequential decoder is used to generate an estimate
v̂ of v, and finally, an estimate d̂ of the source word d is
extracted from v̂ by setting d̂ = v̂A.

Irregular tree codes can be decoded by tree search heuristics
in much the same way as regular tree codes. A particularly
suitable tree search heuristic for PAC codes is sequential de-
coding, specifically, the Fano decoder [21]. The Fano decoder
tries to identify the correct path in the code tree by using a
metric that tends to drift up along the correct path and drift
down as soon as a path diverges from the correct path. The
Fano decoder generates metric requests along the path that
it is currently exploring and a metric calculator responds by
sending back the requested metric values (denoted by m in
Fig. 13). Unlike the usual metric in sequential decoding, the
metrics here have to have a time-varying bias so as to maintain
the desired drift properties in the face of the irregular nature
of the tree code. In computing the metric, the metric calculator
can use a recursive method, as in SC decoding of polar codes.

Fig. 12 presents the result of a computer simulation with a
PAC code with N = 128, R = 1/2, A chosen in accordance
with the RM design rule, and c = (1, 0, 1, 1, 0, 1, 1). As seen
in the figure, the FER performance of the PAC code in this
example comes very close to the dispersion approximation for
FER values larger than 10−3. Evidently, the product of the
polar transform Pn and the convolution transform T creates
an overall transform G = TPn that looks sufficiently random
to achieve a performance near the dispersion approximation.
When we repeated this simulation experiment with a PAC
code designed by the polar coding score function (keeping
everything else the same), we observed that the performance
became worse but the sequential decoder ran significantly
faster. The RM design was the best design we could find in
terms of FER performance.

As a heuristic guide to understanding the computational
behavior of sequential decoding of a PAC code, we found
it useful to associate a rate profile to each design rule or
equivalently data index set A. The rate profile for a data
index set A is defined as the the sequence of numbers
{Ki}

N
i=0 where K0 = 0 and Ki is the number of elements

in A ∩ {1, 2, . . . , i} for i ≥ 1. Thus, Ki is the number of
source data bits carried in the first i coordinates of the data
carrier word v. The rate profiles associated with the RM and
polar code design rules are shown in Fig. 11 for N = 128 and
K = 64. We expect that a design rule whose rate profile stays
below the polarized cutoff rate profile at a certain SNR will
generate a PAC code that has low complexity under sequential
decoding at that SNR. In Fig. 11, both the RM and polar rate

profiles lie below the polarized cutoff rate profile, but the polar
rate profile leaves a greater safety margin, which may explain
the experimental observation that the Fano decoder runs faster
with the polar code design rule.

VIII. REMARKS AND OPEN PROBLEMS

We conclude the note with some complementary remarks
about PAC codes and suggestions for further research.

One may view PAC codes as a concatenation scheme with
an outer convolutional code and an inner polar code. However,
PAC codes differ from typical concatenated coding schemes
in that the inner code in PAC coding has rate one, so it has
no error correction capability. It is more appropriate to view
the inner polar transform and the metric calculator (mapper
and demapper) in PAC coding as a pair of pre- and post-
processing devices around a memoryless channel that provide
polarized information to an outer decoder so as to increase the
performance of the outer coding system.

In view of the data-processing theorem mentioned in con-
nection with Pinsker’s scheme, it seems impossible that PAC
codes be able to operate at low-complexity at rates above the
cutoff rate R0(W ) using only a single sequential decoder.
This is true only in part. PAC codes use a convolutional code
whose length spans only one use of the polarized channel.
The sequential decoder in PAC coding stops searching for the
correct path if a decision error is made after reaching level N
in the irregular code tree, i.e., after a single use of the polarized
channel. The R0(W ) bound on sequential decoding would
hold if a convolutional code were used that extended over
multiple uses of the polarized channel. A better understanding
of the computational complexity of the sequential decoder in
PAC coding is an open problem.

As stated above, the performance and complexity of PAC
codes are yet to be studied rigorously. It is clear that in
general PAC codes can achieve channel capacity since they
contain polar codes as a special case. The main question is
to characterize the best attainable performance by PAC codes
over variation of the data index set A and the convolution
impulse response c.

The fact that PAC codes perform well under the RM design
rule suggests that, unlike polar codes, PAC codes are robust
against channel parameter variations and modeling errors. It is
of interest to investigate if PAC codes have universal design
rules so that a given PAC code performs well uniformly over
the class of all BMCs with a given capacity. In particular, it
is of interest to check if the RM design rule (together with a
suitably chosen convolution impulse response c) is universal
in this sense.

A disadvantage of the sequential decoding method is its
variable complexity. It is of interest to study fixed-complexity
search heuristics for decoding PAC codes. One possibility is to
use a breadth-first search heuristic, such as a Viterbi decoder.
However, a Viterbi decoder that tracks only the state of the
convolutional encoder will be suboptimal since PAC codes
incorporate a polarized channel that, too, has a state. In fact,
the number of states of the polarized channel is the same as
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the number of possible words u at the input of the polarized
channel, namely, 2NR for a PAC code of length N and rate
R. There is clearly need for a sub-optimal breadth-first search
heuristic that tracks only a subset of all possible states. One
option that may be considered here is list Viterbi decoding [24]
which is a method that has proven effective for searching large
state spaces. For some other alternatives of forward pruning
methods in breadth-first search, such as beam search, we refer
to [25, pp. 174-175].

In linear algebra, lower-upper decomposition (LUD) is a
method for solving systems of linear equations. PAC coding
may be regarded as one form of upper-lower decomposition
(ULD) of a code generator matrix G for purposes of solving
a redundant set of linear equations when the equations are
corrupted by noise. One may investigate if there are other
decompositions in linear algebra for synthesizing generator
matrices that yield powerful codes with low-complexity en-
coding and decoding.
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The first event we hosted as co-chairs of the Women in Informa-
tion Theory Society (WITHITS) was a short lunch workshop at 
ISIT 2019 which focused on developing research pitches. Commu-
nicating our work and sharing our ideas with colleagues is a very 
important part of being a researcher, and yet this is a skill that is 
not often formally taught. In the process of brainstorming for this 
event, we reflected upon our journeys from graduate students to 
faculty, and recalled feeling nervous when describing and pre-
senting one’s research identity in casual conference networking 
events. Our aim with this workshop was to give participants an 
opportunity to practice communicating and promoting their own 
work in a safe and encouraging environment. As an additional 
goal, we hoped that being able to connect and meet other women 
and mentors on the first day of the conference would catalyze 
further conversations and provide relationships of support that 
would build confidence for participants to fully enjoy and engage 
in productive research conversations through the remainder of 
the conference.

The workshop started off with Tara Javidi sharing some guide-
lines on what makes a good research pitch. Plenary speaker Mu-
riel Medard as well as Daniela Tuninetti and Lalitha Sankar shared 
examples of pitches as well—giving examples in different settings, 

such as pitches to a funding agency, pitches about a conference 
talk, or pitches to a friend or family member. After hearing advice 
and examples, the rest of the event was dedicated to practicing in 
small groups to answer the following prompt: Suppose that you 
meet a new person at coffee break that greeted you with “Hello, 
nice to meet you! What do you work on?” The participants took 
turns to practice their response and give each other constructive 
feedback on their pitches. Senior members of the community were 
present to give feedback as well.

There were more than 120 people who attended the event. We re-
ceived very positive feedback for the event—some groups discov-
ered new research connections in their work, some participants 
were inspired to replicate the same event at their own university 
or lab group meetings, and other participants even commented 
that we should hold the exact same event every single year! Going 
forward, we are excited for hosting future events that support the 
mission of WITHITS—addressing the needs of and encouraging 
the participation of our underrepresented demographics, while 
being of interest and use to the community at large. We envision 
events that provide mentoring and build a support network, and 
provide training and practice for other similarly important but 
under-taught skills for flourishing as an academic.

The 11th Asia-Europe workshop on 
“Concepts in Information Theory 
and Communications” (AEW11) 
was held in Rotterdam-Nether-
lands on July 3-5, 2019. Thirty-three 
participants enjoyed the beautiful 
venue of the clubhouse of the Roy-
al Maas Rowing and Sailing Club 
at the quay of a branch of the river 
Rhine, called the Maas in the very 
center of Rotterdam.

The workshop is based on a long-
standing cooperation between 
Asian and European scientists. 
The very first workshop was held 
thirty years ago in Eindhoven, the 
Netherlands in 1989. The main 
idea of the workshop is threefold: 
1) improvement of the communi-
cation between scientists in differ-
ent parts of the world; 2) exchange 

Tooting Our Horns: Practicing and Preparing  
Research Pitches

Gireeja Ranade and Christina Lee Yu

11th Asia-Europe Workshop (AEW11) on “Concepts in 
Information Theory and Communications”

Organizers: Han A.J. Vinck and Kees A. Schouhamer Immink
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of knowledge and ideas; 3) pay a tribute to a well-respected and 
special scientist. 

For this workshop, Hiroyoshi Morita accepted the invitation to be 
the guest of honor and to be the key lecturer. Hiro is a well-known 
information theorist with many original contributions. We have 
also appreciated very much his many contributions to the Infor-
mation theory community in general. Hiro gave an overview on 
‘Antidictionary and its Applications’.

The other sixteen presentations showed examples of concepts of 
error correcting codes, time series analysis, cryptography, multi-

server load balancing, convolutional codes, and coding for mem-
ories. The proceedings of the workshop can be found at https://
arxiv.org/abs/1907.02944. 

The workshop started with an informal get-together on Wed -
nesday evening. On Thursday evening, after a reception in 
the garden near the river, a delicious dinner was served for 
attendees and spouses in the clubhouse’s great hall. The 
workshop was concluded with a boating and hiking trip to 
Kinderdijk, a well-preserved Dutch polder with nineteen 
original windmills that have kept the Dutch feet dry for many 
centuries.

The 2019 Symposium on Information Theory and Signal Pro-
cessing in the Benelux took place at the KU Leuven Technology 
Campus in Ghent, Belgium, on May 28 and 29. It was extremely 
well organized by Liesbet Van der Perre, Sofie Pollin, Alexan-
der Bertrand, Gilles Callebaut, Bert Cox, and Kevin Verniers, 
all from the Katholieke Universiteit Leuven. The long range of 
annual symposia coordinated under the auspices of the “Werk-
gemeenschap voor Informatie- en Communicatietheorie (WIC)” 
started in 1980. Later also the IEEE Benelux Information Theory 
Chapter became involved, and since 2011 the symposia are co-
organized with the IEEE Benelux Signal Processing Chapter. 
The goal of the conference is to bring together researchers from 
academia and industry within the Benelux countries (Belgium, 
Netherlands, and Luxemburg), to share ideas, problems and so-
lutions relating to the multifaceted aspects of signal processing 
and information theory.

The organizing committee welcomed 76 attendees to the 40th edi-
tion of this symposium. In order to celebrate the jubilee, several 
special events were included into the program. There were key-
note lectures by (former) WIC chairmen: Han Vinck (University 
of Duisburg-Essen, WIC chair 1998–2001) talked about “Infor-
mation Theory and Memory Systems”, Peter de With (TU Eind-
hoven, WIC chair 2001–2006) presented “Flying through WIC 
Benelux history: from video coding towards image analysis”, 
while Jos Weber (TU Delft, WIC chair 2006-present) discussed 
“Channel Coding in the Benelux”. Furthermore, a special session 
on “Searching life-critical information, early computer-aided de-
tection of cancer” was organized. To enrich the social cohesion, 
the participants were guided through the historic city center of 
Ghent, entertained with a big band concert, a food truck, and 
surprised with birthday cakes at the conference dinner. 

As usual, the core of the symposium was formed by oral and 
poster presentations, mainly by PhD and MSc students. Different 

40th Symposium on Information Theory in the Benelux
Jos Weber
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research fields were addressed, from quantum cryptography to 
biomedical signal processing to signal detection and estimation. 
The best student paper award was won by Simon Geirnaert (KU 
Leuven) for “Expected Switching Time: a Markov Chain Based 
Performance Metric to Evaluate Auditory Attention Decod-
ing Algorithms”, joint work with T. Francart and A. Bertrand. 
The best student presentation award was won by Miao Sun (TU 
Delft), for “Atrial Activity Extraction Based on Graph-Time Sig-
nal Processing”, joint work with E. Isufi, N.M.S. de Groot, and 
R.C. Hendriks. 

At the WIC General Assembly that took place during the sym-
posium, Ludo Tolhuizen from Philips Research was awarded 
the honorary membership of the WIC for his extensive service 
to the WIC. In particular, he has served as a board member 
since 1998. During the years 1998-2006 and 2010-2019 he was 
the WIC secretary.

The symposium proceedings and slides of the keynotes are avail-
able via w-i-c.org. At this web site also future events will be an-

nounced. The 2020 Symposium on Information Theory and Signal 
Processing in the Benelux will be organized by TU Eindhoven, 
dates to be decided. Information theory in the Benelux is alive 
and kicking!

Two weeks after the end of post-war soap rationing, and a month 
after BBC’s first overseas live TV broadcast (from France), a dis-
tinguished group of academics gathered at the Royal Society in 
London to talk about information theory. It was 1950—only two 
years after the publication of Shannon’s seminal paper and of Wie-
ner’s “Cybernetics”—and the new ideas of information, control, 
and feedback were quickly making their way from engineering 
to the natural, social, and human sciences, begetting new insights 
and raising new questions.

This “cybernetic moment” [2] underpinned the first four editions 
of the London Symposium on Information Theory (LSIT), with 
the first meeting in 1950 followed by the symposia in 1952, 1955, 
and 1960. The program in 1950, shown in Fig. 1, featured two 
talks by Shannon on communications and coding, as well as a 
number of presentations on topics ranging from physics, statis-
tics, and radar, to linguistics, neuroscience, psychology, and neu-
rophysiology. The first LSIT was also notable for two written con-
tributions by Alan Turing, who could not attend in person. One 
of the contributions offered the following ante-litteram definition 
of machine learning: 

“If [...] the operations of the machine itself could alter its instructions, 
there is the possibility that a learning process could by this means com-
pletely alter the programme in the machine.”

According to the report [2], the second meeting, held in 1952, 
was characterized by an “emphasis on the transmission and analy-
sis of speech”, while the third LSIT in 1955 covered again a large 
variety of topics, including “anatomy, animal welfare, anthropology, 
[...] neuropsychiatry, [...] phonetics, political theory”. David Slepian, 
one of the participants, would later write in his Bell Labs report 
about this third meeting that the “best definition I was able to get as 
to what constituted ‘The Information Theory’ was ‘the sort of material 
on this program’!” [2]. At the same time, the heterogeneity of top-
ics in the program may have been one of the motivations behind 
Shannon’s “Bandwagon” paper published the following year 
[3]. In it, Shannon famously warned against the indiscriminate 
application of information theory based solely on the abstract 
relevance of the concept of information to many scientific and 
philosophical fields.

The fourth LSIT was held in 1960 and featured among its speakers 
Marvin Minsky, one of the founding fathers of Artificial Intelligence 
(AI), who delivered a talk entitled “Learning in Random Nets”.

In the middle of our own “AI moment”, the time seemed right to 
bring back to London the discussion initiated in the fifties and six-
ties during the first four LSIT editions. And so, with a temporal 
leap of almost sixty years, the fifth LSIT was held at King’s Col-
lege London on May 30-31, 2019. The symposium was organized 

The Fifth London Symposium on Information 
Theory (LSIT)

Osvaldo Simeone and Deniz Gündüz
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by Deniz Gündüz and Osvaldo Simeone from Imperial College 
London and King’s College London, respectively—two institutions 
that featured prominently in the first editions of LSIT (see Fig. 1).

While heeding Shannon’s warning, the program of the sympo-
sium aimed at exploring the “daisy” of intersections of machine 
learning with fields such as statistics, machine learning, physics, 
communication theory, and computer science. Each day featured 
two keynote talks, along with two invited session, and a poster 
session with invited as well as contributed posters submitted to 
an open call. The first day was devoted to the intersection between 
machine learning and information theory, while the second day 
focused on novel applications of information theory.

The first day started with a keynote by Michael Gastpar (EPFL), 
who presented a talk entitled “Information measures, learning 
and generalization”. This was followed by an invited session on 
“Information theory and data-driven methods”, chaired by Iñaki 
Esnaola (University of Sheffield), which featured talks by Bern-
hard Geiger (Graz University of Technology) on “How (not) to 
train your neural network using the information bottleneck prin-
ciple”; by Jonathan Scarlett (National University of Singapore) on 
“Converse bounds for Gaussian process bandit optimization”; 
by Changho Suh (KAIST) on “Matrix completion with graph side 
information”; and by Camilla Hollanti (Aalto University) on “In 

the quest for the capacity of private information retrieval from 
coded and colluding servers”. The session was interrupted by a 
fire alarm that was carefully timed by the organizers in order to 
give the attendees more time to enjoy the storied surrounding of 
the Strand Campus of King’s College London. After lunch, the 
symposium kicked off with a keynote talk by Phil Schniter (Ohio 
State University) on “Recent advances in approximate message 
passing”, which was followed by an invited session on “Statistical 
signal processing”, organized by  Ramji Venkataramanan (Univer-
sity of Cambridge), which featured talks by Po-Ling Loh (Uni-
versity of Wisconsin-Madison) on “Teaching and learning in un-
certainty”; by Cynthia Rush (Columbia University) on “SLOPE is 
better than LASSO”; by Jean Barbier (EPFL) on “Mutual informa-
tion for the dense stochastic block model: A direct proof”; and 
by Galen Reeves (Duke University) on “The geometry of com-
munity detection via the MMSE matrix”. The first day was ended 
by a poster session organized by Bruno Clerckx (Imperial College 
London); by wine, refreshments, and by the view on the Thames 
and the Waterloo bridge from the 8th floor of the Bush House.

The second, and last day, started off with a keynote by Kannan 
Ramchandran (Berkeley) on “Beyond communications: Codes 
offer a CLEAR advantage (Computing, LEArning, and Re-
covery)”. Next was an invited session on “Information theory 
and frontiers in communications”, chaired by Zoran Cvetkovic 
(King’s College London), with talks by Ayfer Özgür (Stanford) 
on “Distributed learning under communication constraints”; by 
Mark Wilde (Louisiana State University) on “A tale of quantum 
data processing and recovery”; by Michèle Wigger (Telecom 
ParisTech) on “Networks with mixed delay constraints”; by Aar-
on Wagner (Cornell University) on “What hockey and foraging 
animals can teach us about feedback communication”; and by 
Ofer Shayevitz (Tel Aviv University) on “The minimax quadratic 
risk of distributed correlation estimation”. The afternoon session 
was opened by Yiannis Kontoyiannis (University of Cambridge), 
who gave a keynote on “Bayesian inference for discrete time se-
ries using context trees”, and continued with an invited session on 
“Post-quantum cryptography”, organised by Cong Ling (Imperial 
College London), with talks by Shun Watanabe (Tokyo University 
of Agriculture and Technology) on “Change of measure argument 
for strong converse and application to parallel repetition”; Qian 

Figure 2. General co-chairs with some of the student 
and postdoc volunteers.

Figure 1. Program of the first LSIT, held in 1950.
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Guo (University of Bergen) on “Decryption failure attacks on post-
quantum cryptographic primitives with error-correcting codes”; 
Leo Ducas (CWI) on “Polynomial time bounded distance de-
coding near Minkowski’s bound in discrete logarithm lattices”; 
and Thomas Prest (PQShield) on “Unifying leakage models on a 
Rényi day”. As the first, the second was not a rainy day and at-
tendees were able to enjoy the view from the Bush House terrace 
with wine and mezes, while discussing results from poster ses-
sions organised by Mario Berta (Imperial College London), and 
Kai-Kit Wong (University College London).

Videos of all talks are availabe on YouTube (https://tinyurl.com/
y5w92rga).

Registration was free and more than 150 students, researchers, 
and academics were in attendance. Support was provided by the 
European Research Council (ERC) under the European Union’s 
Horizon 2020 Research and Innovation Programme (Grant Agree-
ments No. 725731 and 677854).

LSIT has outlived the cybernetic movement, and it may well con-
tinue beyond the current “AI moment”. The organizers hope that 
we will not wait for another 60 years for the next information theory 
meeting in London, and would like LSIT to become a regular 

biennial meeting of the information theorists and researchers from 
related fields in London, in alternating years with the International 
Zurich Seminar, which has so far been the only regular meeting of 
its kind in Europe. Coincidentally, the first ever international meet-
ing on information theory was held in Zurich in September 11–22, 
1950, only one week before the London symposium, during the con-
gress of the International Union of Radio Science (URSI) [4]. 
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In Memoriam: Robert J. McEliece (1942–2019)
Dariush Divsalar and Mario Blaum 

Tribute to Robert J. McEliece, who passed away 
May 8, 2019. Dariush Divsalar and Mario Blaum 
write about Bob’s broad and substantial contri-
butions to information theory, coding theory and 
cryptography.

Robert J. McEliece was born in Washington, DC, on 
May 21, 1942, and passed away on May 8, 2019 in 
Pasadena. He received the B.S. and Ph.D. degrees in 
mathematics from the California Institute of Tech-
nology in 1964 and 1967, respectively, and attended 
Trinity College, Cambridge University, England, 
during 1964–65. From 1963 to 1978 he worked at 
Caltech’s Jet Propulsion Laboratory (JPL), and he 
had been a consultant at JPL since 1978. From 1978 to 1982 he was 
Professor of Mathematics and Research Professor at the Coordi-
nated Science Laboratory, University of Illinois, Urbana-Cham-
paign. He joined the faculty at Caltech in 1982, and became an Al-
len E. Puckett Professor in 1997. He was also a regular consultant 
at the Sony Corp. in Tokyo.

Prof. McEliece made fundamental contributions to the theory, de-
sign and practice of channel codes for communication systems. 
Prof. McEliece’s achievements are many. At Jet Propulsion Labo-
ratory, Prof. McEliece has contributed to the design and analysis 
of many coded interplanetary telecommunication systems, for 
example the Golay-coded non-imaging system for the Voyager 
spacecraft, and the “Big Viterbi Decoder” which has been used on 

the Galileo, Mars Pathfinder, Cassini, and Mars Ex-
ploration Rover missions. He has won several NASA 
awards for this work.

As a faculty member at Caltech, he has five times 
won awards for excellence in teaching, and has men-
tored more than 30 Ph.D. students, four of whom are 
IEEE Fellows. From 1990–1999, he served as Execu-
tive Officer (chairman) for the Electrical Engineer-
ing Department, and under his leadership Caltech’s 
small (12 FTE) EE Department rose to rank 5th na-
tionally, behind only MIT, Stanford, Berkeley, and the 
University of Illinois.

Prof. McEliece is the author of three textbooks and more than 250 
research articles, jointly with more than 75 coauthors (his top 12 
papers yield 10291 citations on Google Scholar— Prof. McEliece is 
currently listed as a Highly Cited Researcher by Thompson-ISI).

Besides his technical achievements, Prof. McEliece had many other 
interests. Among them, he was an avid runner, and he loved mu-
sic and singing. He had an affable personality and he was loved 
and respected by his peers and his students. He influenced greatly 
the careers of many of us. He was a truly outstanding lecturer 
and was an excellent popularizer of information theory. He can 
be described as a “mathemagician”. Enjoy for example his lecture 
Safety in Numbers–Protecting Data Mathmagically, Part 1 and 
Part 2 on YouTube.
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He is survived by three daughters, a son and a step-daughter.

Below is a chronological list of some of Prof. McEliece’s most im-
portant achievements.

1) McEliece’s Theorem. This theorem, which identifies the 
largest power of p that divides all the weights in a p-ary 
cyclic code, and which contains the celebrated Ax divisibil-
ity theorem as a special case, is one of the deepest mathe-
matical results to come out of coding theory. McEliece’s 
theorem has inspired a large and impressive body of later 
work by Wilson, Calderbank, Katz, and others. Reference 
[R1] and [R2].

2) The Theory of Information and Coding. In print continu-
ously since 1977, this classic textbook book has been compared 
to Richard Feynman’s Lectures on Physics, as a standard 
and authoritative book in its field. Reference [R3]

3) The JPL Bound. Since 1977 this result has stood as the best 
known upper bound on the basic combinatorial problem of 
Information Theory: the tradeoff between rate and mini-
mum distance of the best binary codes. Winner of an 
Information Theory Society Golden Jubilee Award, 1998. 
Reference [R4]

4) The McEliece Public-key Cryptosystem. Has withstood 
repeated continuous attacks of cryptanalysts for more 
than 30 years, and thus (with RSA) is one of a small hand-
ful of successful public-key cryptosystems. McEliece 
cryptosystem is a candidate for post-quantum cryptogra-
phy since it is immune to attacks using Shor’s algorithm. 
Reference [R5]

5) Decoding is NP-hard. The first proof that maximum-likeli-
hood decoding of linear block codes is an intractable prob-
lem. This result has inspired many similar results by later 
researchers. Reference [R6]

6) Block interference channel models. A class of channel mod-
els with memory that is (a) simple enough to allow precise 
analysis and (b) realistic enough to yield insights into real 
channels. This class of channel models has proved essential 
in the study of wireless fading channels. Reference [R7]

7) The capacity of the Hopfield Neural network. This paper 
gave the first rigorous estimate of the potential of neural-
network type memories. Reference [R8]

8) Turbo decoding and belief propagation. Winner of the 
1998 Leonard G. Abraham award. This paper put the term 
“belief propagation” in the coding theory vocabulary. 
Reference [R9]

9) The Generalized Distributive Law. An important synthesis 
showing deep and previous unsuspected connections 
between the fast Fourier Transform, Viterbi’s algorithm, 
Turbo decoding, and many other basic algorithms. (a pat-
ent). Reference [R10]

10)Repeat-Accumulate Codes. An astonishingly simple and 
powerful class of codes which bridge the gap between 

turbo-codes and LDPC codes, and which have become 
an industry standard. (two patents). Reference [R11] 
and [R12].
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Robert J. McEliece’s Honors/Awards

1) Associated Students of the California Institute of Technology 
Award for Excellence in Teaching, 1985, 1989, 1990, 1999.

2) Caltech Graduate Student Council Teaching Award, 1996.
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3) Erdos number one: “Ramsey Bounds for Graph Products” (with 
Paul Erdos and Herbert Taylor), Pac. J. Math. 37 (1971), pp. 45–46.

4) NASA Group Achievement Award for Voyager Mission Opera-
tions Systems Design and Development, June 1981.

5) Elected President of the IEEE Information Theory Group (one-
year term of office, 1984)

6) NASA Group Achievement Award for the Advanced Error-
Correcting Code Research and Development Team, June 1992. 
(“In recognition of research and development resulting in a 
new error-correcting system providing an increase of data rate 
by a factor of 1.6 to benefit all future space missions”)

7) Elected to National Academy of Engineering, 1998.

8) Elected Fellow, IEEE, 1984

9) Paper “New Upper Bounds on the Rate of a Code via the 
Delsarte-MacWilliams Inequalities,” selected for an Information 
Theory Society Golden Jubilee Award, 1998

10) Paper “Turbo Decoding as an Instance of Pearl’s ‘Belief Propa-
gation’ Algorithm” awarded the 1998 Leonard G. Abraham Prize 
paper Award

11) IEEE Third Millennium Medal.

12) IEEE Information Theory Society 2004 Claude E Shannon 
Award

13) IEEE Alexander Graham Bell Medal, 2009

Read more about R. J. McEliece’s life at Caltech News, https://
news.berkeley.edu/2019/04/18/elwyn-berlekamp-game-theorist-
and-coding-pioneer-dies-at-78/

In Memoriam: Elwyn Berlekamp (1940–2019)
Jim Omura

Elwyn Berlekamp passed away on April 9, 2019 
in Berkeley, California. He was a brilliant math-
ematician and engineer who did groundbreaking 
research in Information Theory and Combinato-
rial Game Theory. He was also a successful entrepre-
neur, helped create a highly profitable quantita-
tively managed fund, served in leadership roles for 
academic societies, and was a generous supporter of 
STEM education and mathematics research. Elwyn 
is survived by his wife, Jennifer; daughters Persis, an 
art historian at the University of Chicago, and Bron-
wen Berlekamp O’Wril of Portland, Maine; and son 
David of Oakland.

Early Years
Elwyn Berlekamp was born on September 6, 1940 in Dover, 
Ohio. His family moved to Northern Kentucky, where Elwyn 
was class president at Highland High School. In 1958 he and I 
entered MIT as freshmen. I first met Elwyn in our sophomore 
year when we played together on the East Campus intramural 
football team. 

Elwyn was the smartest student I met at MIT. He took extra 
courses during his undergraduate years, completing his BS and 
MS degrees in 4 years and his PhD two years later, all at MIT. In 
addition, he taught himself Russian and together with other un-
dergraduate students developed the first chess playing software 
program, which is featured in the Computer History Museum 
in Mountain View, California. Although an Electrical Engineer-
ing student, he was among five winners of the national Putnam 

Mathematics competition in December 1961. His 
PhD thesis, Block Coding with Noiseless Feedback, 
spawned several publications. One key idea was 
to recast the problem as an asymmetric combinato-
rial game between the Coder and the Noisemaker 
and then to find asymptotically optimum strate-
gies for playing that game. This was followed by 
his groundbreaking research work in Information 
Theory, Mathematics, and Combinatorial Game 
Theory. Less known is his mostly classified con-
sulting work on cryptographic research for the 
Institute for Defense Analysis (IDA) in Princeton, 
New Jersey.

Research in Information Theory
In addition to his long career at the University of California Berke-
ley, Elwyn worked for short periods at Bell Labs, the Jet Propul-
sion Laboratory (JPL), and IDA. 

He invented a series of algorithms and related implementations 
which made powerful error-correcting codes useful in many ap-
plications. Best-known among these results was his algorithm to 
factor polynomials over finite fields and the Berlekamp-Massey 
algorithm to find linear recursions in long data streams. These 
were published in his 1968 book, Algebraic Coding Theory. Another 
major new result in that book was the enumeration of the num-
ber of information bits in long binary BCH codes. This book won 
the IEEE Information Theory Group’s annual best research paper 
award. The applicability of some of these algorithms to problems 
in cryptography attracted the attention of the National Security 
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Agency (NSA), who in 1967-1968 recruited Elwyn to become a 
consultant to their research group at IDA. 

Entrepreneur
Some believed that Elwyn’s algorithms were impractical. With-
out angel investors or venture capital, he founded Cyclotomics to 
develop commercial implementations, starting with the world’s 
foremost Galois Field computer which shattered the then-preva-
lent myth that powerful high-speed algebraic error-correction was 
not feasible. Elwyn’s Galois Field computer is now in the Com-
puter History Museum. 

When I met him during this period, I was amazed to see Elwyn 
programming an early microprocessor and designing integrated 
circuits. This work led to Elwyn becoming the youngest member 
of the National Academy of Engineering in 1977.

Cyclotomics bootstrapped its growth with profitable sales, and 
eventually grew to a peak of 40 people. It worked with NASA to 
design and build the error-correction decoders for the downlink 
of the Hubble Space Telescope. Beyond communications, Cyclo-
tomics also pioneered applications of algebraic error-correction 
technology to several data storage technologies, including mag-
netic tapes, magnetic discs, and optical discs. By  the mid-1980s, 
there were over 40 US companies trying to develop read-write op-
tical memories. Cyclotomics developed controllers for several of 
them. The biggest of these companies was Eastman Kodak which 
acquired Cyclotomics in 1985.

In 1984 Cyclotomics spun off its consulting contracts in cryptogra-
phy to a new startup, which became known as Cylink and which 
I co-founded with Elwyn and others. Cylink obtained angel fund-
ing from a group formed by Jim Simons, whom Elwyn had met 
at an IDA interview in 1967. In 1996 Cylink went public on the 
NASDAQ stock exchange.

The Medallion Quant Fund
Simons had started a hedge fund management firm, which became 
Renaissance Technologies in 1982. Six years later Renaissance es-
tablished the Medallion quant fund using Leonard Baum’s math-
ematical models, which were  improved by pioneering algebraist 
James Ax to explore correlations from which they could profit. 
Around 1989 this fund, then called Axcom with Ax as CEO, was 
not doing well. Having met again as members of Cylink’s board 
of directors, Simons turned to Elwyn to run Medallion from Berke-
ley. Elwyn bought out most of Ax’s stake in Axcom and became 
its CEO. Over a six-month period, he worked with Simons, San-
dor Straus, and consultant Henry Laufer to overhaul Medallion’s 
trading system. In 1990 Elwyn led Medallion to a 55.9% gain, net 
of fees, and then returned to teaching at Berkeley after selling out 
his Axcom shares to Simons at six times the price he had paid 16 
months earlier. Straus took the reins of Medallion’s revamped trad-
ing system, and Medallion returned 39.4% in 1991, 34% in 1992 and 
39.1% in 1993. They continued hiring mathematicians, engineers, 
and scientists and expanded into trading stocks as well as futures. 
The Medallion fund became the most successful hedge fund ever, 
averaging a 71.8% annual return, before fees, from 1994 through 
mid-2014. It made Simons the leading fund manager on Wall Street. 

In the early 2000s, four new partners and Elwyn launched another 
quantitatively managed fund, called Berkeley Quantitative (BQ). 
After two years of development and studies, it accepted money 

from outside investors and began trading. As more investors en-
tered, the fund size grew. Net performance reached 17%, and the 
fund size reached $250 million about 1.5 years after trading had 
begun. But the next couple of months saw unfriendly market con-
ditions aggravated by some internal organizational problems and 
BQ was closed down after paying off its debts. The initial investors 
realized a net return of about 2% after 3 years. Elwyn felt that BQ 
was not a success, but it did much better than the wipe-outs expe-
rienced by many startups at that time.

Combinatorial Game Theory 
Elwyn’s fascination with mathematical games began when he 
learned to play Dots-and-Boxes in the first grade. Years later he dis-
covered several mathematical theorems that underlie this game 
and others. In mathematics, his best-known work was in Com-
binatorial Game Theory, partly disseminated in his four-volume 
work Winning Ways with John H. Conway and Richard Guy. Ac-
cording to Martin Gardner, author of the extremely popular Math-
ematical Games column in Scientific American from 1957 to 1982, 
Winning Ways was the “greatest contribution of the 20th century to 
the burgeoning field of recreational mathematics. No other work 
has been so packed with completely new and significant material, 
or presented with so much wit, depth, and clarity.” These books 
also became the foundation of a less-recreational subject called 
Combinatorial Game Theory. It was officially accepted by Math Re-
views (now MathSciNet) as a new branch of mathematics and at-
tracted the interest and contributions of many mathematicians 
and computer scientists. 

Another of Elwyn’s accomplishments in Combinatorial Game 
Theory was his analysis of positions in the endgame of Go. With 
David Wolfe, he published the book Mathematical Go. He demon-
strated the effectiveness of his theory by setting up a plausible 
endgame position from which he beat one of the Japanese champi-
ons of the game, after which he set up the same position, reversed 
the board, and beat the master a second time. He also invented a 
variation of the game called Coupon Go, which is closer to elegant 
mathematical theories. This attracted the attention of both math-
ematicians and several world-class professional Go players.

Contributions to STEM education and the Mathematical 
Sciences Research Institute (MSRI)
Elwyn’s father was a minister, and one sees the father’s influ-
ence on the son in a strong and consistent ideal of service to the 
greater good.

Elwyn was active in the popularization of Science, Technology, En-
gineering, and Mathematics (STEM), directed both at K-12 educa-
tion and at adults. He served on the governing boards of each of 
the two foremost private schools in Oakland, California, College 
Preparatory School and Head-Royce. He also directed his efforts 
towards extra-curricular education. In the late 1970s, he helped fi-
nance the start of the Berkeley Math Circle for junior high school 
students who met in a classroom one evening per week to share and 
enjoy solving math or logic problems not covered in their school 
curricula. He felt that one key to the success of such efforts was to 
eradicate (or at least blur) the line many students imagine between 
“real” mathematics/engineering and “recreational mathematics.” 

In 1979 Elwyn joined  other MSRI founders  in a meeting that 
persuaded UC Berkeley Chancellor Albert Bowker to support 
(verbally but not financially) MSRI as an allied but independent 
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off-campus entity, with its own board of governors, neither con-
trolled nor overseen by UC Berkeley. Serving as Chairman of the 
Board from 1994 to 1997, Elwyn hired the current MSRI director, 
David Eisenbud who wrote of Elwyn’s connections to MSRI in his 
Memoriam: Elwyn Berlekamp.

Starting in 2015 he devoted much of his time to the preparation 
of short introductory videos aimed at getting more junior high 
school students interested in combinatorial games and some of the 
mathematics behind them. In 2017 he also became the initial donor 
to fund “America Asks, Science Answers”, a new public informa-
tion campaign by the National Academies. 

With his wife Jennifer, Elwyn supported various charitable causes 
and in 2013 founded the Elwyn and Jennifer Berlekamp Founda-
tion, a small private foundation based in Oakland to support math 
and science outreach and education in general and Combinatorial 
Game Theory in particular.

In Closing
Like others with Top Secret clearances in cryptography, Elwyn re-
frained from publishing any papers directly relating to cryptog-
raphy, whether they were classified or not. We once visited the 
National Security Agency (NSA) where I was able to see classified 
reports he had authored. In the 1970s academic papers on cryptog-
raphy started to appear in academic journals, arousing concerns at 
the NSA that this information might be useful to U.S. adversaries. 
To address these concerns, the Director of NSA invited Elwyn to 
meetings with leading academics. Elwyn later convened similar 
meetings at UC Berkeley which led to a commission of relevant 
scholarly societies addressing these concerns.

Throughout his career Elwyn continuously made significant con-
tributions to research and teaching, developed practical applica-
tions as a successful entrepreneur, supported education in math-
ematics, and held leadership roles in academic societies. He served 
on over 45 boards of various kinds. In 1973, he became one of a 
dozen faculty co-founders of the Computer Science Division with-
in UC Berkeley’s Department of Electrical Engineering and Com-
puter Science. His many students have in turn made significant 
impacts in electrical engineering and computer science. For exam-
ple, one of his students, Ken Thompson, became the co-inventor 
of the Unix operating system. Many others have become leaders 

in academia and industry. Elwyn served in numerous leadership 
roles at the University of California, IEEE, the National Academy 
of Sciences, the National Academy of Engineering, non-profit edu-
cational organizations, and MSRI.

Elwyn and I first met at MIT sixty years ago. Over the past few 
years we would meet for long lunches once every couple of 
months, sharing stories and often discussing world events and so-
cial issues. Elwyn cared a lot about education and worried about 
inequalities in our society. It has been a privilege to have had El-
wyn as a colleague and friend.

Additional Information about the Life and Legacy 
of Elwyn Berlekamp

• Elwyn Berlekamp website: https://www.ejbf.org/elwyn
-home (This website also contains his lectures including at 
UCB in 2006, Kailath Lecture at Stanford, and Viterbi lecture 
at USC.)

• Computer History Museum: https://www.computerhistory.
org/chess/orl-433444ecc827d/

• MSRI: http://www.msri.org/web/msri/communications/
elwyn-berlekamp

• Wikipedia page: https://en.wikipedia.org/wiki/Elwyn_
Berlekamp

• Berkeley News: Elwyn Berlekamp, game theorist and cod-
ing pioneer, dies at 78

• Wall Street Journal: Math Wizard Elwyn Berlekamp Helped 
Bring Sharp Images From Outer Space (Paywall; download 
PDF version)

• Numberphile: How to Always Win at Dots and Boxes/Dots 
and Boxes (Extra Footage)

• Numberphile: A final game with Elwyn Berlekamp (Amazons)/
Amazons (Extra Footage)

• American Go Association: Elwyn Berlekamp’s Coupon 
Go (filmed at UC Berkeley in 2006)
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daily basis in areas which often require different kind of exper-
tise than engineers usually posses.

Some other Society’s members were also extremely busy in the 
months leading to the ISIT in Paris. We started this year with re-
markably many new members at the key positions in the Society’s 
governance, and that meant lot of learning, consulting with each 
other and with our predecessors, exchanging long and frequent 
e-mails. We got three new officers (ordinarily, there is only one), 
Frank Kschischang, Aylin Yener, and Wei Yu. We got a new Soci-
ety’s secretary, Lara Dolecek, a new conference committee chair, 
Vijay Kumar, a new online committee chair, Brian Kurkoski, a new 
external nominations committee chair, Dan Costello, a new thesis 
award committee chair, Christina Fragouli, a new young scholar 
award committee chair, Tom Fuja, a new fellows committee chair, 
Antonia Tulino, and new WITHITS chairs, Gireeja Ranade and 
Christina Lee Yu. Even people in their second year of service, like 
the Society’s treasurer Aaron Wagner and the Newsletter editor, 
Salim El Rouyaheb, had entirely new types of challenges to deal 
with. I would like to wholeheartedly thank them all for stepping 
up to their respective roles when the Society needed them the most.

Most of these new appointments were made by the diligent 2018 
Nominations and Appointments Committee, chaired by Alon 
Oriltsky. Thank you Alon and the committee. As if he did not de-
serve some time off after his long service to the Society, Alon con-
tinues to lead the activities related to the Shannon documentary 
The Bit Player. The movie premiered at the World Science Festival 
in New York City in May, and had four other screenings: at IBM, 
Yorktown Heights, in June, at the World Congress of Science Jour-
nalists in Lausanne and CineGlobe Festival at CERN, Geneva, in 
July, and at the Computer History Museum in Cupertino in Au-
gust. All shows were extremely successful. You will hear about 
that in the next issue. For now, I recommend reading the recent 
review in Physics Today [2]. Yes, the physicists, again.

By the time this issue of the IT Newsletter reaches you, the IEEE 
annual elections will be in full swing. Please vote. Our Society 
is managed by the Board of Governors, and each year, one-third 
of the BoG gets replaced by new elected members. Please vote, 
and then, regardless of whether you like the outcome or not, put 
a serious effort to make our Society better for you and your col-
leagues, because leading our technical field and our technical 
community is too important to be left to the elected few. Is that 
too much to ask?

Each time there is an election of any kind, I think about the first 
US general elections I voted in. The year was 2004, and as usual, 
many were happy with the outcome and many got disappointed. 
The late Toni Morrison (the recipient of the 1993 Nobel Prize for 
literature) was among the latter. She was depressed, but eventu-
ally, inspired by a conversation with a friend, she wrote the fol-
lowing [3]: This is precisely the time when artists go to work. There is 
no time for despair, no place for self-pity, no need for silence, no room for 
fear. We speak, we write, we do language. That is how civilizations heal. I 
know the world is bruised and bleeding, and though it is important not to 
ignore its pain, it is also critical to refuse to succumb to its malevolence. 
Like failure, chaos contains information that can lead to knowledge – 
even wisdom. Like art.
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Deep Learning: Mathematical Foundations  
and Applications to Information Science 

 
IEEE Journal on Selected Areas in Information Theory  
https://www.itsoc.org/publications/journal-on-selected-areas-in-information-theory-jsait 
 
Call for Papers 
 
This special issue will focus on the mathematical foundations of deep learning as well as applications 
across information science. Prospective authors are invited to submit original manuscripts on topics 
within this broad scope including, but not limited to: 
 
•    Information theoretic methods for deep learning 
•    Robustness for training and inference 
•    Understanding generalization in over-parametrized models 
•    Efficient and compressed model representations 
•    Deep generative models and inverse problems 
•    Large-scale efficient training of large models 
•    Non-convex optimization in deep learning 
•    Deep learning for source and channel coding. 
 
Guest Editors 
Lead Guest Editor: Alex Dimakis: dimakis@austin.utexas.edu 
Richard Baraniuk: richb@rice.edu 
Sewoong Oh: sewoong@cs.washington.edu 
Nati Srebro: nati@ttic.edu 
Rebecca Willett: willett@uchicago.edu 
 
Submission Guidelines 
Prospective authors must follow the IEEE Journal on Selected Areas in Information Theory 
guidelines regarding the manuscript and its format. For details and templates, please refer to the 
IEEE Journal on Selected Areas in Information Theory Author Information webpage. All papers 
should be submitted through Scholar One according to the following schedule: 
 
Important Dates 
Manuscript Due: 1 October 2019 
Acceptance Notification: 15 March 2020 
Final to Publisher: 5 April 2020 
Expected Publication: April/May 2020 



31

September 2019	 IEEE Information Theory Society Newsletter

 

 
Call for Papers  

54th Annual Conference on  
Information Sciences and Systems 

March 18, 19, & 20, 2020 
Princeton University - Department of Electrical Engineering 

    and Technical Co-sponsorship with the 
   IEEE Information Theory Society 

 

Authors are invited to submit previously unpublished papers describing theoretical advances, 
applications, and ideas in the fields of information sciences and systems including: 
 

 ·Information Theory  ·Coding Theory  ·Image Processing 
 ·Communications  ·Signal Processing  ·Machine Learning 

·Big Data Analytics  ·Reinforcement Learning ·Optimization 
  ·Statistical Inference   ·Security and Privacy ·Energy Systems    
  ·Networking   ·Systems and Control ·Biological Systems    
 
Electronic submissions of up to 6 pages (in Adobe PDF format) including 3-4 keywords must be 
submitted by December 9, 2019.  Submissions should be of sufficient detail and length to permit careful 
reviewing.  Authors will be notified of acceptance no later than January 16, 2020.  Final manuscripts of 
accepted papers are to be submitted in PDF format no later than January 30, 2020.  These are firm 
deadlines that will permit the distribution of electronic proceedings at the conference. Accepted papers 
will be allotted 20 minutes for presentation, and will be reproduced in full (up to 6 pages) in the 
conference proceedings. IEEE reserves the right to exclude a paper from post-conference distribution 
(e.g., removal from IEEE Xplore) if the paper is not presented by the author at the conference. 

For more information visit us at: http://ee-ciss.princeton.edu/ 

 

CONFERENCE COORDINATOR  
Lisa Lewis 
Dept. of Electrical Engineering 
Princeton University 
Princeton, NJ 08544 
Phone: (609) 258-6227 
Email:  ciss@princeton.edu 
 

PROGRAM DIRECTORS 
 
H. Vincent Poor 
Yuxin Chen 
Dept. of Electrical Engineering 
Princeton University 
Princeton, NJ 08544 

 

IMPORTANT DATES  
Paper submission deadline: 
December 09, 2019 
 
Notification of acceptance: 
January 16, 2020 
 
Final accepted manuscript due: 
January 30, 2020 
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ISITA2020 
October 24–27, 2020 in Kapolei, Hawai’i, USA 

The International Symposium on Information Theory and Its Applications (ISITA) is a leading 
conference on information theory. Since its inception in 1990, ISITA has been a forum for 
interdisciplinary interaction, gathering leading researchers to discuss topics of common interest    
in the field of information theory.  In 2020, the biennial ISITA will be held October 24–27 at Aulani,       
A Disney Resort & Spa in Kapolei, Hawai'i on the island of Oahu. 

ISITA 2020 creates a setting for international exchange with the aloha spirit, to provide a place for 
individuals, especially students, to know the joy of research, and to share new results in   
information theory and its applications with the world.  

Call for Papers 
Interested authors are invited to submit papers describing novel and previously unpublished    
results on topics in information theory and its applications, including, but not limited to: 

• Boolean Functions and Sequences 
• Coding for Storage 
• Coding Theory 
• Communication Theory 
• Computation and Complexity in Information Theory 
• Cryptography and Information-Theoretic Security 
• Data Privacy and Security 
• Deep Learning in Information Theory 
• Distributed Coding and Computation 
• Estimation and Detection 
• Formalization of Information Theory 
• Group Testing 
• Information Hiding 

Paper Submission 
Authors should submit papers according to the guidelines which will later appear at: 

http://isita.net
This link points to the permanent site http://www.isita.ieice.org/2020/. Accepted papers will  
appear in the symposium proceedings. To be published in IEEE Xplore, an author of an accepted 
paper must register and present the paper. IEEE does not guarantee inclusion in IEEE Xplore. 

  Paper submission deadline April 2020

  Acceptance notification June 2020

Further information will be posted on the symposium web site as it becomes available.

Sponsor 
Research Society of Information Theory and Its Applications, 

Engineering Sciences Society,  IEICE

 • Information Theory for Biology 
 • Information Inequalities 
 • Network Coding and Information Theory 
 • Pattern Recognition and Machine Learning 
 • Quantum Information and Coding Theory 
 • Shannon Theory 
 • Signal Processing 
 • Source Coding and Data Compression 
 • Sparsity and Compressed Sensing 
 • Statistical Inference and Learning 
 • Statistical Physics for Information Theory 
 • Statistics and Information Geometry 
 • Wireless Communications

Photo: Wikimedia Commons/Alakea1100

Technical Co-Sponsor 
IEEE Information Theory Society

Symposium Committee 

General Co-Chairs 
   Ikuo Oka Osaka City Univ.

   Manabu Hagiwara Chiba Univ.

   James B. Nation Univ. of Hawaii

Symposium Advisors 
   Toru Fujiwara Osaka Univ.

   Anders Høst-Madsen Univ. of Hawaii

General Secretaries 
   Shigeaki Kuzuoka Wakayama Univ.

   Hitoshi Tokushige Kumamoto Gakuen Univ.

   Hironori Uchikawa  Kioxia

Finance 
   Ryo Nomura Waseda Univ.

   Justin Kong Univ. of Hawaii

Publicity 
   Brian M. Kurkoski JAIST

   Akiko Manada Shonan Institute of Technology

Publications 
   Yu Morishima Tohoku Gakuin Univ.

Registration 
      Mitsugu Iwamoto

The Univ. of Electro-Communications

Local Arrangement 
      Takayuki Nozaki Yamaguchi Univ.

Shoko Chisaki Tokyo Univ. of Science

Technical Program 
Committee 

TPC Co-Chairs 
   Hiroshi Kamabe Gifu Univ.

   Navin Kashyap Indian Institute of Science 

Secretary  
   Kenji Yasunaga Osaka Univ.   

Draft 2019-09-11

ISITA2020
K a p o l e i ,  O a h u ,  H a w a i ’ i
O c t o b e r  2 4 – 2 7 ,  2 0 2 0
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Call for Papers

2020 International Zurich Seminar on
Information and Communication

February 26 – 28, 2020

The 2020 International Zurich Seminar on Information and Communication will be held
at the Hotel Zürichberg in Zurich, Switzerland, from Wednesday, February 26, through
Friday, February 28, 2020.

High-quality original contributions of both applied and theoretical nature in the following
areas are solicited:

Wireless Communication Optical Communication

Information Theory Fundamental Hardware Issues

Coding Theory and its Applications Information Theory and Statistics

Detection and Estimation Network Information Theory and Coding

Data Storage Cryptography and Data Security

Invited speakers will account for roughly half of the talks. In order to afford the oppor-
tunity to learn from and communicate with leading experts in areas beyond one’s own
specialty, no parallel sessions are anticipated. All papers should be presented with a wide
audience in mind.

Papers will be reviewed on the basis of a manuscript (A4, not exceeding 5 pages) of
sufficient detail to permit reasonable evaluation. Authors of accepted papers will be asked
to produce a manuscript not exceeding 5 pages in A4 double-column format that will be
published in the proceedings. Authors will be allowed twenty minutes for presentation.

The deadline for submission is September 15, 2019. Additional information will be
posted at

http://www.izs.ethz.ch/

We look forward to seeing you at IZS.

Amos Lapidoth and Stefan M. Moser, Co-Chairs
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Conference on Information-Theoretic

Cryptography (ITC) 2020: Call for Papers

June 17–19, 2020 in Boston, MA USA

The first Information-Theoretic Cryptography (ITC) conference will take place on June 17-19, 
2020 in Boston, MA USA. ITC is a new conference dedicated to information-theoretic aspects 
of cryptography, broadly defined. See the website at https://itcrypto.github.io/ for more 
information.

Areas of interest include, but are not restricted to:

•  Randomness extraction and privacy amplification
•  Secret sharing

•  Secure multi-party computation

•  Information theoretic proof systems

•  Differential privacy

•  Quantum information processing

•  Oblivious data structures

•  Idealized models (e.g. ,ideal channels, random oracle, generic group model)

•  Bounded storage models

•  Private information retrieval and locally decodable codes

•  Authentication codes and non-malleable codes

•  Adversarial and noisy channels

•  Information-theoretic reductions

•  Information-theoretic foundations of physical-layer security

Papers on all technical aspects of these and related topics are solicited for submission. Papers will 
be peer reviewed and accepted papers will be published in conference proceedings and presented 
at the conference.

The conference will have two tracks: a publication track and a greatest hits track. The 
publication track operates in the usual way, where authors submit their papers and the 
committee selects accepted papers for publication in the proceedings and presentation at the 
conference. The greatest hits track consists of invited talks (not published in the proceedings) 
that highlight the most exciting recent advances in information-theoretic cryptography. 
Such talks can either survey an ITC-related topic that has seen exciting developments in the 
last couple of years or can be devoted to a significant ITC-related result that appeared in a 
paper recently. This will give us the opportunity to hear about the latest big developments in 
information-theoretic cryptography that have appeared in different venues like FOCS/STOC, 
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CRYPTO/EUROCRYPT/TCC, and QIP/ISIT. The selection of speakers will be conducted by 
the program committee and is by invitation only. However, we solicit nominations from 
the  community. If you would like to nominate a recent result for the greatest hits track, 
please send a nomination e-mail to the PC chair at itc2020chair@gmail.com. Self-nominations 
are discouraged.

Important Dates
•  Paper Submission: Dec 16, 2019
•  Greatest Hits Nomination Deadline: Jan 5, 2020.
•  Acceptance Notification: March 5, 2020
•  Conference: June 17-19, 2020

Conference Organization
General Chairs: Yael Tauman Kalai (MSR and MIT) and Adam Smith (BU)

Program Chair: Daniel Wichs (Northeastern and NTT Research)
itc2020chair@gmail.com

Instructions for Authors
The submission should begin with a title, followed by the names, affiliations and contact 
information of all authors, and a short abstract. It should contain a scholarly exposition of 
ideas, techniques, and results, including motivation and a clear comparison with related work. 
There are no other formatting requirements or page limits - it is solely up to the discretion of the 
authors to decide how to best present their work. It is highly recommended that authors write 
a good introduction, which clearly describes the main results of the paper and a high- level 
overview of the technical ideas.

Submissions must not substantially duplicate work that was published elsewhere, or 
work that any of the authors has submitted in parallel to any other journal, conference, or 
workshop that has proceedings. At least one author of each accepted paper is required to 
present the paper at the conference; presentations may be recorded and made available to 
the public online. Authors are strongly encouraged to post full versions of their submissions 
in a freely accessible online repository, such as the Cryptology ePrint archive. We encourage 
the authors to post such a version at the time of submission. At the minimum, we expect 
that authors of accepted papers will post a full version of their papers by the camera-ready 
deadline. Titles and abstracts of accepted papers will be made public by the PC following 
the notification.
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Conference Calendar

36

DATE CONFERENCE LOCATION WEB PAGE DUE DATE

September 
24–27, 2019

57th Annual Allerton Conference on 
Communication, Control, and Computing

Allerton, University 
of Illinois at Urbana- 
Champaign, Illinois, USA

https://allerton.csl.illinois.edu/ Passed

November 9–12, 
2019

60th Annual IEEE Symposium on 
Foundations of Computer Science (FOCS)

Baltimore, Maryland, 
USA

http://focs2019.cs.jhu.edu/ Passed 

November 
11–14, 2019

IEEE Global Conference on Signal and 
Information Processing (GlobalSIP)

Shaw Center, Ottawa, 
Canada

http://2019.ieeeglobalsip.org/ Passed

December 9–13, 
2019

IEEE Global Communications Conference 
(GLOBECOM)

Waikoloa, Hawaii, USA https://globecom2019 
.ieee-globecom.org/

Passed

February 26–28, 
2020

International Zurich Seminar on 
Information and Communication

Zurich, Switzerland https://www.izs.ethz.ch/ September 
15, 2019

March 18–20, 
2020

54th Annual Conference on Information 
Sciences and Systems (CISS)

Princeton, New Jersey, 
USA

https://ee-ciss.princeton.edu/ December 
9, 2019

October 24–27, 
2020

International Symposium on Information 
Theory and its Applications (ISITA)

Kapolei, Hawaii, USA http://isita.net April, 2020

Major COMSOC conferences: http://www.comsoc.org/confs/index.html 

https://globecom2019.ieee-globecom.org



