

Spatially Coupled LDPC Codes – Theory and Applications

Laurent Schmalen

Communications Engineering Lab (CEL)

Overview

- 1 Introduction: Channel Coding and LDPC Codes
- Spatially Coupled LDPC Codes
 - Motivation and Definition
 - Performance of SC-LDPC Codes
 - Practical Implementation of SC-LDPC Codes
 - Improvement of SC-LDPC Codes by Non-Uniform Coupling
- Burst Correction Capabilities of Spatially Coupled LDPC Codes
 - Error Probability after Burst Erasures
 - Application Example
- 4 Conclusions

Chanel Coding

- Channel coding is indispensible in any communication and storage device
- \blacksquare The channel encoder encodes k information bits into n output bits, adding n-k parity bits

Chanel Coding

$$x = (u_1, \dots, u_k)$$
 Channel $x = (x_1, \dots, x_n)$ $n > k$ output bits

- Channel coding is indispensible in any communication and storage device
- \blacksquare The channel encoder encodes k information bits into n output bits, adding n-k parity bits

Channel code

A block code $\mathcal C$ of length n and cardinality $M=2^k$ over a field $\mathbb F$ is a collection of M elements $\boldsymbol x^{[i]}$ from $\mathbb F^n$

$$\mathcal{C}(n, M) := \left\{ \boldsymbol{x}^{[1]}, \boldsymbol{x}^{[2]}, \dots, \boldsymbol{x}^{[M]} \right\}, \boldsymbol{x}^{[m]} \in \mathbb{F}^n, 1 \le m \le M$$

The elements $x^{[i]}$ are called *codewords*. Here we only consider *binary codes*, where $\mathbb{F}=\{0,1\}.$

Linear Block Codes

■ We consider only the sub-class of linear block codes

Linear block code

A linear block code of length n and dimension k is a k-dimensional linear subspace of the vector space \mathbb{F}^n . As a linear subspace, the code can be represented also as the span of k codewords forming a basis. These basis codewords are the rows of a $generator\ matrix\ G\in\mathbb{F}^{k\times n}$. The code is generated by multiplying all possible information vectors by the generator matrix

$$\mathcal{C}(n,k) = \{ \boldsymbol{x}^{[i]} = \boldsymbol{u}^{[i]} \boldsymbol{G} : \forall \boldsymbol{u}^{[i]} \in \mathbb{F}^k \}$$

Alternative, the linear code can be seen as the *null space* of a **parity-check matrix** \boldsymbol{H} with $\boldsymbol{G}\boldsymbol{H}^T=0$

$$\mathcal{C}(n,k) = \{ \boldsymbol{x} \in \mathbb{F}^n : \boldsymbol{H}\boldsymbol{x}^T = \boldsymbol{0} \}$$

Linear Block Code – Example

Consider the following parity-check matrix

$$\boldsymbol{H} = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \end{pmatrix}$$

■ For example: $\boldsymbol{x} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \end{pmatrix}$ is a codeword

Low-Density Parity-Check (LDPC) Codes

Definition: Low-Density Parity-Check (LDPC) Codes

A low-density parity-check (LDPC) code is a *linear block code* with a *sparse* parity-check matrix H, i.e., the number of "1"s in H is very small, compared to the number of "0"s

We consider the sub-class of regular LDPC codes

Low-Density Parity-Check (LDPC) Codes

Definition: Low-Density Parity-Check (LDPC) Codes

A low-density parity-check (LDPC) code is a *linear block code* with a *sparse* parity-check matrix H, i.e., the number of "1"s in H is very small, compared to the number of "0"s

We consider the sub-class of regular LDPC codes

Definition: Regular $[d_y, d_c]$ **LDPC Codes**

A regular $[d_v, d_c]$ LDPC code is an LDPC code where each **column of H** contains exactly d_v "1"s and each row of H contains exactly d_c "1"s. We assume $d_{\rm v} > 2$ and $d_{\rm c} > 2$.

• As the number of "1"s in H is small, the memory complexity is only O(n) as the number of "1"s per column is constant (and independent of n)

Example: [3, 6] LDPC Code

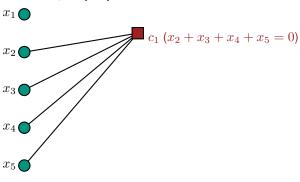
■ Rate $r_d = \frac{1}{2}$, n = 48, m = 24, $d_v = 3$, $d_c = 6$

Density of parity-check matrix: 12.5%

- **Example:** [2,4] LDPC code with n=6
- $x_1 \bigcirc$
- $x_2 \bigcirc$
- x_3
- $x_4 \bigcirc$
- $x_5 \bigcirc$
- $x_6 \bigcirc$

$$\boldsymbol{H} = \left(\begin{array}{ccccc} 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \end{array}\right)$$

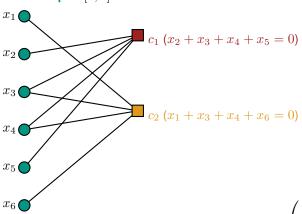
Example: [2,4] LDPC code with n=6



$$x_6$$

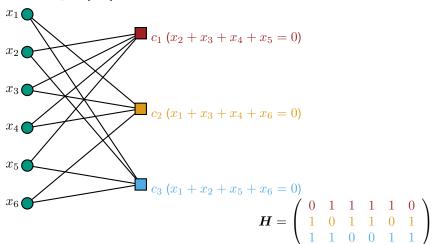
$$\boldsymbol{H} = \left(\begin{array}{cccccc} 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \end{array}\right)$$

Example: [2,4] LDPC code with n=6



$$\boldsymbol{H} = \left(\begin{array}{ccccc} 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \end{array}\right)$$

Example: [2,4] LDPC code with n=6



Example: [3, 6] Regular Code

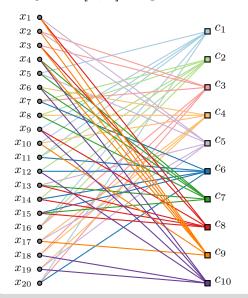
Consider the following parity-check matrix of the $d_{\rm v}=3,\,d_{\rm c}=6$ code

Example: [3, 6] Regular Code (2)

Consider the following parity-check matrix of the $d_v=3, d_c=6$ code

For the sake of readability, we only display "1"s and do not show the "0"s

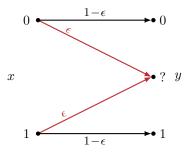
Graph of [3, 6] Regular Code



- Every constraint c₁,..., c₁₀
 corresponds to a row of the parity-check matrix of previous slide
- Every code bit (variable) has $d_{\rm v}=3$ outgoing edges
- Every constraint node c_i has $d_c = 6$ connected edges

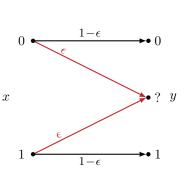
Binary Erasure Channel (BEC)

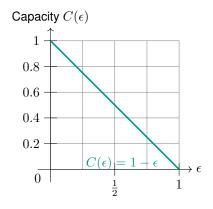
- Simple channel model that enables easy analysis but is close to practice
- Channel with 3 output symbols, where "?" denotes an erasure, i.e., no information about transmitted symbol
- BEC can be used to model, e.g., packet losses or high SNR channels



Binary Erasure Channel (BEC)

- Simple channel model that enables easy analysis but is close to practice
- Channel with 3 output symbols, where "?" denotes an erasure, i.e., no information about transmitted symbol
- BEC can be used to model, e.g., packet losses or high SNR channels





Density Evolution – Variable Nodes

lacktriangle What is the necessary ϵ for iterative decoding to be successful?

Density Evolution – Variable Nodes

- lacktriangle What is the necessary ϵ for iterative decoding to be successful?
- lacktriangle Denote the channel erasure probability by ϵ
- Iterative message passing decoder exchanging beliefs or messages along the edges of the Tanner graph
- Analyse decoding behavior of the code using a simple update equation

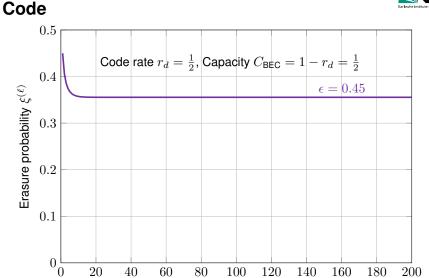
Update equation for regular $[d_{\mathsf{v}},d_{\mathsf{c}}]$ LDPC codes on the BEC

The average message erasure probability ξ_ℓ after ℓ decoding iterations is given by

$$\xi^{(\ell)} = \epsilon \left(1 - (1 - \xi^{(\ell-1)})^{d_{\mathsf{c}} - 1} \right)^{d_{\mathsf{v}} - 1}$$

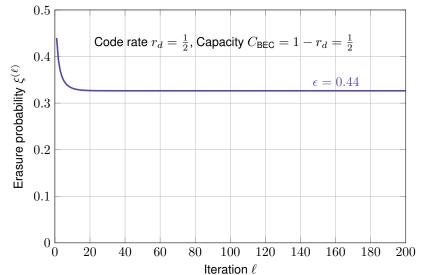
with $\xi_0 = 1$.

- We can decode successfully (if $n \to \infty$) if $\xi^{(\ell)} \to 0$
- The threshold ϵ^{\star} is the largest ϵ for which $\xi^{(\ell)} \to 0$

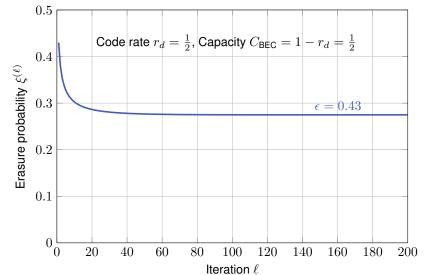


Iteration ℓ

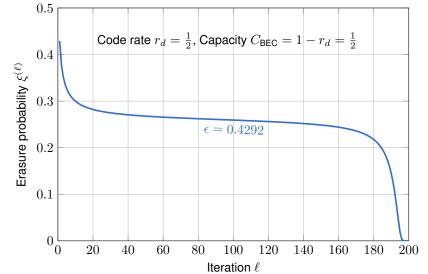
Code

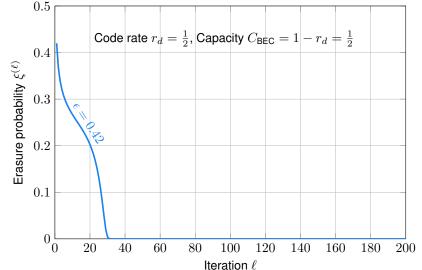


Code

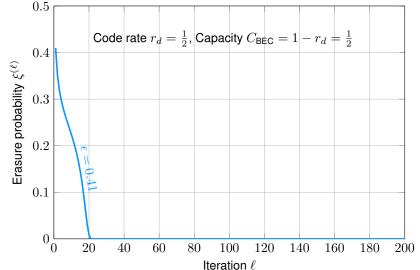


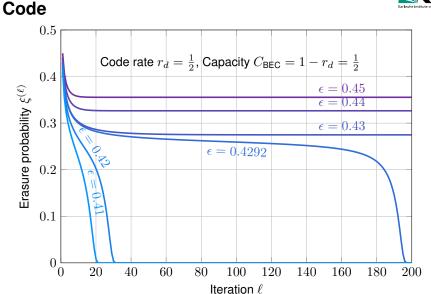
Code





Code 0.

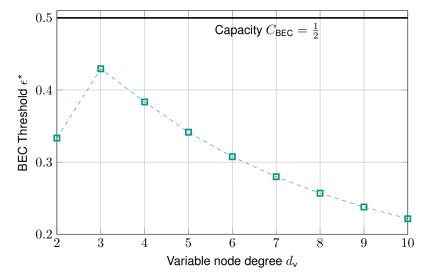




Spatially Coupled LDPC Codes

Laurent Schmalen

Thresholds of Rate- $\frac{1}{2}$ $[d_{\rm v},d_{\rm c}=2d_{\rm v}]$ Codes



Overview

- 1 Introduction: Channel Coding and LDPC Codes
- Spatially Coupled LDPC Codes
 - Motivation and Definition
 - Performance of SC-LDPC Codes
 - Practical Implementation of SC-LDPC Codes
 - Improvement of SC-LDPC Codes by Non-Uniform Coupling
- Burst Correction Capabilities of Spatially Coupled LDPC Codes
 - Error Probability after Burst Erasures
 - Application Example
- 4 Conclusions

Overview

- 1 Introduction: Channel Coding and LDPC Codes
- Spatially Coupled LDPC Codes
 - Motivation and Definition
 - Performance of SC-LDPC Codes
 - Practical Implementation of SC-LDPC Codes
 - Improvement of SC-LDPC Codes by Non-Uniform Coupling
- Burst Correction Capabilities of Spatially Coupled LDPC Codes
 - Error Probability after Burst Erasures
 - Application Example
- 4 Conclusions

Regular LDPC Codes

- Gap to capacity with regular LDPC codes
- Remedy A: Irregular LDPC Codes [RSU01]
 - Can close the gap to capacity
 - Drawback: Increased error floor, not suitable for high-reliability applications
- Remedy B: Protograph LDPC Codes [Tho03]
 - Generalizes the construction of LDPC Codes
 - Optimization of very good codes with low error floors still difficult

[RSU01] T. Richardson, A. Shokrollahi, R. Urbanke, "Design of capacity-approaching irregular low-density parity-check codes." *IEEE Trans. Information Theoriv.* 2001

[Tho03] J. Thorpe, "Low-density parity-check (LDPC) codes constructed from protographs," JPL IPN progress report 42.154, 2003

Regular LDPC Codes

- Gap to capacity with regular LDPC codes
- Remedy A: Irregular LDPC Codes [RSU01]
 - Can close the gap to capacity
 - Drawback: Increased error floor, not suitable for high-reliability applications
- Remedy B: Protograph LDPC Codes [Tho03]
 - Generalizes the construction of LDPC Codes
 - Optimization of very good codes with low error floors still difficult
- New approach needed that extends protograph LDPC codes
- Spatially coupled LDPC codes
- [RSU01] T. Richardson, A. Shokrollahi, R. Urbanke, "Design of capacity-approaching irregular low-density parity-check codes." IEEE Trans. Information Theoriv. 2001
- [Tho03] J. Thorpe, "Low-density parity-check (LDPC) codes constructed from protographs," JPL IPN progress report 42.154, 2003

Spatially Coupled LDPC Codes

- Block codes:
 - lacktriangle encode a group of k input bits $oldsymbol{u}$ into a codeword $oldsymbol{x}$
 - lacktriangle transmit over channel and receive y
 - lacksquare decode y and proceed to next block
- Block processing independent of previous and next block

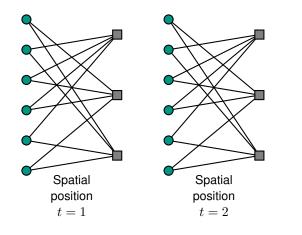
Spatially Coupled LDPC Codes

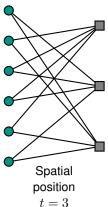
- Block codes:
 - lacktriangle encode a group of k input bits $oldsymbol{u}$ into a codeword $oldsymbol{x}$
 - lacktriangle transmit over channel and receive y
 - decode y and proceed to next block
- Block processing independent of previous and next block
- Spatial coupling: introduce dependencies between the neighboring blocks so that they can help each other during decoding.

Spatially Coupled LDPC Codes

- Block codes:
 - lacktriangle encode a group of k input bits $oldsymbol{u}$ into a codeword $oldsymbol{x}$
 - lacktriangle transmit over channel and receive y
 - decode y and proceed to next block
- Block processing independent of previous and next block
- Spatial coupling: introduce dependencies between the neighboring blocks so that they can help each other during decoding.
- We introduce a "spatial" dimension t to describe blocks. It is called "spatial" dimension as the temporal dimension is reserved for the bits inside a codeword.
- Let w denote the coupling width.

Example: L=3 Codes Along Spatial Dimension





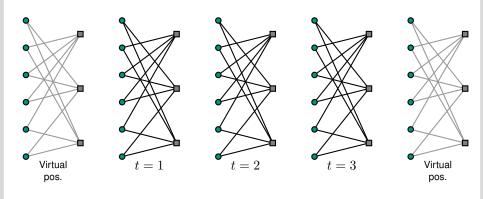
lacktriangle No coupling, independent codes (w=1)

Spatial Coupling of LDPC Codes

Spatial Coupling

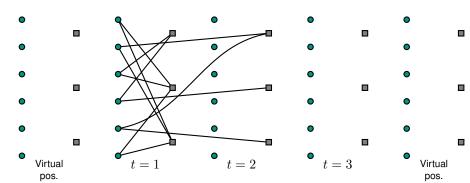
- Consider a spatial chain of L codes (t = 1, ... L).
- Consider each edge of the Tanner graph at spatial position t and connect it randomly to a check node of spatial positions $t, t+1, \ldots, t+w-1$ with probability 1/w such that the *local degree distributions* are preserved
- At each boundary insert w-1 *virtual* spatial positions at $-w+2,\ldots,0$ (left boundary) and $L+1,\ldots,L+w-1$ (right boundary) to fulfill the degree distributions at the boundaries.
- The code bits of these virtual positions are fixed to "0" and need not be transmitted. As the code bits are "0", the edges can be removed in a later step

Spatial Coupling of L=3 Codes (w=2)



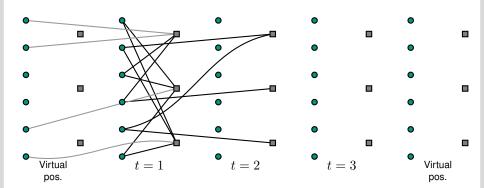
- Starting position, no coupling yet
- Two $(2 \cdot (w-1))$ virtual positions at boundaries
- lacktriangle Next remove all edges and start coupling for t=1

Spatial Coupling of L=3 Codes (w=2) (2)



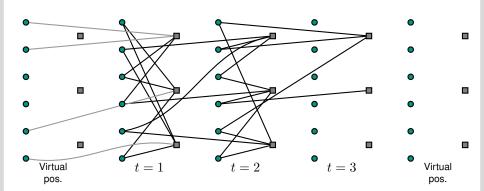
lacktriangleright As check nodes in t=1 cannot achieve their degree distribution anymore from variable nodes at t=1, we need to fill them using edges from the virtual position

Spatial Coupling of L=3 Codes (w=2) (3)



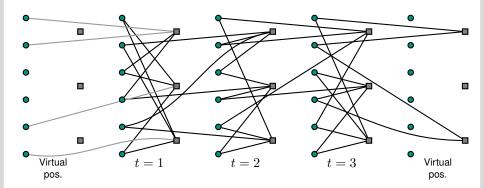
 $\blacksquare \ \ \text{We can now proceed to couple position} \ t=2.$

Spatial Coupling of L=3 Codes (w=2) (4)



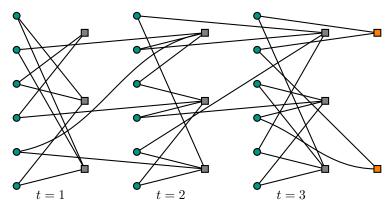
lacksquare Finally, we couple the edges of position t=3.

Spatial Coupling of L=3 Codes (w=2) (5)



We next remove the unconnected nodes and set the variable nodes at the virtual positions to be "0", so we can remove these edges

Spatial Coupling of L=3 Codes (w=2) (6)



- We have created a new code of n' = Ln = 21 code bits
- Due to coupling we have created two extra check nodes
- These extra check nodes decrease the rate of the code

The Regular SC-LDPC $[d_{\mathsf{v}},d_{\mathsf{c}},w,L]$ Code Ensemble

- lacktriangle For simplicity, we consider again regular $[d_{
 m v},d_{
 m c}]$ LDPC codes and couple them
- We denote the spatially coupled code by the 4-tuple $[d_v,d_c,w,L]$ where
 - $lacktriangleq d_{
 m v}$ denotes the variable node degree
 - $lack d_{
 m c}$ denotes the check node degree
 - w denotes the coupling width
 - L denotes the *replication factor*, i.e., the number of spatial positions

The Regular SC-LDPC $[d_{\mathsf{v}},d_{\mathsf{c}},w,L]$ Code Ensemble

- \blacksquare For simplicity, we consider again regular $[d_{\tt v},d_{\tt c}]$ LDPC codes and couple them
- lacktriangle We denote the spatially coupled code by the 4-tuple $[d_{
 m v},d_{
 m c},w,L]$ where
 - $lacktriangledown d_{
 m v}$ denotes the variable node degree
 - d_c denotes the check node degree
 - w denotes the coupling width
 - L denotes the *replication factor*, i.e., the number of spatial positions
- \blacksquare Note that the check nodes have only regular degree $d_{\rm c}$ at spatial positions w,\dots,L
 - lacktriangledown check nodes at positions $1,\ldots,w-1$ have *lower degree* $\leq d_{
 m c}$
 - \blacksquare extra check nodes due to right virtual positions also have $\textit{lower degree} \leq d_{\rm c}$
- The extra check nodes induce a rate loss

Rate of Regular $[d_v, d_c, w, L]$ Code Ensemble

Theorem (Rate of regular $[d_v, d_c, w, L]$ SC-LDPC codes)

Consider the regular $[d_v, d_c, w, L]$ SC-LDPC code ensemble and assume w < L. The design rate of this code ensemble is given by

$$r_{d,SC} = 1 - \frac{d_{v}}{d_{c}} - \frac{d_{v}}{d_{c}} \frac{w + 1 - 2\sum_{i=0}^{w} \left(\frac{i}{w}\right)^{d_{c}}}{L}$$

$$= r_{d} - \frac{d_{v}}{d_{c}} \frac{w + 1 - 2\sum_{i=0}^{w} \left(\frac{i}{w}\right)^{d_{c}}}{L}$$

where $r_d:=1-rac{d_{
m v}}{d_{
m c}}$ is the design rate of the regular LDPC code ensemble.

Proof:

• We obtain the result by counting the number of variable nodes V and the average number of check nodes C. The rate is obtained as $r=1-\frac{C}{V}$

[KRU11] S. Kudekar, T. Richardson and R. Urbanke, "Threshold Saturation via Spatial Coupling: Why Convolutional LDPC Ensembles Perform So Well over the BEC," IEEE Trans. Inform. Theory, vol. 57, no. 2, Feb. 2011

Overview

- 1 Introduction: Channel Coding and LDPC Codes
- Spatially Coupled LDPC Codes
 - Motivation and Definition
 - Performance of SC-LDPC Codes
 - Practical Implementation of SC-LDPC Codes
 - Improvement of SC-LDPC Codes by Non-Uniform Coupling
- Burst Correction Capabilities of Spatially Coupled LDPC Codes
 - Error Probability after Burst Erasures
 - Application Example
- 4 Conclusions

Density Evolution Analysis of $[d_v, d_c, w, L]$ SC-LDPC Codes

- We can track the asymptotic behavior using a similar technique as for LDPC codes
- For simplicity, we restrict ourselves to the BEC case
- Contrary to LDPC codes, we need to track L distinct erasure probabilities $\xi_t^{(\ell)}, \, t \in \{1, \dots, L\}$, as each spatial position must be treated differently
- We need to take care of the boundary conditions
- As the code bits at virtual positions are fixed to be "0" and not transmitted, we can fix

$$\xi_t^{(\ell)} = 0 \quad \forall t \in \{-w+2, -w+3, \dots, -1, 0, L+1, L+2, \dots, L+w-1\}$$

BEC Density Evolution of $[d_v, d_c, w, L]$ SC-LDPC Codes

BEC Density Evolution of $[d_v, d_c, w, L]$ SC-LDPC Codes

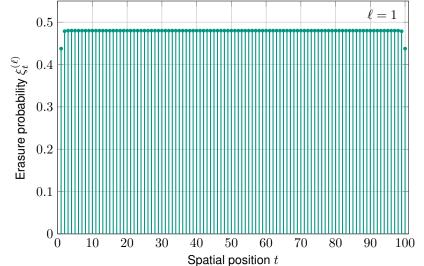
Initialize

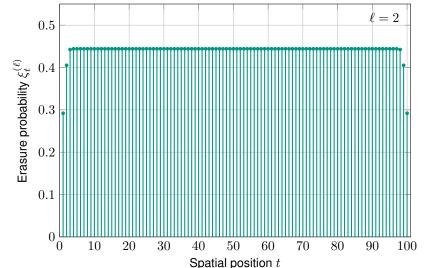
$$\xi_t^{(0)} = \left\{ \begin{array}{ll} 1 & \text{if } t \in \{1, 2, \dots, L\} \\ 0 & \text{otherwise} \end{array} \right.$$

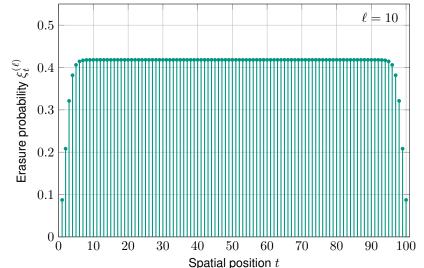
Update

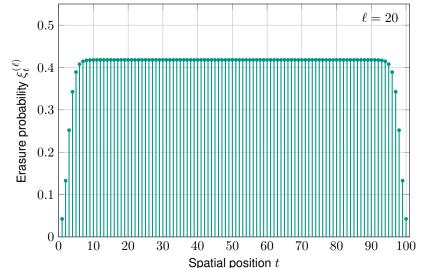
$$\xi_t^{(\ell)} = \epsilon \left(1 - \frac{1}{w} \sum_{i=0}^{w-1} \left(1 - \frac{1}{w} \sum_{j=0}^{w-1} \xi_{t+i-j}^{(\ell-1)} \right)^{d_{\mathfrak{c}}-1} \right)^{d_{\mathfrak{c}}-1} \quad \forall t \in \{1, \dots, L\}$$

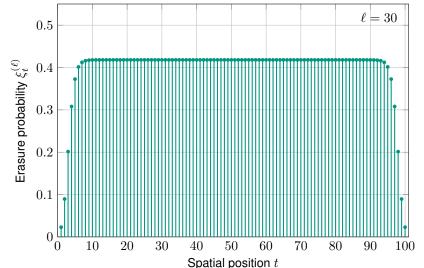
- $oxed{3}$ If all $\xi_t^{(\ell)}=0,\, \forall t,\, {\rm declare}\,\, {\it success}\, {\rm and}\,\, {\rm abort}\,\,$
- 4 If all $\xi_t^{(\ell)}=\xi_t^{(\ell-1)}>0$, $\forall t\in\{1,\ldots,L\}$, we have reached a fixed point. Declare *failure* and abort
- Otherwise, go to step 2)

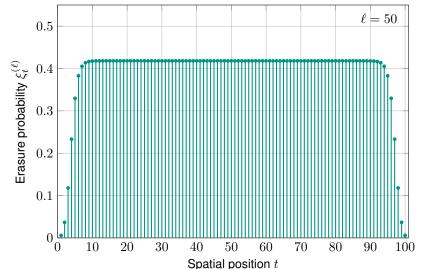


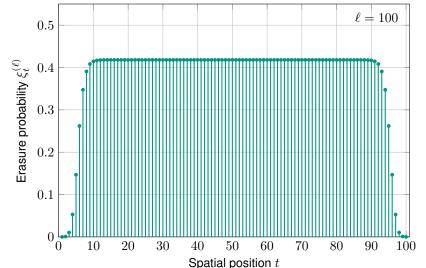


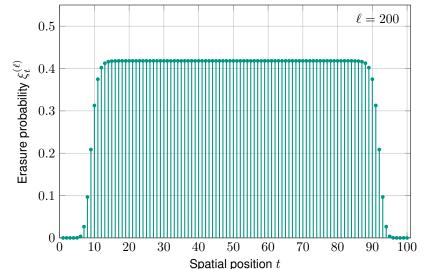


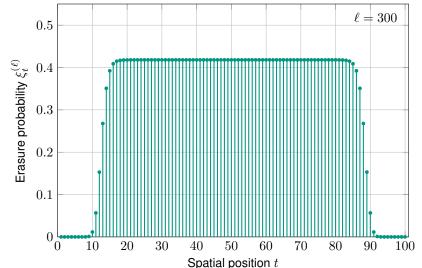


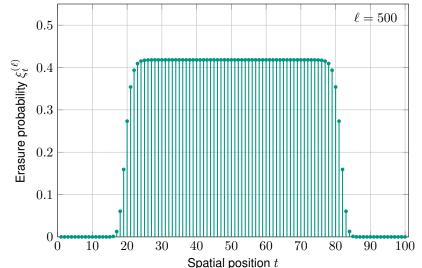


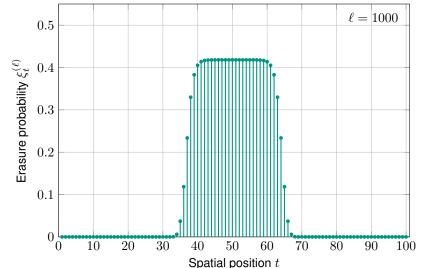


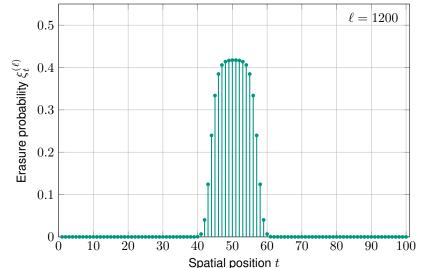


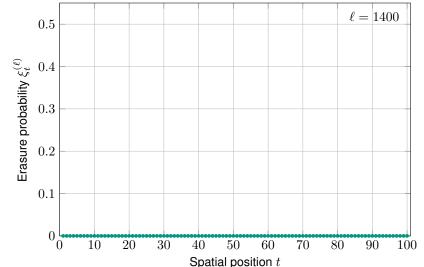


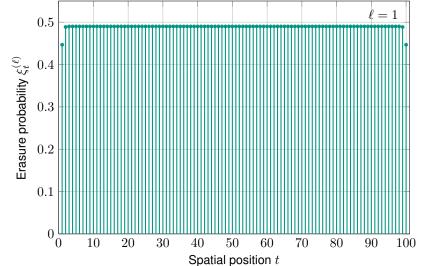


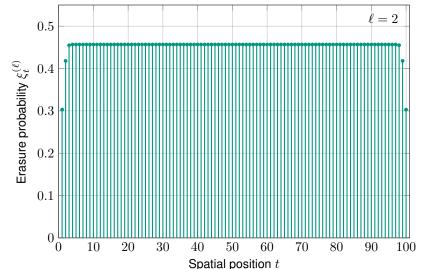


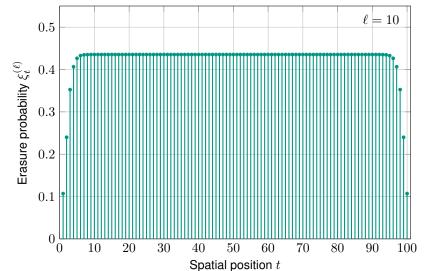


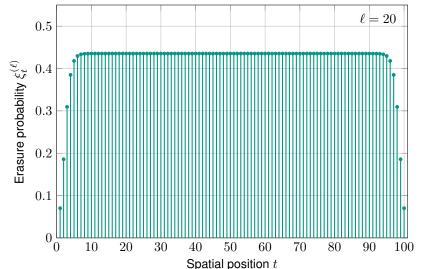


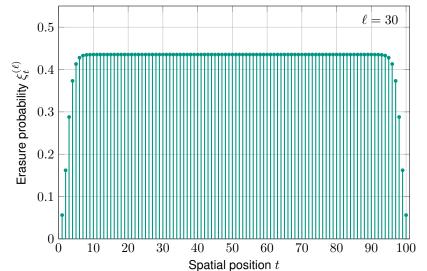


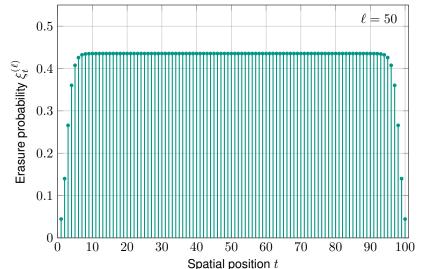


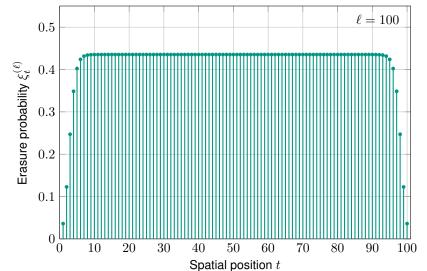


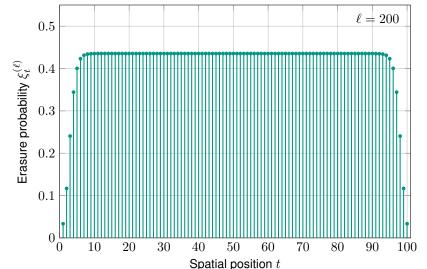




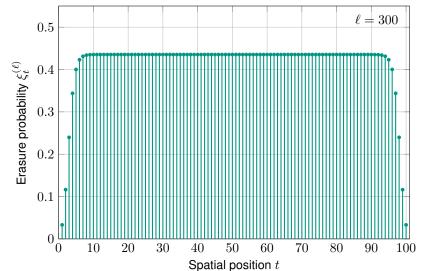


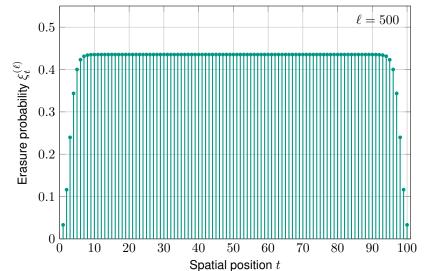






Laurent Schmalen





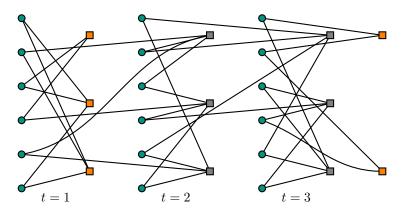
Threshold of SC-LDPC Codes

 \blacksquare Similarly to LDPC codes, we define the decoding threshold $\epsilon_{\mathrm{SC}}^{\star}$ as

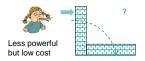
$$\begin{split} \epsilon_{\mathrm{SC}}^{\star} &= \sup \left\{ \epsilon \in [0,1] : \xi_t^{(\ell)} \xrightarrow{\ell \to \infty} 0, \forall t \in \{1,\dots,L\}, \\ \xi_t^{(0)} &= 1 \ \forall t \in \{1,\dots,L\}, \mathrm{and} \ \xi_t^{(0)} = 0 \ \forall t \not \in \{1,\dots,L\} \right\} \end{split}$$

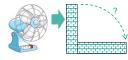
- \blacksquare Recall that the threshold of the [3,6] regular LDPC code ensemble was 0.4292
- Spatial coupling dramatically improves the threshold
- The key are slightly different check node degrees at the boundaries
- Nucleation effect, also observed in physics (e.g., supercooled water)
- Video ...

Boundary Effects of Spatial Coupling: Example



- Check nodes at boundaries have lower degrees then other check nodes
- Lower degree check nodes decrease the possibility of an erasure
- Better protection of bits at boundaries





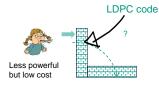
more powerful but higher cost

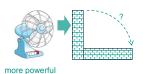
Wall width	1. 1. 1. 1. 1. 1. 1.			
	②	8	8	
	Ø	②	8	

1

A Toy Example

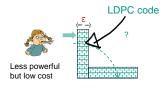
but higher cost

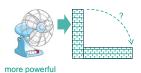




Wall width				
	②	8	8	
	Ø	②	8	

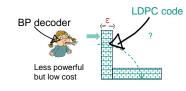
A Toy Example

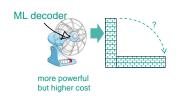




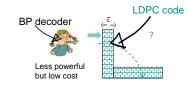
Wall width				
	②	8	8	
	O	Ø	8	

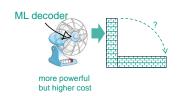
but higher cost

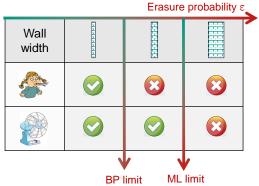


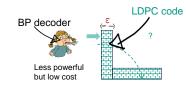


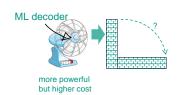
Wall width				
	②	8	8	
	Ø	②	8	

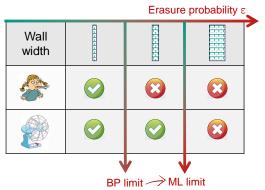






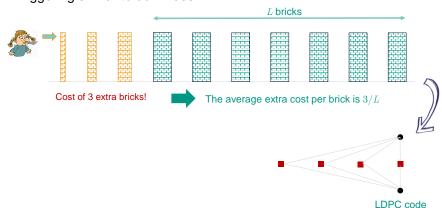


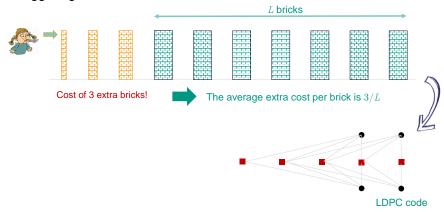


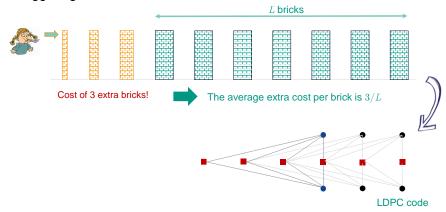


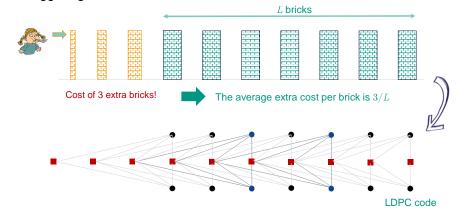
Triggering similar to dominoes

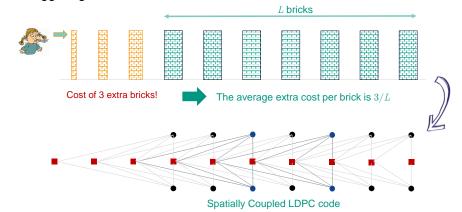
Cost of 3 extra bricks!

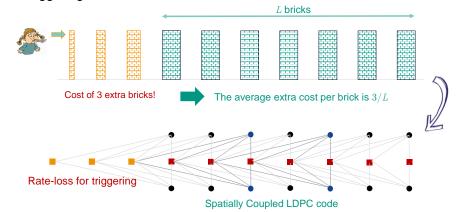


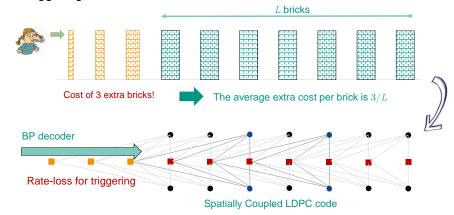












Spatial Coupling Improves the Threshold

By running density evolution, we can compute the thresholds

d_{v}	d_{c}	w	L	$r_{d, SC}$	r_d	$\epsilon_{ t SC}^{\star}$	ϵ^{\star}
3	6	2	100	0.49516	0.5	0.48837	0.42944
3	6	3	100	0.49089	0.5	0.48833	0.42944
4	. 8	2	100	0.49504	0.5	0.49446	0.38344
4	. 8	3	100	0.49039	0.5	0.49788	0.38344
5	10	2	100	0.49501	0.5	0.48268	0.34154
5	10	3	100	0.49017	0.5	0.49895	0.34154
5	10	4	100	0.48557	0.5	0.49971	0.34154

- lacktriangle Thresholds of SC-LDPC codes are very close to capacity limit $1-r_{d,\mathrm{SC}}$
- $\,\blacksquare\,$ Note that $r_{d,\mathrm{SC}}$ can be made arbitrarily close to r_d by increasing L
- \blacksquare Note that ϵ^{\star} decreases with increasing $d_{\rm v}$ while $\epsilon_{\rm SC}^{\star}$ increases!

Threshold Saturation of Spatially Coupled LDPC Codes

It has been recently shown [KRU11]

$$\begin{split} &\lim_{w \to \infty} \lim_{L \to \infty} r_{d, \mathrm{SC}} = 1 - \frac{d_{\mathrm{v}}}{d_{\mathrm{c}}} \\ &\lim_{w \to \infty} \lim_{L \to \infty} \epsilon_{\mathrm{SC}}^{\star} = \lim_{w \to \infty} \lim_{L \to \infty} \epsilon_{\mathrm{SC}}^{\mathrm{ML}} = \epsilon^{\mathrm{ML}} \end{split}$$

- This means that in the limit of L and w (in that order!) the threshold saturates to the ML performance of the spatially coupled LDPC code
- lacktriangle The ML performance of the spatially coupled code equals (in the limit of L and w) the ML performance of the uncoupled LDPC code!

Threshold Saturation of Spatially Coupled LDPC Codes

It has been recently shown [KRU11]

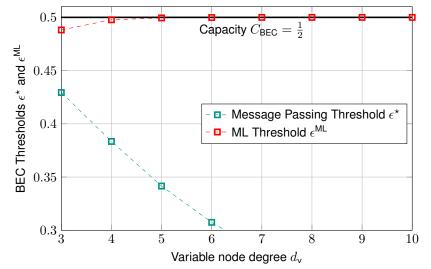
$$\begin{split} &\lim_{w \to \infty} \lim_{L \to \infty} r_{d, \mathrm{SC}} = 1 - \frac{d_{\mathrm{v}}}{d_{\mathrm{c}}} \\ &\lim_{w \to \infty} \lim_{L \to \infty} \epsilon_{\mathrm{SC}}^{\star} = \lim_{w \to \infty} \lim_{L \to \infty} \epsilon_{\mathrm{SC}}^{\mathrm{ML}} = \epsilon^{\mathrm{ML}} \end{split}$$

- lacktriangle This means that in the limit of L and w (in that order!) the threshold saturates to the ML performance of the spatially coupled LDPC code
- \blacksquare The ML performance of the spatially coupled code equals (in the limit of L and w) the ML performance of the uncoupled LDPC code!
- This threshold saturation allows us to
 - Take a block LDPC code which we know has good ML performance
 - $\hfill \blacksquare$ Apply spatial coupling with large enough w and L
 - With simple message passing decoding, ML performance can be approached

[KRU11]

S. Kudekar, T. Richardson and R. Urbanke, "Threshold Saturation via Spatial Coupling: Why Convolutional LDPC Ensembles Perform So Well over the BEC," IEEE Trans. Inform. Theory, vol. 57, no. 2, Feb. 2011

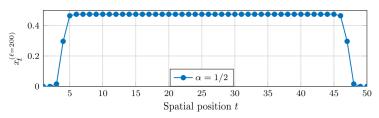
ML Performance of Regular $[d_{\rm v},d_{\rm c}]$ LDPC



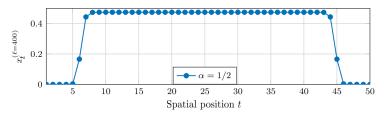
Overview

- 1 Introduction: Channel Coding and LDPC Codes
- Spatially Coupled LDPC Codes
 - Motivation and Definition
 - Performance of SC-LDPC Codes
 - Practical Implementation of SC-LDPC Codes
 - Improvement of SC-LDPC Codes by Non-Uniform Coupling
- Burst Correction Capabilities of Spatially Coupled LDPC Codes
 - Error Probability after Burst Erasures
 - Application Example
- 4 Conclusions

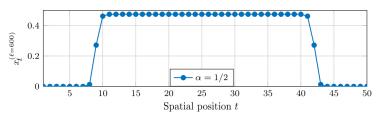
- Spatially coupled LDPC Code $[d_v = 5, d_c = 10, w = 2, L = 50]$
- Performance after decoding iterations



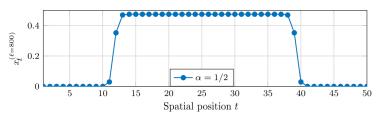
- Spatially coupled LDPC Code $[d_v = 5, d_c = 10, w = 2, L = 50]$
- Performance after decoding iterations



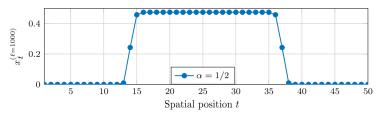
- Spatially coupled LDPC Code $[d_v = 5, d_c = 10, w = 2, L = 50]$
- Performance after decoding iterations



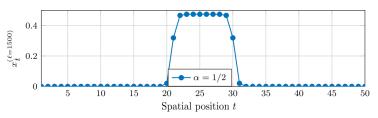
- Spatially coupled LDPC Code $[d_v = 5, d_c = 10, w = 2, L = 50]$
- Performance after decoding iterations



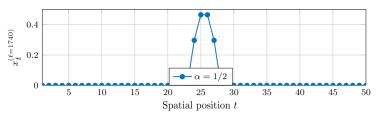
- Spatially coupled LDPC Code $[d_v = 5, d_c = 10, w = 2, L = 50]$
- Performance after decoding iterations



- Spatially coupled LDPC Code $[d_v = 5, d_c = 10, w = 2, L = 50]$
- Performance after decoding iterations

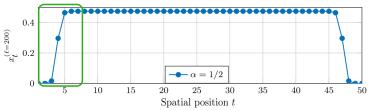


- Spatially coupled LDPC Code $[d_v = 5, d_c = 10, w = 2, L = 50]$
- Performance after decoding iterations



Windowed Decoding

- Spatially coupled LDPC Code $[d_v = 5, d_c = 10, w = 2, L = 50]$
- Performance after decoding iterations



- Windowed decoding sufficient to achieve capacity [ISU+13]
- To save latency, we are only interested in left-most portion of wave and use windowed decoder of size W_D for this part (decode while receive)
- Window latency of order W_D + w (W_D + w 1 SPs in window)

[ISU+13] A. Iyengar, P. Siegel, R. Urbanke, J. Wolf, "Windowed decoding of spatially coupled codes," IEEE Trans. Inf. Theory, 2013

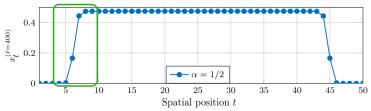
■ Decoding complexity of order $(W_D + w) \cdot I$ (I: number iterations per window)

Spatially Coupled LDPC Codes
Laurent Schmalen

Communications Engineering Lab

Windowed Decoding

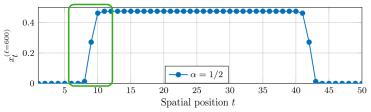
- Spatially coupled LDPC Code $[d_v = 5, d_c = 10, w = 2, L = 50]$
- Performance after decoding iterations



- Windowed decoding sufficient to achieve capacity [ISU+13]
- To save latency, we are only interested in left-most portion of wave and use windowed decoder of size W_D for this part (decode while receive)
- Window latency of order W_D + w (W_D + w 1 SPs in window)
- Decoding complexity of order $(W_D + w) \cdot I$ (I: number iterations per window)

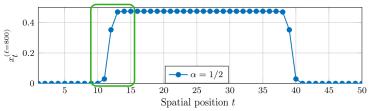
[ISU+13] A. Iyengar, P. Siegel, R. Urbanke, J. Wolf, "Windowed decoding of spatially coupled codes," IEEE Trans. Inf. Theory, 2013 Spatially Coupled LDPC Codes

- Spatially coupled LDPC Code $[d_v = 5, d_c = 10, w = 2, L = 50]$
- Performance after decoding iterations



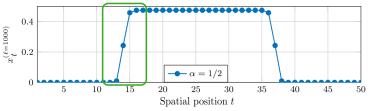
- Windowed decoding sufficient to achieve capacity [ISU+13]
- To save latency, we are only interested in left-most portion of wave and use windowed decoder of size W_D for this part (decode while receive)
- Window latency of order W_D + w (W_D + w 1 SPs in window)
- Decoding complexity of order $(W_D + w) \cdot I$ (I: number iterations per window)

- Spatially coupled LDPC Code $[d_v = 5, d_c = 10, w = 2, L = 50]$
- Performance after decoding iterations



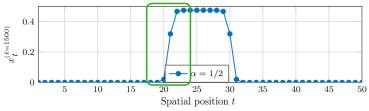
- Windowed decoding sufficient to achieve capacity [ISU+13]
- To save latency, we are only interested in left-most portion of wave and use windowed decoder of size W_D for this part (decode while receive)
- Window latency of order W_D + w (W_D + w 1 SPs in window)
- Decoding complexity of order $(W_D + w) \cdot I$ (I: number iterations per window)

- Spatially coupled LDPC Code $[d_v = 5, d_c = 10, w = 2, L = 50]$
- Performance after decoding iterations



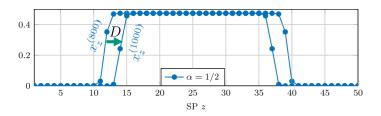
- Windowed decoding sufficient to achieve capacity [ISU+13]
- To save latency, we are only interested in left-most portion of wave and use windowed decoder of size W_D for this part (decode while receive)
- Window latency of order W_D + w (W_D + w 1 SPs in window)
- Decoding complexity of order $(W_D + w) \cdot I$ (I: number iterations per window)

- Spatially coupled LDPC Code $[d_v = 5, d_c = 10, w = 2, L = 50]$
- Performance after decoding iterations



- Windowed decoding sufficient to achieve capacity [ISU+13]
- To save latency, we are only interested in left-most portion of wave and use windowed decoder of size W_D for this part (decode while receive)
- Window latency of order W_D + w (W_D + w 1 SPs in window)
- Decoding complexity of order $(W_D + w) \cdot I$ (I: number iterations per window)

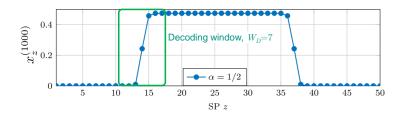
Decoding Velocity and Windowed Decoding



- Decoding velocity as displacement of erasure profile per decoding iteration [ASIB13], [EM16]
- Decoding velocity v defined as D/I, where I is the number of iterations required to advance the profile by D, i.e., here v = D/200

[ASB13] V. Aref, L. Schmalen, S. Ien Brink, "On the convergence speed of spatially coupled LDPC ensembles," *Proc. Allerton Conf.*, 2013 [EM16] R. E.-Khatib, N. Macris, "The velocity of the decoding wave for spatially coupled codes on BMS channels," *Proc. ISIT*, 2016 [ISU+13] A. Iyengar, P. Siegel, R. Urbanke, J. Wolf, "Windowed decoding of spatially coupled codes," *IEEE Trans. Inf. Theory*, 2013

Decoding Velocity and Windowed Decoding



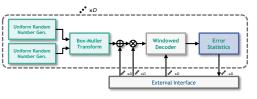
- Windowed decoding only carries out decoding operations on W_D spatial positions that benefit from decoding [ISU+13]
- Complexity of windowed decoding directly linked to the velocity of the profile

[ASB13] V. Aref, L. Schmalen, S. Ien Brink, "On the convergence speed of spatially coupled LDPC ensembles," *Proc. Allerton Conf.*, 2013 [EM16] R. E.-Khatib, N. Macris, "The velocity of the decoding wave for spatially coupled codes on BMS channels," *Proc. ISIT*, 2016 [ISU+13] A. Iyengar, P. Siegel, R. Urbanke, J. Wolf, "Windowed decoding of spatially coupled codes," *IEEE Trans. Inf. Theory*, 2013

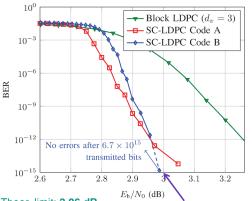
- Use your favorite LDPC decoding algorithm
- lacktriangle Only operate on parts of the Tanner graph corresponding to W_D+w-1 spatial positions (the window
- After carrying out I iterations on the window, shift the window by 1 spatial position
 - Important: Keep all the edge messages, do not re-initialize messages
- Virtual positions assumed to be received without error (shortened)

FPGA-Based Code Evaluation

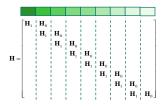
- High throughputs & large coding gains necessary in optical communication networks & submarine cables
- Required BER: less than 0.000000000001% (10⁻¹⁵)
- Less than 10 bit errors per day at line rate of 100 Gbit/s
- Requirements might become more strict in the future (now 1 Tbit/s)
- Simulation of codes using FPGA-platform with windowed decoder



Result of FPGA Decoding Platform



- Comparison of two different codes
 - Code A: optimized velocity
 - Code B: optimized error floor
- Dual engine decoder, extra iteration without extra latency [SSR+15]

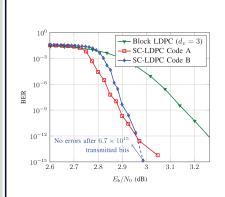


Theor. limit: 2.06 dB (asymptotic)

Net coding gain 12.01 dB

[SSR+15] L. Schmalen, D. Suikat, D. Rösener, V. Aref, A. Leven, S. ten Brink "Spatially coupled codes and optical fiber communications: An ideal match?," Proc. Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2015

Result of FPGA Decoding Platform



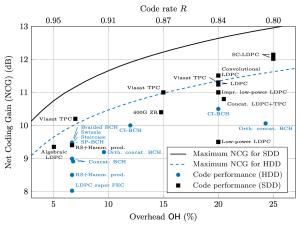
- 0.4dB gain correspond to 900km reach increase in trans-pacific cables
- Optical fiber communication systems age (material, lasers, photodiodes) and the SNR will decay over time
- In this case, additional gains increase lifetime/reduce margins of a system
- More gains are possible with higher decoding complexity
- However, we want even more gains!

Proc. Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2015

Soatially Coupled LDPC Codes

ISSR+151 L, Schmalen, D, Suikat, D, Rösener, V, Aref, A, Leven, S, ten Brink "Spatially coupled codes and optical fiber communications; An ideal match?,"

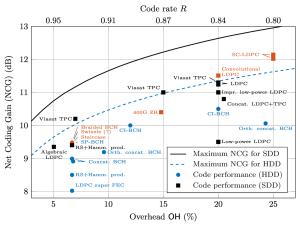
Comparison of Coding Schemes used in Optical Communications



- State-of-the-art coding schemes proposed for practical implementation
- Performance verified or reasonably estimated at 10⁻¹⁵ BER

[GS20] A. Graell i Amat and L. Schmalen, "Forward Error Correction for Optical Transponders", Springer Handbook of Optical Networks, B. Mukherjee, I. Tomkos, M. Tornatore, P. Winzer, and Y. Zhao (editors). Springer, October 2020

Comparison of Coding Schemes used in Optical Communications



- State-of-the-art coding schemes proposed for practical implementation
- Performance verified or reasonably estimated at 10⁻¹⁵ BER
- The best performing schemes are spatially coupled codes

Overview

- 1 Introduction: Channel Coding and LDPC Codes
- Spatially Coupled LDPC Codes
 - Motivation and Definition
 - Performance of SC-LDPC Codes
 - Practical Implementation of SC-LDPC Codes
 - Improvement of SC-LDPC Codes by Non-Uniform Coupling
- Burst Correction Capabilities of Spatially Coupled LDPC Codes
 - Error Probability after Burst Erasures
 - Application Example
- 4 Conclusions

Improve SC-LDPC Codes

By running density evolution, we can compute the thresholds

d_{v}	d_{c}	w	L	$r_{d, SC}$	r_d	$\epsilon_{ t SC}^{\star}$	ϵ^{\star}
3	6	2	100	0.49516	0.5	0.48837	0.42944
3	6	3	100	0.49089	0.5	0.48833	0.42944
4	8	2	100	0.49504	0.5	0.49446	0.38344
4	8	3	100	0.49039	0.5	0.49788	0.38344
5	10	2	100	0.49501	0.5	0.48268	0.34154
5	10	3	100	0.49017	0.5	0.49895	0.34154
5	10	4	100	0.48557	0.5	0.49971	0.34154

We see that there is still a gap to capacity

If you do not get what you expect...

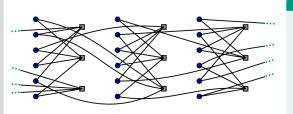
Find ways to generalize the construction!

New: Non-Uniformly Coupled LDPC Codes

- Start with SC-LDPC Code ensemble with w=2
- We fixed: probability of coupling an edge with neighboring position (1/w)
- New: generalization of coupling

New: Non-Uniformly Coupled LDPC Codes

- Start with SC-LDPC Code ensemble with w=2
- We fixed: probability of coupling an edge with neighboring position (1/w)
- New: generalization of coupling



Spatial position t - 1

Spatial position

Spatial position

t + 1

Definition

Connect each edge from variable node at SP z to

- check node at position z with probability a and to
- Check node at position z+1 with probability 1-a

L, Schmalen, V, Aref, F, Jardel, "Non-Uniformly Coupled LDPC Codes; Better Thresholds, Smaller Rate-loss, and Less Complexity," Proc. ISIT, 2017 L. Schmalen and V. Aref, "Spatially Coupled LDPC Codes with Non-uniform Coupling for Improved Decoding Speed," Proc. ITW, 2019, available online at https://arxiv.org/abs/1904.07026

Density Evolution

- Let $m{
 u}=(
 u_0,\dots,
 u_{w-1})$ denote the coupling vector with $\sum_{i=0}^{w-1}
 u_i=1$
- lacksquare In uniform coupling, we have $oldsymbol{
 u}=\left(rac{1}{w},\ldots,rac{1}{w}
 ight)$
- For w=2, we have $\boldsymbol{\nu}=(\alpha,1-\alpha)$

Density Evolution of Non-Uniformy Coupled Codes

The DE update equation for a $[d_{\rm v},d_{\rm c},oldsymbol{
u},L]$ SC-LDPC code ensemble becomes

$$\xi_t^{(\ell)} = \epsilon \left(1 - \sum_{i=0}^{w-1} \nu_i \left(1 - \sum_{j=0}^{w-1} \nu_j \xi_{t+i-j}^{(\ell-1)} \right)^{d_{\mathsf{c}} - 1} \right)^{d_{\mathsf{c}} - 1}$$

lacktriangle Free parameters u_i can be optimized to yield good thresholds

Rate of Non-Uniformy Coupled Codes

Non-uniform coupling has an impact on the rate

Rate of Non-Uniformly Coupled Codes

The rate of a non-uniformy coupled $[d_{\rm v},d_{\rm c},m{
u},L]$ SC-LDPC code ensemble amounts $r_{d,{\rm SC}}=\left(1-\frac{d_{\rm v}}{d_c}\right)-\frac{1}{L}\Delta,$ where

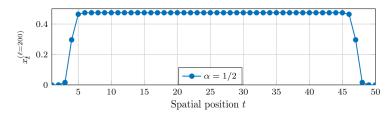
$$\Delta = \frac{d_{\mathsf{v}}}{d_{\mathsf{c}}} \left(w - 1 - \sum_{k=0}^{w-2} \left[\left(\sum_{i=0}^k \nu_i \right)^{d_{\mathsf{c}}} + \left(\sum_{i=k+1}^{w-1} \nu_i \right)^{d_{\mathsf{c}}} \right] \right)$$

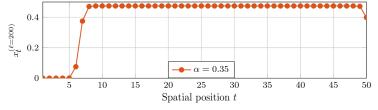
- Interestingly, for w=2, Δ becomes maximal for $\alpha=\nu_0=\nu_1=\frac{1}{2}$, i.e., for w=2, non-uniform coupling reduces the rate loss!
- For general w>3, non-uniform coupling may also lead to larger rate losses

Conventional Spatially Coupled LDPC Code

$$d_v = 5, \ d_c = 10$$

I = 200 iter.



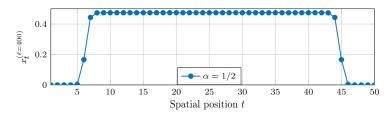


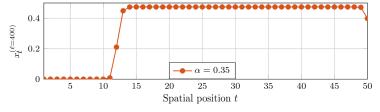
Conventional Spatially Coupled LDPC Code

Code
$$d_v = 5, d_c = 10$$

$$I=400$$
 iter.

New: Non-

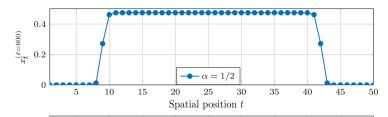


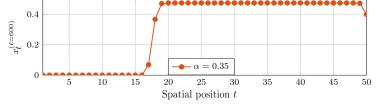


Conventional Spatially Coupled LDPC Code

$$d_v = 5, \ d_c = 10$$

I = 600 iter.





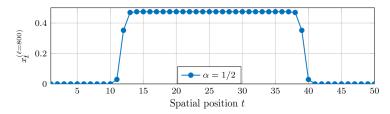
Conventional Spatially Coupled LDPC Code

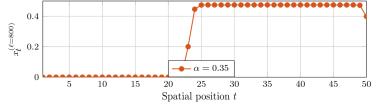
$$d_v = 5, \ d_c = 10$$

I=800 iter.

New: Non-

 $\begin{array}{l} \text{uniformly} \\ \text{coupled code} \\ \text{with} \\ d_v = 5, \ d_c = 10 \\ \text{Single-side} \\ \text{convergence} \end{array}$



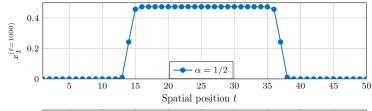


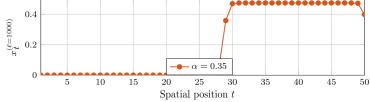
Conventional Spatially Coupled LDPC Code

Code
$$d_v = 5, d_c = 10$$

I = 1000 iter.

New: Non-



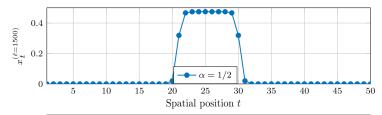


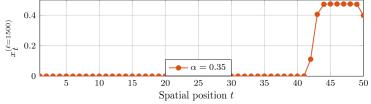
Conventional Spatially Coupled LDPC Code

$$d_v = 5, d_c = 10$$

I=1500 iter.

New: Non-

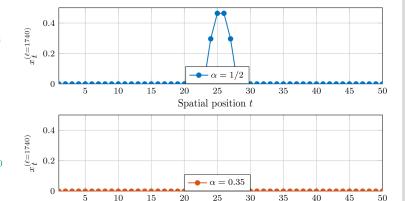




$$d_v = 5, \ d_c = 10$$

$$I = 1740$$
 iter.

uniformly coupled code with $d_v=5,\ d_c=10$ Single-side convergence

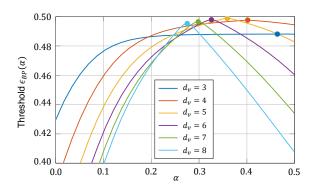


Spatial position t

Less iterations required for full convergence!

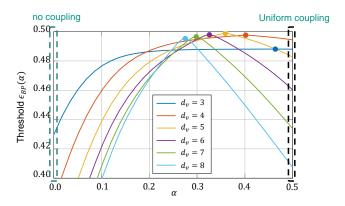
Non-Uniform Coupling vs. Conventional Uniform Coupling (1)

 \blacksquare Decoding thresholds: SC-LDPC $[d_{\!\scriptscriptstyle v},\,2\,d_{\!\scriptscriptstyle v},\,w=2,\,\alpha,\,L=100]$ over the BEC



Non-Uniform Coupling vs. Conventional Uniform Coupling (1)

 \blacksquare Decoding thresholds: SC-LDPC $[d_{\!\scriptscriptstyle v}\!,\,2d_{\!\scriptscriptstyle v}\!,\,w=2,\,\alpha,\,L=100]$ over the BEC



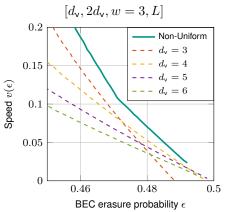
Non-Uniform Coupling with w>2

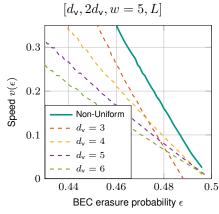
- lacktriangle Thresholds already sufficiently close to capacity with w>2
- Improvement of decoding speed (speed of wave)
- lacktriangle Optimizing of coupling vectors $oldsymbol{
 u}$ using numerical methods
- Using tool of differential evolution
- Cost function is speed of decoding wave (estimated by curve fitting from profile)
- Details omitted here but can be found in [SA19]

[SA19] L. Schmalen and V. Aref, "Spatially Coupled LDPC Codes with Non-uniform Coupling for Improved Decoding Speed," Proc. ITW, 2019, available online at https://arxiv.org/abs/1904.07026

Non-Uniform Coupling with w>2

- lacktriangle Thresholds already sufficiently close to capacity with w>2
- Improvement of decoding speed (speed of wave)





Demonstration

Demonstration of SC-LDPC Code Decoding

Overview

- 1 Introduction: Channel Coding and LDPC Codes
- Spatially Coupled LDPC Codes
 - Motivation and Definition
 - Performance of SC-LDPC Codes
 - Practical Implementation of SC-LDPC Codes
 - Improvement of SC-LDPC Codes by Non-Uniform Coupling
- Burst Correction Capabilities of Spatially Coupled LDPC Codes
 - Error Probability after Burst Erasures
 - Application Example
- 4 Conclusions

Overview

- 1 Introduction: Channel Coding and LDPC Codes
- 2 Spatially Coupled LDPC Codes
 - Motivation and Definition
 - Performance of SC-LDPC Codes
 - Practical Implementation of SC-LDPC Codes
 - Improvement of SC-LDPC Codes by Non-Uniform Coupling
- Burst Correction Capabilities of Spatially Coupled LDPC Codes
 - Error Probability after Burst Erasures
 - Application Example
- 4 Conclusions

Burst Erasure of a Complete Spatial Position

- SC-LDPC codes have some other unique properties, we will highlight just one of them
- Consider the following scenario:
 - All spatial positions have been correctly received with the exception of position t_b, which is completely erased
 - This can model different scenarios, for instance packet loss in data networks, or server failure in distributed storage, or impulse noise in xDSL systems
- When can we recover from this burst?

Burst Erasure of a Complete Spatial Position

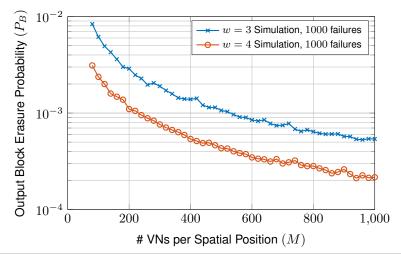
- SC-LDPC codes have some other unique properties, we will highlight just one of them
- Consider the following scenario:
 - All spatial positions have been correctly received with the exception of position t_b, which is completely erased
 - This can model different scenarios, for instance packet loss in data networks, or server failure in distributed storage, or impulse noise in xDSL systems
- When can we recover from this burst?

Theorem

Consider an $[d_{\mathsf{v}},d_{\mathsf{c}},w,L]$ SC-LDPC code where L-1 spatial positions have been correctly received and one spatial position is completely erased. A necessary condition for recovering this spatial position is that $w>(\epsilon^\star)^{-1}$, where ϵ^\star is the BEC decoding threshold of the regular $[d_{\mathsf{v}},d_{\mathsf{c}}]$ LDPC code.

Example: $[d_{v} = 3, d_{c} = 6, w, L]$ **SC-LDPC**

- lacktriangle Construct codes with M variable nodes per spatial position
- One position erased, other positions without error



What is going on?

- We should be able to recover the burst
- What happened?

What is going on?

- We should be able to recover the burst
- What happened?
- Finite-length effect due to the construction
- A burst on some structures is not recoverable
- We will just give a few hints on what is going on
- Full analysis and many extensions in [ARS18]

[ARS18] V. Aref, N. Rengaswamy and L. Schmalen, "Finite-length analysis of spatially-coupled regular LDPC ensembles on burst erasure channels," *IEEE Transactions on Information Theory*, vol. 64, no. 5, pp. 3431–3449, 2018, available online at https://arxiv.org/abs/1611.08267

Probability of Stopping Set

Lemma (Probability that two variable nodes form a stopping set [ARS18])

Consider a code sampled randomly from the uniformly coupled $[d_v, d_c, w, L]$ ensemble with M variable nodes per spatial position (SP). The probability that two variable nodes from SP t form a stopping set is

$$P_{\mathcal{R}} = \frac{\left(1 - \frac{1}{d_{\mathsf{c}}}\right)^{d_{\mathsf{v}}}}{\sum_{\ell=0}^{d_{\mathsf{v}}} \left(\begin{array}{c} d_{\mathsf{v}} \\ \ell \end{array}\right) \left(\begin{array}{c} wM\frac{d_{\mathsf{v}}}{d_{\mathsf{c}}} - d_{\mathsf{v}} \\ d_{\mathsf{v}} - \ell \end{array}\right) \left(1 - \frac{1}{d_{\mathsf{c}}}\right)^{\ell}} \tag{1}$$

- The proof is based on a counting argument and purely combinatoric [ARS18]
- If M grows, the probability $P_{\mathcal{R}}$ decreases

[ARS18] V. Aref, N. Rengaswamy and L. Schmalen, "Finite-length analysis of spatially-coupled regular LDPC ensembles on burst erasure channels," *IEEE Transactions on Information Theory*, vol. 64, no. 5, pp. 3431–3449, 2018, available online at https://arxiv.org/abs/1611.08267

Error Probability Due to Stopping Sets

Lemma (Second moment method)

Let $X \ge 0$ be a positive random variable with finite variance. Then

$$P(X > 0) \ge \frac{(\mathbb{E}\{X\})^2}{\mathbb{E}\{X^2\}}$$

Lemma (Joint expectation of two stopping sets [ARS18])

Consider one SP of a code sampled from uniformly coupled $[d_{\mathsf{v}},d_{\mathsf{c}},w,L]$ ensemble with M variable nodes per spatial position (SP). Recall the indicator function $U_{ij}=1$ if VNs v_i and v_j in that SP form a size-2 stopping set. Assuming $d_{\mathsf{c}}>2$ and $wM\geq 2(d_{\mathsf{v}}+1)d_{\mathsf{c}}$, we have the following bound on the joint expectation

$$\mathbb{E}\left\{U_{ij}U_{kl}\right\} \le \frac{2\mathbb{E}\left\{U_{ij}\right\}}{\left(\begin{array}{c}wM\frac{d_{\mathsf{v}}}{d_{\mathsf{c}}} - 2d_{\mathsf{v}}\\d_{\mathsf{v}}\end{array}\right)}$$

Error Probability After Decoding

Theorem

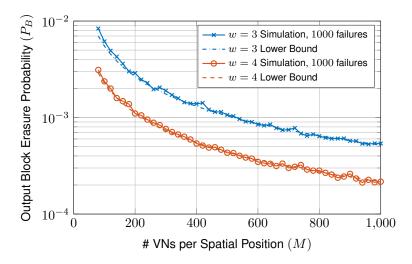
Consider a code sampled uniformly from the $[d_{\sf v},d_{\sf c},w,L]$ ensemble with M variable nodes per spatial position (SP) with w $d_{\sf c}>2$ and $wM\geq 2(d_{\sf v}+1)d_{\sf c}$. If all variable nodes of a randomly chosen SP are erased, the (average) probability of BP decoding failure is lower-bounded by

$$P_{\rm B}^{\rm SPBC} \ge {M \choose 2} \left(1 - \frac{M^2}{\left(\frac{w}{d_{\rm c}}M - 3\right)^{d_{\rm v}}}\right) P_{\mathcal{R}}$$

where $P_{\mathcal{R}}$ is the probability that two variable nodes from an SP of the code form a stopping set, given by (1).

Example: $[d_{v} = 3, d_{c} = 6, w, L]$ **SC-LDPC**

lacktriangle Construct codes with M variable nodes per spatial position



Can We Do Better?

- lacktriangle The error rates are pretty depressing, even with large w
- How can we do better?

Can We Do Better?

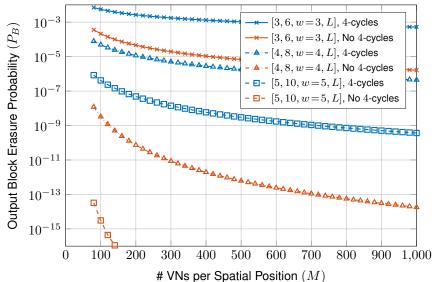
- lacktriangle The error rates are pretty depressing, even with large w
- How can we do better?
- If size-2 stopping sets cause most of the error floor, expurgate them!
- Increasing the girth of the graph to 6 (no length-4 cycles) yields to a minimum stopping set size of

$$s_{\min} = d_{\mathsf{v}} + 1$$

 \blacksquare We can approximate the probability that $d_{\rm v}+1$ VNs form a stopping set as

$$P_{\mathcal{R},6} \approx \frac{\left(1 - \frac{1}{d_c}\right)^{\frac{1}{2}d_v(d_v + 1)} \frac{(d_v!)^{d_v + 1}}{\left(\frac{1}{2}d_v(d_v + 1)\right)!}}{\left(\begin{array}{c} wM\frac{d_v}{d_c} - \frac{1}{2}d_v\left(d_v + 1\right) \\ \frac{1}{2}d_v\left(d_v + 1\right) \end{array}\right)}$$

Effect of Expurgation



Additional Erasures in Remaining SPs

We now consider the case where

$$\epsilon_{t_b} = 1$$

$$\epsilon_{\sim t_b} = \epsilon$$

i.e., one SP is completely erased, all other SPs transmitted over $\text{BEC}(\epsilon)$

Additional Erasures in Remaining SPs

We now consider the case where

$$\epsilon_{t_b} = 1$$

$$\epsilon_{\sim t_b} = \epsilon$$

i.e., one SP is completely erased, all other SPs transmitted over $\mathsf{BEC}(\epsilon)$

Error Probability for Both Errors and Erasures

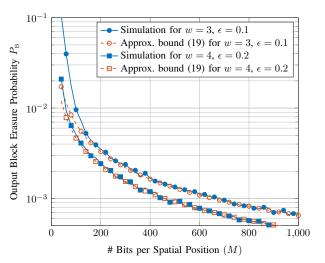
By counting all possibilities for stopping sets (which can now form between all possible positions), we get the approximation

$$P_B \gtrsim \lambda_0 + \epsilon(2 - \epsilon) \sum_{k=1}^{w} \lambda_k + \epsilon^2 \sum_{k=0}^{w-1} (L - k - 1) \lambda_k$$

with

$$\lambda_0 = \binom{M}{2} P_{\mathcal{R}} \qquad \text{and} \qquad \lambda_k = M^2 \left(1 - \frac{k}{w}\right)^{d_{\mathsf{v}}} P_{\mathcal{R}} \quad (k \in \{1, \dots, w-1\})$$

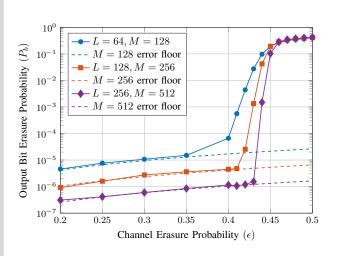
Simulation Results (1)



[3, 6, w, L = 10]ensemble (design rate $\frac{1}{2}$

- $\bullet \epsilon_{t_b} = 1, \, \epsilon_{\sim t_b} = \epsilon$
- Again, we can accurately predict the error floor

Simulation Results (2)



- $\begin{tabular}{l} [3,6,w,L] \\ \ensemble (design \\ \ensuremath{\mathsf{rate}} \ \frac{1}{2} \ensuremath{} \$
- $\bullet \epsilon_{t_b} = 1, \, \epsilon_{\sim t_b} = \epsilon$
- Again, we can accurately predict the error floor

Random Burst Channel

- Now: Burst of length b starts at variable node S at SP t_b
- Erased bit positions in codeword

$$E = \{(t_b - 1)M + S, \dots, (t_b - 1)M + S + b - 1\}$$

We introduce the normalized quantities

$$\beta = \frac{b}{M} \qquad \text{and} \qquad s = \frac{S}{M}$$

Random Burst Channel

- Now: Burst of length b starts at variable node S at SP t_b
- Erased bit positions in codeword

$$E = \{(t_b - 1)M + S, \dots, (t_b - 1)M + S + b - 1\}$$

We introduce the normalized quantities

$$\beta = \frac{b}{M} \qquad \text{and} \qquad s = \frac{S}{M}$$

Theorem

Consider the $[d_{\mathsf{v}},d_{\mathsf{c}},w,L)$ SC-LDPC ensemble and transmission over a channel where a random selection of b consecutive VNs are erased and all other VNs are received without erasure. Let $\beta = \frac{b}{M}$ denote the normalized burst length. Furthermore, let $w \geq 1 + \lceil \beta \rceil$. Asymptotically (in the limit of M), the erased VNs can be recovered when $w \geq \left\lceil (1 + \lceil \beta \rceil)/\epsilon_{\mathsf{LDPC}[d_{\mathsf{v}},d_{\mathsf{c}}]}^\star \right\rceil$, where $\epsilon_{\mathsf{LDPC}[d_{\mathsf{v}},d_{\mathsf{c}}]}^\star$ is the BP threshold of the underlying $[d_{\mathsf{v}},d_{\mathsf{c}}]$ uncoupled LDPC ensemble.

Correctable Burst

- We consider a random starting position β
- \blacksquare A burst of length βM and random starting position is recoverable in the limit of M if

$$\beta < \beta_{\max} = \min_{0 \le s < 1} \beta(s)$$

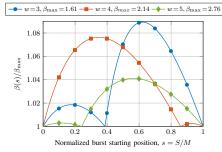
lacksquare We can determine $eta_{
m max}$ using density evolution [ARS16]

Correctable Burst

- We consider a random starting position β
- \blacksquare A burst of length βM and random starting position is recoverable in the limit of M if

$$\beta < \beta_{\max} = \min_{0 \le s < 1} \beta(s)$$

lacktriangle We can determine $eta_{
m max}$ using density evolution [ARS16]



- $[d_{v} = 3, d_{c} = 6, w, L]$ ensemble
- $\begin{tabular}{ll} Normalized maximum \\ correctable burst length for a \\ given starting position <math>S=sM$

[ARS16] V. Aref, N. Rengaswamy, and L. S., "Spatially coupled LDPC codes affected by a single random burst of errors," in *Proc. ISTC*, Sep. 2016

Finite-Length Analysis

Theorem

Consider the $[d_{\mathsf{v}},d_{\mathsf{c}},w,L]$ SC-LDPC ensemble affected by a burst of length $b=\beta M$ with a random starting bit $M(t_b-1)+S$, where $1\leq S\leq M$ and $\beta\ll\beta_{\max}$. The number of erased VNs in SP z is given by

$$m_z = \begin{cases} 0 & z < t_b \\ \min\{b, M - S + 1\} & z = t_b \\ \max\{0, \min\{M, b + S - 1 - (z - t_b)M\}\} & z > t_b. \end{cases}$$

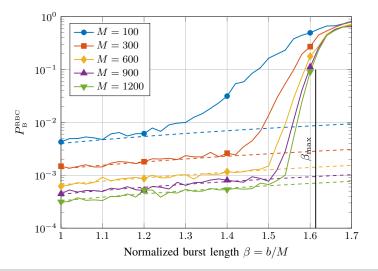
Then the expected number of size-2 stopping sets formed by VNs erased by the burst is given by

$$\mathbb{E}[N_2(S, t_b, b)] \gtrsim \frac{L - \lceil \beta \rceil}{(L - \beta)M + 1} \sum_{S=1}^{M} \sum_{z=1}^{\lceil \beta \rceil + 1} \left(\binom{m_z}{2} q_0 + \sum_{k=1}^{w-1} m_z m_{z+k} q_k \right)$$

with $q_k = P_{\mathcal{R}} \left(1 - \frac{k}{w} \right)^{d_v} \mathbb{1}_{\{k \in \{0, \dots, w-1\}\}}$.

Monte-Carlo Simulations

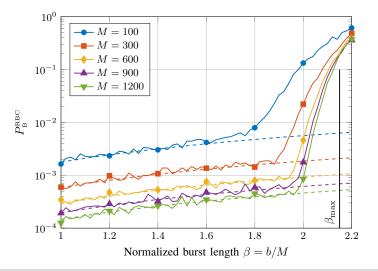
■ The $[d_v = 3, d_c = 6, w = 3, L]$ ensemble



Laurent Schmalen

Monte-Carlo Simulations

• The $[d_{\rm v}=3, d_{\rm c}=6, w=4, L]$ ensemble

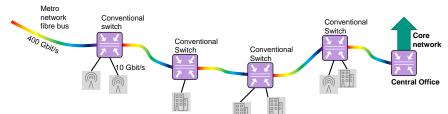


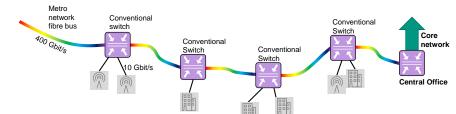
Overview

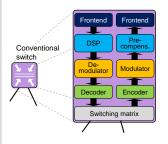
- 1 Introduction: Channel Coding and LDPC Codes
- 2 Spatially Coupled LDPC Codes
 - Motivation and Definition
 - Performance of SC-LDPC Codes
 - Practical Implementation of SC-LDPC Codes
 - Improvement of SC-LDPC Codes by Non-Uniform Coupling
- Burst Correction Capabilities of Spatially Coupled LDPC Codes
 - Error Probability after Burst Erasures
 - Application Example
- 4 Conclusions

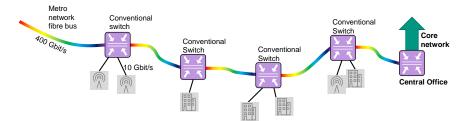
Applications

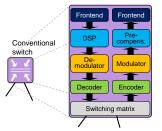
- Burst erasures come in many varieties
- Collision in coded random access schemes (e.g., slotted ALOHA) [LPL+12]
- Strong fading in block fading channels [ULA+14]
- Error due to misestimation of channel
- Impulse noise in wireline communications (e.g., DSL)
- Server failure in distributed storage (cloud storage) [JBS+15]
- Application: Distributed coding
- [LPL+12] G. Liva, E. Paolini, M. Lentmaier, and M. Chiani, "Spatially-coupled random access on graphs," in Proc. IEEE Int. Symp. Inform. Theory (ISIT), pp. 478–482, 2012.
- [ULA+14] N. Ul Hassan, M. Lentmaier, I. Andriyanova, and G. Fettweis, "Improving code diversity on block-fading channels by spatial coupling," in Proc. IEEE Int. Symp. Inform. Theory (ISIT), pp. 2311–2315, June 2014
- [JBS+15] F. Jardel, J. J. Boutros, M. Sarkiss, and G. Rekaya-Ben Othman, "Spatial coupling for distributed storage and diversity applications," in Proc.IEEE International Conference in Communications and Networking (ComNet), (Hammamet, Tunisia), Nov. 2015



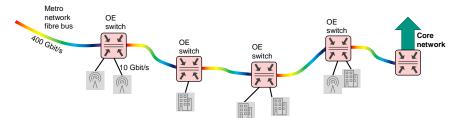


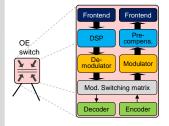




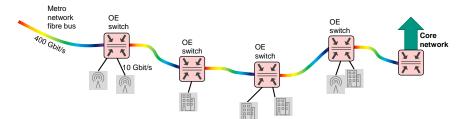


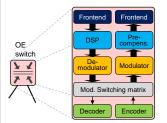
- Switch has an optical coherent front-end with full encoding and decoding in each hop
- Significant amount of data will not be dropped, but re-encoded for next hop
- Full decoding often not necessary in each hop, but only at destimation





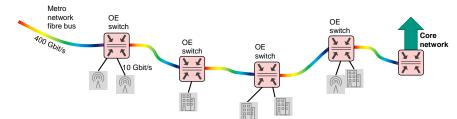
[LBB+17] W. Lautenschläger, N. Benzaoui, F. Buchali, L. Dembeck, R. Dischler, B. Franz, U. Gebhard, J. Milbrandt, Y. Pointurier, D. Rösener, L. S. and A. Leven "Optical Ethernet – Flexible Optical Metro Networks," *IEEE/OSA J. Lightw. Technol.*, 2017

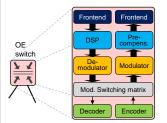




 Based on header, perform switching on noisy frames after hard-decision

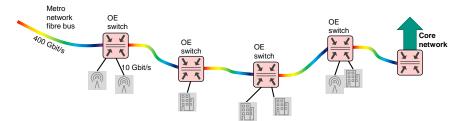
[LBB+17] W. Lautenschläger, N. Benzaoui, F. Buchali, L. Dembeck, R. Dischler, B. Franz, U. Gebhard, J. Milbrandt, Y. Pointurier, D. Rösener, L. S. and A. Leven "Optical Ethernet – Flexible Optical Metro Networks," *IEEE/OSA J. Lightw. Technol.*, 2017

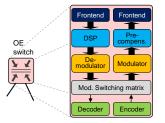




- Based on header, perform switching on noisy frames after hard-decision
- Carry out decoding only for data that are being switched

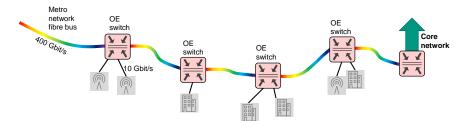
[LBB+17] W. Lautenschläger, N. Benzaoui, F. Buchali, L. Dembeck, R. Dischler, B. Franz, U. Gebhard, J. Milbrandt, Y. Pointurier, D. Rösener, L. S. and A. Leven "Optical Ethernet – Flexible Optical Metro Networks," IEEE/OSA J. Lightw. Technol., 2017

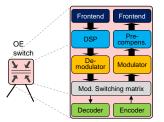




- Based on header, perform switching on noisy frames after hard-decision
- Carry out decoding only for data that are being switched
- Decision-and-forward relay

[LBB+17] W. Lautenschläger, N. Benzaoui, F. Buchali, L. Dembeck, R. Dischler, B. Franz, U. Gebhard, J. Milbrandt, Y. Pointurier, D. Rösener, L. S. and A. Leven "Optical Ethernet – Flexible Optical Metro Networks," IEEE/OSA J. Lightw. Technol., 2017

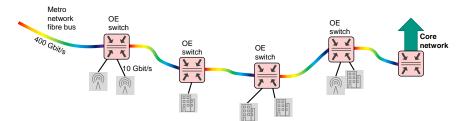


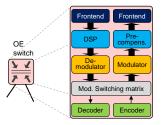


- Container-based transmission of codewords
- Adding data to empty parts of codeword

"0"

[LBB+17] W. Lautenschläger, N. Benzaoui, F. Buchali, L. Dembeck, R. Dischler, B. Franz, U. Gebhard, J. Milbrandt, Y. Pointurier, D. Rösener, L. S. and A. Leven "Optical Ethernet – Flexible Optical Metro Networks," *IEEE/OSA J. Lightw. Technol.*, 2017

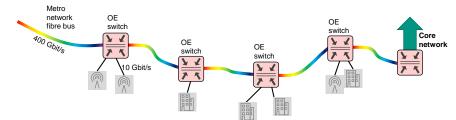


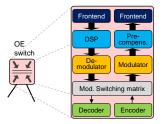


- Container-based transmission of codewords
- Adding data to empty parts of codeword

Container "0" Data 1 Parity 1

[LBB+17] W. Lautenschläger, N. Benzaoui, F. Buchali, L. Dembeck, R. Dischler, B. Franz, U. Gebhard, J. Milbrandt, Y. Pointurier, D. Rösener, L. S. and A. Leven "Optical Ethernet - Flexible Optical Metro Networks," IEEE/OSA J. Lightw. Technol., 2017

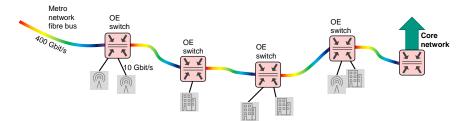


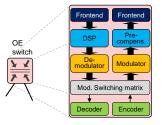


- Container-based transmission of codewords
- Adding data to empty parts of codeword

Container	Data 1		Parity 1				
	+						
New data	"0"	Data 2	"0"	Parity 2			

[LBB+17] W. Lautenschläger, N. Benzaoui, F. Buchali, L. Dembeck, R. Dischler, B. Franz, U. Gebhard, J. Milbrandt, Y. Pointurier, D. Rösener, L. S. and A. Leven "Optical Ethernet – Flexible Optical Metro Networks," *IEEE/OSA J. Lightw. Technol.*, 2017



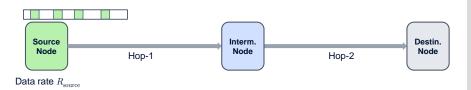


- Container-based transmission of codewords
- Adding data to empty parts of codeword

Container	Data 1	"0"		Parity 1			
	+						
New data	"0"	Data 2	"0"	Parity 2			
=							
New cont.	Data 1	Data 2	"0"	Parity			

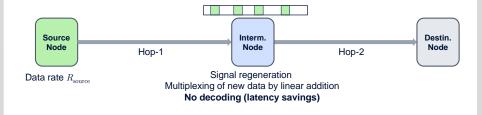
[LBB+17] W. Lautenschläger, N. Benzaoui, F. Buchali, L. Dembeck, R. Dischler, B. Franz, U. Gebhard, J. Milbrandt, Y. Pointurier, D. Rösener, L. S. and A. Leven "Optical Ethernet – Flexible Optical Metro Networks," *IEEE/OSA J. Lightw. Technol.*, 2017

- Many applications require ultra-low networking latency, e.g., industrial control (Industrie 4.0), high-speed trading, sensor networks, etc...
- New networking architecture with end-to-end channel coding for such applications [LBB+17], [SEB+17]
- Toy Example:



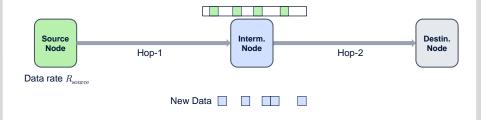
[LBB+17] W. Lautenschläger, N. Benzaoui, F. Buchali, L. Dembeck, R. Dischler, B. Franz, U. Gebhard, J. Milbrandt, Y. Pointurier, D. Rösener, L. S. and A. Leven "Optical Ethernet – Flexible Optical Metro Networks," *IEEE/OSA J. Lightw. Technol.*, 2017

- Many applications require ultra-low networking latency, e.g., industrial control (Industrie 4.0), high-speed trading, sensor networks, etc...
- New networking architecture with end-to-end channel coding for such applications [LBB+17], [SEB+17]
- Toy Example:



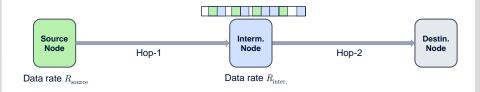
[LBB+17] W. Lautenschläger, N. Benzaoui, F. Buchali, L. Dembeck, R. Dischler, B. Franz, U. Gebhard, J. Milbrandt, Y. Pointurier, D. Rösener, L. S. and A. Leven "Optical Ethernet – Flexible Optical Metro Networks," *IEEE/OSA J. Lightw. Technol.*, 2017

- Many applications require ultra-low networking latency, e.g., industrial control (Industrie 4.0), high-speed trading, sensor networks, etc...
- New networking architecture with end-to-end channel coding for such applications [LBB+17], [SEB+17]
- Toy Example:



[LBB+17] W. Lautenschläger, N. Benzaoui, F. Buchali, L. Dembeck, R. Dischler, B. Franz, U. Gebhard, J. Milbrandt, Y. Pointurier, D. Rösener, L. S. and A. Leven "Optical Ethernet – Flexible Optical Metro Networks," *IEEE/OSA J. Lightw. Technol.*, 2017

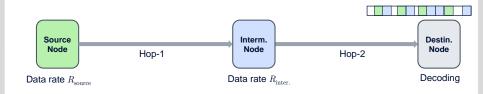
- Many applications require ultra-low networking latency, e.g., industrial control (Industrie 4.0), high-speed trading, sensor networks, etc...
- New networking architecture with end-to-end channel coding for such applications [LBB+17], [SEB+17]
- Toy Example:



[LBB+17] W. Lautenschläger, N. Benzaoui, F. Buchali, L. Dembeck, R. Dischler, B. Franz, U. Gebhard, J. Milbrandt, Y. Pointurier, D. Rösener, L. S. and A. Leven "Optical Ethernet – Flexible Optical Metro Networks," *IEEE/OSA J. Lightw. Technol.*, 2017

End-to-end Coding in Low-Latency Networks

- Many applications require ultra-low networking latency, e.g., industrial control (Industrie 4.0), high-speed trading, sensor networks, etc...
- New networking architecture with end-to-end channel coding for such applications [LBB+17], [SEB+17]
- Toy Example:

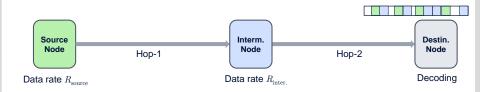


[LBB+17] W. Lautenschläger, N. Benzaoui, F. Buchali, L. Dembeck, R. Dischler, B. Franz, U. Gebhard, J. Milbrandt, Y. Pointurier, D. Rösener, L. S. and A. Leven "Optical Ethernet – Flexible Optical Metro Networks," *IEEE/OSA J. Lightw. Technol.*, 2017

[SEB+17] L. S. T. A. Eriksson, F. Buchali, R. Dischler, U. Gebhard, "Distributed Transmission and Spatially Coupled Forward Error Correction in Regenerative Multipoint-to-Point Networks," Proc. ECOC, 2017

End-to-end Coding in Low-Latency Networks

- Many applications require ultra-low networking latency, e.g., industrial control (Industrie 4.0), high-speed trading, sensor networks, etc...
- New networking architecture with end-to-end channel coding for such applications [LBB+17], [SEB+17]
- Toy Example:



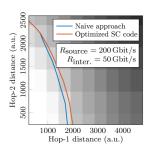
■ Packets traveling from source to destination see worse channel than other packets (→ burst!)

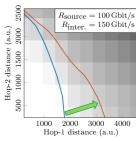
[LBB+17] W. Lautenschläger, N. Benzaoui, F. Buchali, L. Dembeck, R. Dischler, B. Franz, U. Gebhard, J. Milbrandt, Y. Pointurier, D. Rösener, L. S. and A. Leven "Optical Ethernet – Flexible Optical Metro Networks," IEEE/OSA J. Lightw. Technol., 2017

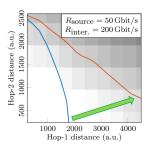
[SEB+17] L. S. T. A. Eriksson, F. Buchali, R. Dischler, U. Gebhard, "Distributed Transmission and Spatially Coupled Forward Error Correction in Regenerative Multipoint-to-Point Networks," Proc. ECOC, 2017

End-to-end Coding in Low-Latency Networks

- Optimization of code parameters using burst correction theory
- Optimization of media access (data placement) by burst theory
- Flexibility and adaptivity of effective rates to channel conditions
- Hop-1 and Hop-2 achievable distance pairs significantly improved





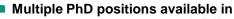


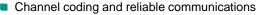
- 1 Introduction: Channel Coding and LDPC Codes
- Spatially Coupled LDPC Codes
 - Motivation and Definition
 - Performance of SC-LDPC Codes
 - Practical Implementation of SC-LDPC Codes
 - Improvement of SC-LDPC Codes by Non-Uniform Coupling
- Burst Correction Capabilities of Spatially Coupled LDPC Codes
 - Error Probability after Burst Erasures
 - Application Example
- 4 Conclusions

Conclusions

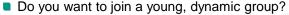
- Spatially Coupled LDPC Codes are a class of powerful codes that extend LDPC codes
- Record coding gains in optical communications
- Best approach to design parameters still unknown (various open research problems)
- General concept that applies to other areas of science as well (compressed sensing, statistical physics, ...)
- Applications in distributed storage, random access, fading channels, subscriber lines, etc...
- Active area of research

We Want You!





- Spatially coupled codes
- High-speed data transmission
 - Machine learning applied to communications
- Optical fiber communications
- ... and many more



- Do you want to carry out innovative research in one of Germany largest research universities?
- Contact me for further details: Laurent.Schmalen@kit.edu

- Parity-Check Matrix of a Spatially Coupled LDPC Code
- ML Performance of LDPC Codes
- Analysis of SC-LDPC Codes over General Channels
- Simulation Example of Non-Uniform Coupling
- Burst erasure of complete spatial position
- Error Probability after Decoding with Burst Erasure
- The Block Erasure Channel

Parity-Check Matrix of a Spatially Coupled LDPC Code

lacktriangle The parity-check matrix of a general SC-LDPC with coupling width w

The parity-check matrix of a general SC-LDPC with coupling width
$$w$$

$$H_{1}(1) = \begin{pmatrix} H_{1}(1) & & & & \\ H_{2}(1) & \ddots & & & \\ \vdots & & H_{1}(t) & & & \\ H_{w}(1) & \vdots & H_{2}(t) & H_{1}(t+1) & & & \\ & & \vdots & H_{2}(t+1) & H_{1}(t+2) & & \\ & & H_{w}(t) & \vdots & H_{2}(t+2) & \ddots & \\ & & & H_{w}(t+1) & \vdots & \vdots & H_{1}(L) & \\ & & & & H_{w}(t+2) & \vdots & H_{2}(L) & \\ & & & & \vdots & \\ & & & H_{w}(L) \end{pmatrix}$$
 is of size $\dim H_{1}(t) = m' \times n'$.

is of size dim $\mathbf{H}_{SC} = (L+w-1)m' \times Ln'$ where dim $\mathbf{H}_i(t) = m' \times n'$.

- Parity-Check Matrix of a Spatially Coupled LDPC Code
- ML Performance of LDPC Codes
- Analysis of SC-LDPC Codes over General Channels
- Simulation Example of Non-Uniform Coupling
- Burst erasure of complete spatial position
- Error Probability after Decoding with Burst Erasure
- The Block Erasure Channel

ML Dec. of Regular $[d_v, d_c]$ LDPC Codes

- The ML decoding threshold $\epsilon^{\rm ML}$ (i.e., the ϵ up to which an ideal ML decoder successfully works) of a regular $[d_{\rm v},d_{\rm c}]$ LDPC code on the BEC can be described as follows
- Let x_{ML} be the unique positive solution of the equation

$$x + \frac{1}{d_{c}}(1-x)^{d_{c}-1}(d_{v} + d_{v}(d_{c}-1)x - d_{c}x) - \frac{d_{v}}{d_{c}} = 0$$

Then,

$$\epsilon^{\text{ML}} = \frac{x_{\text{ML}}}{(1 - (1 - x_{\text{ML}})^{d_{\text{c}} - 1})^{d_{\text{v}} - 1}}$$

 The proof of this fact is involved and beyond the scope of this lecture, however, we have

$$\lim_{d_{\rm v} \to \infty} \epsilon^{\rm ML} = \frac{d_{\rm v}}{d_{\rm c}} = 1 - r_d = C_{\rm BEC}$$

with exponentially fast convergence

ML Dec. of Regular $[d_v, d_c]$ LDPC Codes

- The ML decoding threshold $\epsilon^{\rm ML}$ (i.e., the ϵ up to which an ideal ML decoder successfully works) of a regular $[d_{\rm v},d_{\rm c}]$ LDPC code on the BEC can be described as follows
- Let x_{ML} be the unique positive solution of the equation

$$x + \frac{1}{d_{c}}(1-x)^{d_{c}-1}(d_{v} + d_{v}(d_{c}-1)x - d_{c}x) - \frac{d_{v}}{d_{c}} = 0$$

Then,

$$\epsilon^{\text{ML}} = \frac{x_{\text{ML}}}{(1 - (1 - x_{\text{ML}})^{d_{\text{c}} - 1})^{d_{\text{v}} - 1}}$$

 The proof of this fact is involved and beyond the scope of this lecture, however, we have

$$\lim_{d_{\rm v} \to \infty} \epsilon^{\rm ML} = \frac{d_{\rm v}}{d_{\rm c}} = 1 - r_d = C_{\rm BEC}$$

with exponentially fast convergence

• We can use spatial coupling to construct capacity achieving codes (with $w \to \infty, L \to \infty, d_v \to \infty, n \to \infty$, and $\ell \to \infty$)

- Parity-Check Matrix of a Spatially Coupled LDPC Code
- ML Performance of LDPC Codes
- Analysis of SC-LDPC Codes over General Channels
- Simulation Example of Non-Uniform Coupling
- Burst erasure of complete spatial position
- Error Probability after Decoding with Burst Erasure
- The Block Erasure Channel

Analysis of SC-LDPC Codes for General Channels

- For more general channels, e.g., the BI-AWGN channel, we can use the Gaussian approximation to analyze the convergence behavior
- For every spatial position t we define mean values $\mu_{\xi,t}^{(\ell)}$ and $\mu_{\chi,t}^{(\ell)}$ which we initialize as

$$\mu_{\xi,t}^{(1)} = \left\{ \begin{array}{ll} \mu_c & \text{if } t \in \{1,2,\ldots,L\} \\ +\infty & \text{otherwise} \end{array} \right.$$

where in practice, we replace $+\infty$ by an appropriately large number.

■ The variable node outgoing message mean can be computed as

$$\mu_{\xi,t}^{(\ell)} = \mu_{c,t} + \frac{d_{\mathsf{v}} - 1}{w} \sum_{i=0}^{w-1} \mu_{\chi,t+i}^{(\ell)}$$

where

$$\mu_{c,t} = \begin{cases} \mu_c & \text{if } t \in \{1, 2, \dots, L\} \\ +\infty & \text{otherwise} \end{cases}$$

Analysis of SC-LDPC Codes for General Channels (2)

- Note that the *incoming* message to the check node has a distribution that is a sum of Gaussian pdfs with different means (and variances) and with weight 1/w.
- lacktriangle The mean of the check node outgoing message at position t can be computed as

$$1 - \varphi(\mu_{\chi,t}) = \left[1 - \frac{1}{w} \sum_{j=0}^{w-1} \varphi(\mu_{\xi,t-j}^{(\ell-1)})\right]^{d_{\xi}-1}$$

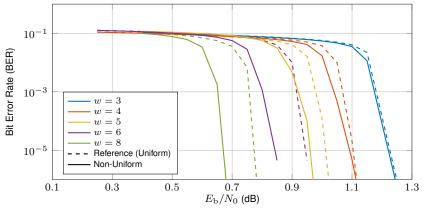
 This leads to the overall update equation, combining variable and check node update

$$\mu_{\chi,t} = \varphi^{-1} \left(1 - \left[1 - \frac{1}{w} \sum_{j=0}^{w-1} \varphi \left(\mu_{c,t-j} + \frac{d_{\mathsf{v}} - 1}{w} \sum_{i=0}^{w-1} \mu_{\chi,t+i-j}^{(\ell-1)} \right) \right]^{d_{\mathsf{c}} - 1} \right)$$

- Parity-Check Matrix of a Spatially Coupled LDPC Code
- ML Performance of LDPC Codes
- Analysis of SC-LDPC Codes over General Channels
- Simulation Example of Non-Uniform Coupling
- Burst erasure of complete spatial position
- Error Probability after Decoding with Burst Erasure
- The Block Erasure Channel

Simulation Example

- Simulation with windowed decoder ($W_D = 5w$ and I = 1 iteration)
- lacktriangle Code details and optimal values u can be found in [SA19]



[SA19] L. Schmalen and V. Aref, "Spatially Coupled LDPC Codes with Non-uniform Coupling for Improved Decoding Speed," Proc. ITW, 2019, available online at https://arxiv.org/abs/1904.07026

- Parity-Check Matrix of a Spatially Coupled LDPC Code
- MI Performance of LDPC Codes
- Analysis of SC-LDPC Codes over General Channels
- Burst erasure of complete spatial position
- Error Probability after Decoding with Burst Erasure
- The Block Frasure Channel

Burst Erasure of a Complete Spatial Position (2)

We have the update equation

$$\xi_t^{(\ell)} = \epsilon_t \left(1 - \frac{1}{w} \sum_{i=0}^{w-1} \left(1 - \frac{1}{w} \sum_{j=0}^{w-1} \xi_{t+i-j}^{(\ell-1)} \right)^{d_{\mathsf{c}}-1} \right)^{d_{\mathsf{v}}-1} \quad \forall t \in \{1, \dots, L\}$$

with

$$\epsilon_t = \begin{cases} 1 & \text{if } t = t_b \\ 0 & \text{otherwise} \end{cases}$$

Burst Erasure of a Complete Spatial Position (2)

We have the update equation

$$\xi_t^{(\ell)} = \epsilon_t \left(1 - \frac{1}{w} \sum_{i=0}^{w-1} \left(1 - \frac{1}{w} \sum_{j=0}^{w-1} \xi_{t+i-j}^{(\ell-1)} \right)^{d_{\mathsf{c}}-1} \right)^{d_{\mathsf{c}}-1} \quad \forall t \in \{1, \dots, L\}$$

with

$$\epsilon_t = \left\{ \begin{array}{ll} 1 & \text{if } t = t_b \\ 0 & \text{otherwise} \end{array} \right.$$

■ This implies that $\xi_t^{(\ell)} = 0$, if $t \neq t_b$, and we only need to consider the case $t = t_b$ with

$$\xi_{t_b}^{(\ell)} = \left(1 - \frac{1}{w} \sum_{i=0}^{w-1} \left(1 - \frac{1}{w} \sum_{j=0}^{w-1} \xi_{t_b+i-j}^{(\ell-1)}\right)^{d_{\mathbf{c}}-1}\right)^{d_{\mathbf{v}}-1}$$

Burst Erasure of a Complete Spatial Position (3)

lacktriangle In the inner sum, we only need to consider the case j=i, as the other contributions are zero, hence

$$\xi_{t_b}^{(\ell)} = \left(1 - \frac{1}{w} \sum_{i=0}^{w-1} \left(1 - \frac{1}{w} \xi_{t_b}^{(\ell-1)}\right)^{d_c - 1}\right)^{d_c - 1}$$
$$= \left(1 - \left(1 - \frac{1}{w} \xi_{t_b}^{(\ell-1)}\right)^{d_c - 1}\right)^{d_c - 1}$$

lacktriangle We now make a change of variable $\kappa^{(\ell)}=rac{1}{w}\xi_{t_b}^{(\ell)}$ leading to

$$w\kappa^{(\ell)} = \left(1 - \left(1 - \kappa^{(\ell-1)}\right)^{d_{\mathsf{c}}-1}\right)^{d_{\mathsf{c}}-1}$$

$$\Rightarrow \kappa^{(\ell)} = \frac{1}{w} \left(1 - \left(1 - \kappa^{(\ell-1)}\right)^{d_{\mathsf{c}}-1}\right)^{d_{\mathsf{c}}-1}$$

Burst Erasure of a Complete Spatial Position(4)

- This is exactly the update equation of $[d_v, d_c]$ regular LDPC codes on the BEC (with ϵ replaced by $\frac{1}{m}$).
- We know that $\kappa^{(\ell)}$ converges to 0 iff $\frac{1}{w}<\epsilon^\star$ where ϵ^\star is the threshold of the $[d_{\rm v},d_{\rm c}]$ LDPC code
- This leads to the following result

- Parity-Check Matrix of a Spatially Coupled LDPC Code
- MI Performance of LDPC Codes
- Analysis of SC-LDPC Codes over General Channels
- Burst erasure of complete spatial position
- Error Probability after Decoding with Burst Erasure
- The Block Frasure Channel

Theorem

Consider a code sampled uniformly from the $[d_{\sf v},d_{\sf c},w,L]$ ensemble with M variable nodes per spatial position (SP) with w $d_{\sf c}>2$ and $wM\geq 2(d_{\sf v}+1)d_{\sf c}$. If all variable nodes of a randomly chosen SP are erased, the (average) probability of BP decoding failure is lower-bounded by

$$P_{\rm B}^{\rm SPBC} \ge {M \choose 2} \left(1 - \frac{M^2}{\left(\frac{w}{d_{\rm c}}M - 3\right)^{d_{\rm v}}}\right) P_{\mathcal{R}}$$

where $P_{\mathcal{R}}$ is the probability that two variable nodes from an SP of the code form a stopping set, given by (1).

Proof:

 \blacksquare Let $N_2^{\rm SP}$ denote the number of size-2 stopping sets formed by two VNs in an SP

Note that that

$$N_2^{\mathrm{SP}} = \sum_{0 \leq i < j \leq M} U_{ij} \quad \text{and} \quad \mathbb{E}\{N_2^{\mathrm{SP}}\} = \binom{M}{2} P(U_{ij} = 1) = \binom{M}{2} \mathbb{E}\{U_{ij}\}$$

and

$$\mathbb{E}\{U_{ij}\} = P_{\mathcal{R}}$$

We have

$$\begin{split} P_{\mathrm{B}}^{\mathrm{SPBC}} &= P(\text{ At least one stopping set in a SP} \) \\ &\geq P\left(N_{2}^{\mathrm{SP}} \geq 1\right) \\ &\geq \frac{\left(\mathbb{E}\{N_{2}^{\mathrm{SP}}\}\right)^{2}}{\mathbb{E}\{(N_{2}^{\mathrm{SP}})^{2}\}} \end{split}$$

Furthermore

$$\mathbb{E}\left\{\left(N_{2}^{\mathsf{SP}}\right)^{2}\right\} = \mathbb{E}\left\{\left(\sum_{1 \leq i < j \leq M} U_{ij}\right)^{2}\right\}$$

$$= \sum_{1 \leq i < j \leq M} \mathbb{E}\left\{U_{ij}^{2}\right\} + \sum_{\stackrel{(i,j) \neq (k,l)}{i < j,k < l}} \mathbb{E}\left\{U_{ij}U_{kl}\right\}$$

$$\leq \left(\frac{M}{2}\right) \mathbb{E}\left\{U_{ij}\right\} + \frac{2\left(\frac{M}{2}\right)\left(\left(\frac{M}{2}\right) - 1\right)}{\left(\frac{wM\frac{d_{v}}{d_{c}} - 2d_{v}}{d_{v}}\right)} \mathbb{E}\left\{U_{ij}\right\}$$

Finally

$$P_{B}^{SPBC} \ge \frac{\binom{M}{2}^{2} \mathbb{E}\{U_{ij}\}^{2}}{\binom{M}{2} \mathbb{E}\{U_{ij}\} + \frac{2\binom{M}{2}(\binom{M}{2}-1)}{\binom{wM\frac{d_{v}}{d_{v}}-2d_{v}}{d_{v}}} \mathbb{E}\{U_{ij}\}}$$

$$\ge \frac{\binom{M}{2} \mathbb{E}\{U_{ij}\}}{1 + \frac{2\binom{M}{2}}{\binom{wM\frac{d_{v}}{d_{v}}-2d_{v}}{d_{v}}}}$$

$$\stackrel{(a)}{\ge} \mathbb{E}\{N_{2}^{SP}\} \left(1 - \frac{2\binom{M}{2}}{\binom{wM\frac{d_{v}}{d_{v}}-2d_{v}}{d_{v}}}\right)$$

$$\ge \mathbb{E}\{N_{2}^{SP}\} \left(1 - \frac{M^{2}}{\binom{wM}{d_{v}}-3}\right)^{d_{v}}$$

where (a) is due to the fact that $\frac{1}{1+\tau} \geq 1-\tau$ for $\tau > -1$.

- Parity-Check Matrix of a Spatially Coupled LDPC Code
- MI Performance of LDPC Codes
- Analysis of SC-LDPC Codes over General Channels
- Burst erasure of complete spatial position
- Error Probability after Decoding with Burst Erasure
- The Block Frasure Channel

The Block Erasure Channel (BLEC)

lacktriangle Every SP is erased independently with probability p

$$\epsilon_t = \begin{cases} 1 & \text{with probability } p \\ 0 & \text{with probability } 1-p \end{cases}$$

Erasures far apart (in spatial dimension) do not interfere

The Block Erasure Channel (BLEC)

lacktriangle Every SP is erased independently with probability p

$$\epsilon_t = \begin{cases} 1 & \text{with probability } p \\ 0 & \text{with probability } 1-p \end{cases}$$

- Erasures far apart (in spatial dimension) do not interfere
- Analysis consists of three parts
 - (i) Partition SPs into segments of non-interfering erasures (at least w-1 non-erased positions separating segments). The expected number of SPs in such a segment is given by

$$\mathbb{E}\left[\tau_{i}\right] = \frac{1}{p} \left(\frac{1}{(1-p)^{w-1}} - 1\right) \approx (w-1) \left(1 + \frac{1}{2}(w-1)p + \frac{5}{6}(w-1)^{2}p^{2}\right)$$

The Block Erasure Channel (BLEC)

lacktriangle Every SP is erased independently with probability p

$$\epsilon_t = \begin{cases} 1 & \text{with probability } p \\ 0 & \text{with probability } 1-p \end{cases}$$

- Erasures far apart (in spatial dimension) do not interfere
- Analysis consists of three parts
 - (i) Partition SPs into segments of non-interfering erasures (at least w-1 non-erased positions separating segments). The expected number of SPs in such a segment is given by

$$\mathbb{E}\left[\tau_i\right] = \frac{1}{p} \left(\frac{1}{(1-p)^{w-1}} - 1\right) \approx (w-1) \left(1 + \frac{1}{2}(w-1)p + \frac{5}{6}(w-1)^2p^2\right)$$

(ii) There are N segments with $\sum_{i=1}^N \tau_i = L + w - 1.$ The average decoding failure is obtained as

$$P_{\mathrm{B}}^{\mathrm{BLEC}} = 1 - \mathbb{E}\left[\prod_{i=1}^{N}(1 - P_{e}^{(i)})\right] \lessapprox \frac{L + w - 1}{\mathbb{E}\left[\tau_{i}\right]}\mathbb{E}\left[P_{e}^{(1)}\right]$$

where $P_e^{(1)}$ is the error probability of a segment

The Block Erasure Channel

- Analysis consists of three parts
 - (iii) Finally, we compute $P_e^{(1)} = \sum_{i=1}^\infty Q_i$ where Q_i is the probability that a segment cannot be receovered if i SPs are erased. We consider decoding errors due to small stopping sets and decoding sets that cause the decoder to fail for any M (burst $> \beta_{\max}$). Putting all together

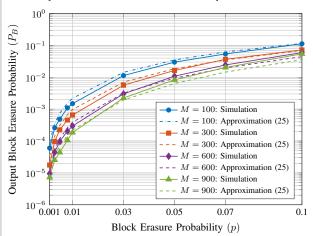
$$P_{\rm B}^{\rm BLEC} \approx (L+w-1)p(1-p)^{w-1} \left((1-p)^{w-1} \left[P_{\rm B}^{\rm SPBC} + p P_{\rm B}^{\rm 2PBC} \right] + \frac{p^2}{(1-p)^{w-1} + p} \right)$$

with

$$P_{\rm B}^{\rm 2PBC} \gtrsim p(1-p)^{w-1} [1 - (1-p)^{w-1}] \left(2 \binom{M}{2} q_0 + M^2 q_1 \right)$$

The Block Erasure Channel

 $[d_v = 3, d_c = 6, w = 4, L = 30]$ code ensemble



Approximations track true behavior closely, even for p as large as 0.1 and M as small as 100

 With toolbox of approximations, we can approximate codes for the multi-point-to-point scheme

