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* What £ “Inductive Bias”?

* Inductive Bias in Deep Learning:
The Role of Implicit Optimization Bias

* The “complexity measure” approach for
understanding Deep Learning

(break)

* Examples of Identifying the Implicit Bias and
“complexity measure”

e Squared Loss vs Logistic Loss

* Effect of initialization and other parameters

* Explicit Regularization vs Implicit Bias

e Can implicit bias be described in terms of a complexity measure?



Supervised Learning: find h: X’ = Y with small generalization error
L(h) = ]E(x,y)~1) [loss(h(x); y)]
based on samples S (hopefully S ~ D™) using learning rule:
A:SHh (e, (X XY > YY)

No Free Lunch: For any learning rule, there exists a source D (i.e. reality),

for which the learning rule yields expected error %

More formally for any A, m there exists D s.t. 3;+L(h*) = 0 but
m

1
E¢_pm [L(A(S))] = 57 m

Inductive Bias:

* Some realities (sources D) are less likely; design A to work well on
more likely realities

e.g., by preferring certain y|x (i.e. h(x)) over others

e Assumption or property of reality D under which A ensures good
generalization error

e.g., dh € H with low L(h)
e.g., 3h with low “complexity” c(h) and low L(h)



Flat Inductive Bias

“Flat” inductive bias: 3h™ € H with low L(h™)

(Almost) optimal learning rule:

Guarantee (in expectation over S ~ D™):

ERM;(S) = h = arg min L (h)

capacity(H)

L(ERM3:(S)) < L(h*) + Rpp(H) ~ L(h*) +
\
=>» can learn with O(capacity(H)) samples

m

For binary loss, capacity(H) = VCdim(H)
For linear predictors over d features, capacity(H) = d
Usually with d parameters, capacity(H) =~ 0(d)

For linear predictors with ||w||, < B, with logistic loss and
normalized data: capacity(H) = B?



Machine Learning

* We want model classes (hypothesis classes) that:
* Are expressive enough to capture reality well
* Have small enough capacity to allow generalization



Complexity Measure as Inductive Bias

Complexity measure: mapping c: Y+ —

[0, o]

Associated inductive bias: 3h* with small c(h") and small L(h")
Learning rule: SRM4,(S) = argmin L(h) , c(h)

e.g. argminL(h) +Ac(h) or

and choose A or B using cross-validation

Guarantee:
L(SRM3:(S)) <~ L(h*) +

E.g.:
e Degree of poly
* Sparsity
* [[wl|

argminL(h) s.t. c(h) <B

@ = {h|c(h) < B} |

_ 1L
capaczty(}[ C(h*))







Feed-Forward Neural Networks
(The Multilayer Perceptron)

X[3] "@ , hG(V,E),a,W (x)

z wlu = v]olu]
olv] = o( alv] )

Architecture:

* Directed Acyclic Graph G(V,E). Units (neurons) indexed by vertices in V.
* “Input Units” v; ...v4 € V, with no incoming edges and o[v;]| = x[i]

* “Output Unit” vy € V, hy(x) = 0[vgy,] /

e “Activation Function” 0: R — R. E.g. opg y(2) = 2]+

Parameters: |

* Weight w|u — v| foreachedgeu - v € E



Feed Forward Neural Networks

* Fix architecture (connection graph G (V, E), transfer o)
Hew o =1 fwlx) = output of net with weights w }

* Capacity / Generalization ability / Sample Complexity

* O(|E|) (number of edges, i.e. number of weights) -
(with threshold g, or with RELU and finite precision; RELU with inf precision: O(|E| - depth))

* Expressive Power / Approximation
* Any continuous function with huge network
* Lots of interesting things naturally with small networks
* Any time T computable function with network of size O(T)



Free Lunches

ML as an Engineering Paradigm: Use data and examples, instead of expert
knowledge and tedious programming, to automatically create efficient
systems that perform complex tasks

We only care about {h|h is an efficient system}

Free Lunch: TIME; = {h|h comp. in time T} has capacity O(T) and
hence learnable with O(T) samples, e.g. using ERM

Even better: PROG; = {program of length T} has capacity O(T)

Problem: ERM for above is not computable!
Modified ERM for TIME  (truncating exec. time) is NP-complete
P=NP =2 Universal Learning is possible! (Free Lunch)

Crypto is possible (one-way functions exist)
=» No poly-time learning algorithm for TIME
(that is: no poly-time A and uses poly(T) samples s.t. if Ah™ € TIME

with L(h*) = 0 then E[L(A(S))] < 0.4)



No Free (Computational) Lunch

* Statistical No-Free Lunch: For any learning rule A, there exists a source D
(i.e. reality), s.t. 3h* with L(h*) = 0 but IE[L(A(S))] ~ %

* Cheating Free Lunch: There exists A, s.t. for any reality D and any
efficiently computable h*, A learns a predictor almost as good as h*
(with #samples=0(runtime of h*), but a lot of time).

* Computational No-Free Lunch: For every computationally efficient
learning algorithm A, there is a reality D s.t. there is some comp. efficient

(poly-time) h* with L(h*) = 0 but E[L(A(S))] ~ -

* Inductive Bias: Assumption or property of reality D under which a learning
algorithm A runs efficiently and ensures good generalization error.

* H or c(h) are not sufficient inductive bias if ERM/SRM not efficiently
implementable, or implementation doesn’t always work (runs quickly and
returns actual ERM/SRM).




Feed Forward Neural Networks

Fix architecture (connection graph G (V, E), transfer o)
Hew o =1 fwlx) = output of net with weights w }

Capacity / Generalization ability / Sample Complexity

* O(|E|) (number of edges, i.e. number of weights) V

(with threshold &, or with RELU and finite precision; RELU with inf precision: O(|E| - depth))

Expressive Power / Approximation
* Any continuous function with huge network
 Lots of interesting things naturally with small networks V

* Any time T computable function with network of size O(T)
Computation / Optimization

* Even if function exactly representable with single hidden layer with
O(log d) units, even with no noise, and even if we allow a much larger ?

network when learning: no poly-time algorithm always works

[Kearns Valiant 94; Klivans Sherstov 06; Daniely Linial Shalev-Shwartz '14] .

* Magic property of reality that makes local search “work”
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 What is the relevant “complexity measure” (eg norm)?
 How is this minimized (or controlled) by the opt algorithm?

* How does it change if we change the opt algorithm?
| Peter L. Bartlett |




With Dropout
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SGD vs ADAM
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Results on Penn Treebank using 3-layer LSTM

[Wilson Roelofs Stern S Recht, “The Marginal Value of
Adaptive Gradient Methods in Machine Learning”, NIPS’17]



Different optimization algorithm
=» Different bias in optimum reached
=» Different Inductive bias
=>» Different generalization properties

Need to understand optimization alg. not just as reaching
some (global) optimum, but as reaching a specific optimum




Different optimization algorithm
=» Different bias in optimum reached
=» Different Inductive bias
=>» Different generalization properties

All Functions

Need to understand optimization alg. not just as reaching
some (global) optimum, but as reaching a specific optimum




The Deep Recurrent Residual Boosting Machine
Joe Flow, DeepFace Labs

Section 1: Introduction

We suggest a new amazing architecture and loss function
that is great for learning. All you have to do to learn is fit
the model on your training data

Section 2: Learning Contribution: our model
The model class h,, is amazing. Our learning method is:

.1
argmin .- Y7, loss(h, (x); ) (*

Section 3: Optimization
This is how we solve the optimization problem (*): [...]

Section 4: Experiments
It works!
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* Underdetermined non-sensical problem, lots of useless global min

e Since U,V full dim, no constraint on X, all the same non-sense global min

0.8 27?7
07 C3 Trainerror  Grad Descent on U, V— min || X||, solution
Test error (with inf. small stepsize and initialization)

_ 06 —> good generalization if Y (aprox) low rank
% 0.5 [Gunasekar Woodworth Bhojanapalli Neyshabur S 2017]
o4
3 When y = (4;, W*), W* low rank, A; RIP
¢ 03 [Yuanzhi Li, Hongyang Zhang and Tengyu Ma 2018]

0.2
0.1 1 J Not always min || X]|, !
0.0 _BPA WA [zhiyuan Li, Yuping Luo, Kaifeng Lyu ICLR 2021]

GDonX GDon U,V GDon U,V min|X||,
exact stepsize
linesearch  =0.01 n = 50, m = 300, A; iid Gaussian, X rank-2 ground truth
y=A(X*)+ N(0, 1073), Ytest = Atest (X*) + N (0, 1073)



Different optimization algorithm
=» Different bias in optimum reached
=» Different Inductive bias
=>» Different generalization properties

All Matrices
(all functions i X j — y;j)

Need to understand optimization alg. not just as reaching
some (global) optimum, but as reaching a specific optimum




Deep Learning

* Expressive Power
* We are searching over the space of all functions...
... but with what bias? What (implicit) assumptions?
 How does this bias look? Is it reasonable/sensible?

» Capacity / Generalization ability / Sample Complexity
 What’s the true complexity measure (inductive bias)?
 How does it control generalization?

e Computation / Optimization

* How and where does optimization bias us?
Under what conditions?



Ultimate Question: What is the true Inductive Bias? What makes reality
efficiently learnable by fitting a (huge) neural net with a specific algorithm?

The “complexity measure” approach

Identify c(h) s.t.
* Optimization algorithm biases towards low c(h)
* Horeality)y = thlc(h) < c(reality)} has low capacity
* Reality is well explained by low c(h)

 Mathematical questions:
 What is the bias of optimization algorithms?
* What is the capacity (=sample complexity) of the sublevel sets H.?

* Question about reality (scientific Q?): does it have low c(h)?



* Consider an under-constraint least-squares problem (n < m):

min || Aw — b||?
weRN?

A = Rmxn

* Claim: Gradient Descent (or SGD, or conjugate gradient descent, or
BFGS) converges to the least norm solution
‘min [lwll;

» Proof: iterates always spanned by rows of A (more details soon)



Implicit Bias in Least Squared

min || Aw — b||?
Gradient Descent (+Momentum) on w
> min [wll;
Gradient Descent on factorization W = UV
-> A(r]glvl)rl I/ ]|, with stepsizeN 0 and init \ 0, only in special cases
(commutative measurements; or incoherent problems)
AdaGrad onw

=» in some special cases Amir}?llwlloo, but not always,

and it depends on stepsize, adaptation parameters, momentum
Coordinate Descent (steepest descent w.r.t. ||w]||;)

=>» Related to, but not quite Amln lw|l; (Lasso)
(with stepsizeN 0 and particular tie-breaking = LARS)



Implicit Bias in Logistic Regression

arg min, L(w) = Z 2(yiw, x:))

?(z) = log(l + e %)

* Data {(x;, y;)}[%, linearly separable (3,,V;y;{w, x;) > 0)

* Where does gradient descent converge?
w(t) = w(t) —nVL(w(t))
« inf L(w) = 0, but minima unattainable
* GD diverges to infinity: w(t) — oo, L(W(t)) -0
w(t)
lw (Ol

* In what direction? What does converge to?

[Soudry Hoffer S 2017] based on [Telgarsky 2013 “Margins, shrinkage, and boosting”]



Implicit Bias in Logistic Regression

arg min, L(w) —Zﬂ(yxw ) e %

0(z) = log(l + e7%) o | ® o

Data {(x;, y;)}i2 linearly separable (3,,V;y;{w, x;) > 0)

Where does gradient descent converge?
w(t) = w(t) —nVL(w(t))
« inf L(w) = 0, but minima unattainable

* GD diverges to infinity: w(t) — oo, L(W(t)) -0

In what direction? What does ”:VVEBH converge to?
(t) w ~ .
Theorem: —— w = arg min||w|l, s.t.V;y;{w,x;) =1
||W(t)||2 ”WHZ g ” ”2 lyl< l)

[Soudry Hoffer S 2017] based on [Telgarsky 2013 “Margins, shrinkage, and boosting”]



Convergence to the max margin w. *

ow Fast is the Margin Maximized?
‘ w(t) B
wll ~ TIwl

(o)
=0

logt
Convergence of the margin itself:

| o we | (1
poax minyg(w, %) = miny; \roesm X = 0\ j5g

S

Contrast with convergence of the loss:
1
L(w(t)) =0 (?)

=>» Even after we get extremely small loss, need to continue optimizing in
order to maximize margin

*For data in general position. With degenerate data, O(loglogt /logt)



Objective loss

Classification error
8{]—_
60
ca 40
5
20
] = training 1 =— training
]l = validation ] = validation
a0 N e s S S ISRy
100 101 102 103 100 10M 102 1043
Epochs Epochs
Epoch 50 100 200 400 2000 4000
Lo norm 13.6 16.5 19.6 20.3 25.9 27.54
Train loss 0.1 0.03 0.02 0.002 10-% | 3-10°°
Train error 4% 1.2% 0.6% | 0.07% 0% 0%
Validation loss 0.52 0.55 0.77 0.77 1.01 1.18
Validation error | 12.4% | 10.4% | 11.1% | 9.1% | 8.92% 8.9%

Training a conv net using SGD+momentum on CFAIR10



Other Objectives and Opt Methods

Single linear unit, logistic loss
=» hard margin SVM solution

Multi-class problems with softmax loss
=» multiclass SVM solution

Steepest Descent w.r.t. ||w||

=>» arg min||w|| s.t.V;y;{w,x;) > 1
Coordinate Descent

= arg min||w||; s.t.V;y;{w,x;) =1

Matrix factorization problems L(U,V) = Y, £((4;, UV ")),
including 1-bit matrix completion

= arg min||W||; s.t.(4;, W) > 1



Different Asymptotics

* For least squares (or any other loss with attainable minimum):
* W, depends on initial point wy and stepsize n
* To get clean characterization, need to taken — 0
* If 0 is a saddle point, need to take wy — 0

* For monotone decreasing loss (eg logistic)
* W, does NOT depend on initial wy and stepsize n
* Don'tneedn » 0andwy — 0
* What happens at the beginning doesn’t effect w,



Single Overparametrized Linear Unit

Train single unit with SGD using logistic (“cross entropy”) loss

— Hard Margin SVM predictor
w(oo) o argmin||w||, s.t.V;y;{w,x;) =1

Even More Overparameterization:
Deep Linear Networks

Network implements a linear mapping:

fw(xX) = (Bw, x)

Training: same opt. problem as logistic regression:
min L(f,,) = mﬁin L(x (B, x))
w

Train w with SGD
— Hard Margin SVM predictor

Buw(ooy = argmin||Bll, s.t.V;yi(B, x;) = 1




L-1 hidden layers, h; € ]Rg, ?ach with (one channel) full-width cyclic “convolution” w, € RP:

hild] = ) wilklhy_[d +kmod D] hoye = (w,hy_y)
k=0

With single conv layer (L=2), training weights with SGD
2> argmin||DFT(B)||1 s.t.V;y;(B,x;) = 1

[mourier Transform |
With multiple conv layers

—> critical point of minllDFT(ﬁ)IIz/L s.t.V;yi(B,x;) =1

for £(z) = exp(—z), almost all linearly separable data sets and initializations w(0) and any
bounded stepsizes s.t. L — 0, and Aw(t) converge in direction

[Gunasekar Lee Soudry S 2018]
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e Binary matrix completion (also: reconstruction from linear measurements)
« X = UV is over-narametrization of all matrices X& R™*™

e GDonU,V ..

=>» implicitly minimize || X||. [Gunasekar Lee Soudry S 2018a]
* Linear Convolutional Network:
* Complex over- R - R 1

* GD on weights (or explicitly minimize ||weights||3)
=> implicitly min [[DFT(B)|[, forp = 2

- (sparsity in freq domain)

dep

) [Gunasekar Lee Soudry S 2018b]
All Functions



e Binary matrix completion (also: reconstruction from linear measurements)
« X = UV is over-parametrization of all matrices X€ R™*™
e GDon U,V

=>» implicitly minimize || X||. [Gunasekar Lee Soudry S 2018a]

* Linear Convolutional Network:
* Complex over-parametrization of all linear predictors 3
* GD on weights

=> implicitly min [[DFT(B)|[, forp = 2

depth

(sparsity in freq domain)

[Gunasekar Lee Soudry S 2018b]

* Infinite Width RelLU Net:
e Parametrization of essentially all functions h: R¢ — R
* GD on weights

=» implicitly minimize max( [|n"|dx ,|h' (=) + h’(-I—OO)I) (d=1)
| |8¢**Radon(h)| (d>1)

(need to define more carefully to handle non-smoothness; correction term for linear part)
[Savarese Evron Soudry S 2019][Ongie Willett Soudry S 2020][Chizat Bach 2020]



All Functions Parameter Space

Optimization Geometry and hence Inductive Bias effected by:
* Geometry of local search in parameter space

* Choice of parameterization




Artificial Neural Networks Deep Learning Computer Netwc

How is an Embedding layer useful
to alearning taskifitis just a dense
layer with no activation function?
If this 'linear hidden layer' is taken
out, the network should still be
able to learn the same function.

% _)g v 000

Answer Interesting Request More



e Binary matrix completion (also: reconstruction from linear measurements)
« X = UV is over-parametrization of all matrices X€ R™*™
« GDon U,V (or explicitly minimize ||U]|% + ||V]|%)
=>» implicitly minimize || X||. [Gunasekar Lee Soudry S 2018a]

* Linear Convolutional Network:
* Complex over-parametrization of all linear predictors 3
* GD on weights (or explicitly minimize ||weights||%)

=> implicitly min [[DFT(B)|[, forp = dezz,

- (sparsity in freq domain)

[Gunasekar Lee Soudry S 2018b]

* Infinite Width ReLU Net:
e Parametrization of essentially all functions h: R¢ — R
* GD on weights (or explicitly min [|[weights||5)

=» implicitly minimize max( [|R"|dx ,|h' (=) + h’(+00)|) (d=1)
| |8¢**Radon(h)| (d>1)

(need to define more carefully to handle non-smoothness; correction term for linear part)
[Savarese Evron Soudry S 2019][Ongie Willett Soudry S 2020][Chizat Bach 2020]



* Does Implicit Bias of Gradient Descent just boil down to
regularizing ||weights]||, ?

* Answer: sort of, at least asymptotically with logistic/exp
loss, for D-homogenous models (details soon)

..but we’ll later see that not quite



Model: F(w) = h,, Model Class: H = range(F)
f(w,x) = h,,(x) = prediction on x with params (“weights”) w

Linear models: f(w, x) = (B, x) F(w) = B,
Loss: Ls(w) = — % £(f (w, %), %)

D-homogenous: F(cw) = cPF(w), i.e. f(cw,x) = cPf(w, x)

* 1-homogenous: standard linear F(w) = w, f(w,x) = (w, x)

e 2-homogenous:
* Matrix factorization F(U,V) = UV

* 2-layer RelU: f(W,x) = 2, Wz,j[(WLj»x)L

* D-homogenous:

* D layer linear network

* D layer linear conv net

* D layer ReLU net
} )




flogistic (h(W), y) — lOg(]. + e_yh(W)) ~ e_yh(W) - fexp (h(W)r y)

N

Consider gradient descent w.r.t. logistic loss Ly (w) = ., 2(f (w, x;); yi)

(or other exp-tail loss) on a D-homogenous model f(w, x)

* 1-homogenous: standard linear F(w) = w, f(w,x) = (w, x)

e 2-homogenous:
* Matrix factorization F(U,V) = UV

* 2-layer RelU: f(IW,x) = )., W2,j[<W1,j»x>]+

 D-homogenous:

* D layer linear network
* D layer linear conv net

* D layer ReLU net
} )




'elogistic (h(W), y) — log(l + e_yh(W)) ~ e_yh(W) - gexp (h(W), y)

N

Consider gradient descent w.r.t. logistic loss Ly (w) = ., 2(f (w, x;); yi)

(or other exp-tail loss) on a D-homogenous model f(w, x):

Theorem [Nacson Gunasekar Lee S Soudry 2019][Lyu Li 2019]:
If Lo(w) — 0, and small enough stepsize (ensuring convergence in direction):

W, X first order stationary point of

*
arg min||w||, s.t.V;y;f(w,x;) = 1 )
Suggests implicit bias defined by Rp(h) = arg F{ngnhllwllz and
W)=
h,, = F(w,) « first order stationary point of (+%)

argminRg(h)s.t.y;f(x;) > 1

But need to be careful: f.o.s.p of (*) does not imply f.0.s.p of (**)



But what about squared loss?
£(h(w);y) = (h(w) — y)?

GDon Lg(w) = X; €(f (W, x;); ¥;)

What optimization choices and hyperparameters effect the
implicit bias and how? E.g.

* Stepsize
e |nitialization

Initialize w(0) = aw, (we will want to take @ — 0)
Stepsize— 0, soi.e. gradient flow:
w, = —VLs(w) and w,(0) = aw,

We are interested in w, (o0) = tlim w, (t)
—00



Consider a “linear diagonal net” (ie linear regression with squared parametrization):
Fw,x) = Z;(w, [12 = w_[[12)x[]] = (B(w), %) with B(w) = w? — w?
And initialization w,(0) = a1 (so that ,B(Wa(O)) = 0).

What’s the implicit bias of grad flow w.r.t square loss Ls(w) = Y;(f (w, x;) — y;)%?
Ba(e0) = lim f(wq (D))

fw,x) = wT diag(w) [J_”;]



B(t) = wi () —w_(6)? L =11Xp —yli3

wy(t) = =VL(t) = =2XTr(t) o ddw

r(t) = Xp(t) —y



B(t) = wi () —w_(6)? L=1IXB -yl

t
W, (t) = =VL() = =2XTr(t) o 2w, (t) w4 (t) = wy(0) o exp (—sz j r(7) dr)
0

t
w_(t) = =VL(t) = +2XTr(t) o 2w_(t)  w_(t) = w_(0) o exp <+2XTj (1) dT)
0

B(t) = a2(3_4XT fotr(r) at _ e4XT fot (1) dr) r(t) = XB(t) —y

gr(r)dr e R™ ]

B(o0) = a? (e‘XTS — eXTS) = 2a%sinhX's

XB(0) =y



minQ(f) s.t. XL =y
VQ(B) =XTv L(o0) = a? (e‘XTS — eXTS) = 2a%sinh XTs

Xp" =y Xp(o) =y



VQ(B) = Sinh_lz%z

} ; . AN 2

min Q(B) s.t. XL =y

ve(pr) = XTv sinh~1

XB =y XB(0) =y



Linear Diagonal Nets
fw,x) =%;w [j1? =w_[jI))x[j1 = (B(w),x)  with f(w) = wF —w?
With initialization w,(0) = a1 (so that ,B(Wa(())) = 0).

Implicit bias of grad flow w.r.t square loss: () = arg )1?[1{1:1}1’ Q.(B)

where Q,(B) = X;q (%) and q(b) =2 —+/4+ b2 + bsinh™! (g)

Induced dynamics:

fu = B3 + 40t O VL(B)

q(z)

=20 =15 -10 =5 0 5 10 15 20

a—>00 L
If « — oo (Kernel Regime): f,(c0) — B, = arg)arglin 1512
=y

-0 A
If « = 0 (“Rich” Regime): 3, () i P11 = arg)}qﬁlin 151l
=y



B, (c0) = arg min Q,(B)

XB=y

where Q, () = qu (%) and q(b) =2 —+v4 + b% + bsinh™?! (g)

—-20 -15 -10 -5

10 15 20
z

Theorem 2. Forany 0 < € < d,

_ 24 d
aSmiﬂ{(2(1+5) 1BLlly) 2 sexp (— >} - ‘

B
el1B5. 1, )

) <(1+e€ Bl
Theorem 3. For any e > 0

2
a > \/Q(I—I—e) (1—1— E) 18721, = ‘

Ba

2 . 02
) < 1+ 18]



Population Error

d = 1000,

Sparse Learning

y; = {B*,x;) + N(0,0.01)
”.8*”0 =5,

m = 100

L1 nor

0.003

0.009

0.024

0.067

0.184 0.508 0.0153 0.0357

0.0834

0.1947

0.4549

L2 no



Sparse Learning

y; = (B, x;) + N(0,0.01)
d =1000, |IB*ll, =k

How small does a need to be to get L(,Ba(OO)) < 0.025

10_1?

10_2?
10_3€
10_4€

10_5€

a

10_6€

100 200 300 400 500



s implicit bias of GD just €, in param
space + mapping to func space?

s initializing to w(0) = a1 the same as regularizing distance to a1?
R _ - _ 2\ _ :
g = F (arg, min lw — a11) = arg min R.(6)

Where R, () = F(rglv%rzlﬂ”W — alll3

o




s implicit bias of GD just €, in param
space + mapping to func space?

s initializing to w(0) = a1 the same as regularizing distance to a1?
R _ - _ 2\ _ :
gl = F (arg, min lw —a1l3) = arg min R,(8)

Where R, () = F(rglv%rzlﬁ”W — alll3

R.(B) =X (%) where r(b) is solution of quartic equation:
r*—6r3+(12-2b)r?2 —-—(B8+10b)r+b?+b*=0




Deep Diagonal Linear Net
B(t) = wi(®)P —w_(t)°




Deep Diagonal Linear Net

B(t) = wi ()P —w_(t)P r(t) = XB(t) —y
t 5 t e
B(t) = aP ((1 +aP72D(D — Z)XTJ r(7) dr) — (1 —aP2D(D — 2)XTf r(7) dr) )
0 0

KKT formin Q(B) s.t. XB = y: [ s =a’?D(D - 2) f;@

VQ(B) =X"v L(0) =aPlhy(XTs)
Xp" =y XB(0) =y \

[ hp(z) = aP ((1 + aP2D(D — 2)z)D__—12 —(1—=aP2D(D — Z)Z)D___12> J

dp :fh51

0B = av (%)

l



Deep Diagonal Linear Net
B =wi (0P —w (0P () =argminQ, (P/ ) st xp =y

:qD(Z)

—— Depth 2
— Depth 3
—— Depth &
—— Depth 15

N
. .
hp(2) = aP ((1 +aP~2D(D - 2)z)D2 — (1 — aP~2D(D - z)z)m)

dp =fh51

Qe lB) = ) av (%)



Deep Diagonal Linear Net
B =wi (0P —w (0P () =argminQ, (P/ ) st xp =y

:CID(Z)
: — Depth 2
7 Depth 3
—— Depth 5
—— Depth 15
a—0 _
Forall depth D = 2, (o) — arg)ggun 1811
=y
 Contrast with explicit reg: For R, (B) = min ||W —alll5, R,(B) = ||,8||z/D
B=w?-wP

also observed by [Arora Cohen Hu Luo 2019]

* Also with logistic loss, §(o0) — « SOSP of [IBll2/, [Gunasekar Lee Soudry S[SEFE ;812}

* With sq loss, always || - ||{, but we get there if quicker depth is higher



Logistic Loss vs Squared Loss

Depth two: 2 ~

 Square loss: f() arg)ggli:r; Q.,(B)

* Logistic loss: V,(o0) arg)grﬁl,izr}/||ﬁ||1

Deeper Diagonal Nets:
a—0
 Squared loss, f(o0) — arg;rﬂlin 1811
=y

* Logistic loss, f(o0) < SOSP of II,BIIz/D

Depth=3

[Moroshko Gunasekar Woodworth Lee S Soudry 2020 “Implicit Bias in
Deep Linear Classification: Initialization Scale vs Training Accuracy”]



Implicit bias of optimization
(and hence inductive bias) effected by:

Parametrization (architecture)

Optimization “geometry” (GD vs AdaGrad vs coordinate methods)

Type (asymptotics) of loss function

Initialization

Optimization accuracy

 Early stopping

* Not so early stopping

Stepsize, momentum, other opt. parameters

Stochasticity (SGD vs GD, mini-batch size, label noise)

?7?

[Cheng Chatterji Bartlett Jordan 2018][HaoChen Wei Lee Ma 2020]



The “complexity measure” approach

Identify c(h) s.t.
* Optimization algorithm biases towards low c(h)
* Hereatity)y = thlc(h) < c(reality)} has low capacity
 Reality is well explained by low c(h)

Can optimization bias can be described as argminc(h) s.t.Lg(h) = 0 ??
* Not always [Dauber Feder Koren Livni 2020]

* Approximately? Enough to explain generalization??

Ultimate Question: What is the true Inductive Bias? What makes reality
efficiently learnable by fitting a (huge) neural net with a specific algorithm?



Deep Learning

* Expressive Power
* We are searching over the space of all functions...
... but with what inductive bias?
 How does this bias look in function space?
* |s it reasonable/sensible?

* Capacity / Generalization ability / Sample Complexity
 What’s the true complexity measure (inductive bias)?
* How does it control generalization?
e Computation / Optimization
* How and where does optimization bias us? Under what
conditions?

* Magic property of reality under which deep learning “works”



