
Explicit and Implicit Inductive Bias
in Deep Learning

Nati Srebro (TTIC)

Based on work with Behnam Neyshabur (TTIC→Google), Suriya Gunasekar (TTIC→MSR),
Ryota Tomioka (TTIC→MSR), Srinadh Bhojanapalli (TTIC→Google),
Blake Woodworth, Pedro Savarese, David McAllester (TTIC), Greg Ongie, Becca Willett (Chicago),
Daniel Soudry, Elad Hoffer, Mor Shpigel, Edward Moroshko, Itay Golan (Technion),
Shahar Azulai, Amir Globerson (Tel-Aviv), Ziwei Ji, Matus Telgarsky (UIUC),
Ashia Wilson, Becca Roelofs, Mitchel Stern, Ben Recht (Berkeley),
Russ Salakhutdinov (CMU), Jason Lee, Zhiyuan Li (Princeton), Yann LaCun (NYU/Facebook)

Plan

• What is “Inductive Bias”?

• Inductive Bias in Deep Learning:
The Role of Implicit Optimization Bias

• The “complexity measure” approach for
understanding Deep Learning

(break)

• Examples of Identifying the Implicit Bias and
“complexity measure”
• Squared Loss vs Logistic Loss
• Effect of initialization and other parameters
• Explicit Regularization vs Implicit Bias
• Can implicit bias be described in terms of a complexity measure?

do I mean by

• Supervised Learning: find ℎ:𝒳 → 𝒴 with small generalization error
𝐿 ℎ = 𝔼 𝑥,𝑦 ~𝒟 𝑙𝑜𝑠𝑠 ℎ 𝑥 ; 𝑦

based on samples 𝑆 (hopefully 𝑆 ∼ 𝒟𝑚) using learning rule:

𝐴: 𝑆 ↦ ℎ (i.e. 𝐴: 𝒳 × 𝒴 ∗ → 𝒴𝒳)

• No Free Lunch: For any learning rule, there exists a source 𝒟 (i.e. reality),
for which the learning rule yields expected error ½

• More formally for any 𝐴, 𝑚 there exists 𝒟 s.t. ∃ℎ∗𝐿 ℎ∗ = 0 but

𝔼𝑆∼𝒟𝑚 𝐿 𝐴 𝑆 ≥
1

2
−

𝑚

2 𝒳

• Inductive Bias:

• Some realities (sources 𝒟) are less likely; design 𝐴 to work well on
more likely realities

e.g., by preferring certain 𝑦|𝑥 (i.e. ℎ(𝑥)) over others

• Assumption or property of reality 𝒟 under which 𝐴 ensures good
generalization error

e.g., ∃ℎ ∈ ℋ with low 𝐿(ℎ)

e.g., ∃ℎ with low “complexity” 𝑐(ℎ) and low 𝐿(ℎ)

• “Flat” inductive bias: ∃ℎ∗ ∈ ℋ with low 𝐿(ℎ∗)

• (Almost) optimal learning rule:
𝐸𝑅𝑀ℋ 𝑆 = ෠ℎ = argmin

ℎ∈ℋ
𝐿𝑆(ℎ)

• Guarantee (in expectation over 𝑆 ∼ 𝒟𝑚):

𝐿 𝐸𝑅𝑀ℋ 𝑆 ≤ 𝐿 ℎ∗ +ℛ𝑚 ℋ ≈ 𝐿 ℎ∗ +
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ

𝑚

➔ can learn with 𝑂(𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ) samples

• E.g.

• For binary loss, 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ = 𝑉𝐶𝑑𝑖𝑚(𝐻)

• For linear predictors over 𝑑 features, 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ = 𝑑

• Usually with 𝑑 parameters, 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ ≈ ෨𝑂(𝑑)

• For linear predictors with 𝑤 2 ≤ 𝐵, with logistic loss and
normalized data: 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ = 𝐵2

Flat Inductive Bias

Machine Learning

• We want model classes (hypothesis classes) that:
• Are expressive enough to capture reality well

• Have small enough capacity to allow generalization

reality

Complexity Measure as Inductive Bias
• Complexity measure: mapping 𝑐: 𝒴𝒳 → [0,∞]

• Associated inductive bias: ∃ℎ∗ with small 𝑐(ℎ∗) and small 𝐿(ℎ∗)

• Learning rule: 𝑆𝑅𝑀ℋ 𝑆 = argmin 𝐿 ℎ , 𝑐(ℎ)

e.g. argmin 𝐿 ℎ + 𝜆 𝑐(ℎ) or argmin 𝐿 ℎ s.t. 𝑐 ℎ ≤ 𝐵

and choose 𝜆 or 𝐵 using cross-validation

• Guarantee:

𝐿 𝑆𝑅𝑀ℋ 𝑆 ≤≈ 𝐿 ℎ∗ +
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ𝑐 ℎ∗

𝑚

• E.g.:

• Degree of poly

• Sparsity

• ‖𝑤‖

ℋ𝐵 = ℎ 𝑐 ℎ ≤ 𝐵

reality

Feed-Forward Neural Networks
(The Multilayer Perceptron)

𝑣1

𝑣2

𝑣3

𝑣𝑑
𝑢

𝑣

𝑣𝑜𝑢𝑡

Architecture:

• Directed Acyclic Graph G(V,E). Units (neurons) indexed by vertices in V.

• “Input Units” 𝑣1…𝑣𝑑 ∈ 𝑉, with no incoming edges and 𝑜 𝑣𝑖 = 𝑥[𝑖]

• “Output Unit” 𝑣𝑜𝑢𝑡 ∈ 𝑉, ℎ𝑤 𝑥 = 𝑜 𝑣𝑜𝑢𝑡

• “Activation Function” 𝜎:ℝ → ℝ. E.g. 𝜎𝑅𝐸𝐿𝑈 𝑧 = 𝑧 +

Parameters:

• Weight 𝑤[𝑢 → 𝑣] for each edge 𝑢 → 𝑣 ∈ 𝐸

𝑎[𝑣] = ෍

𝑢→𝑣∈𝐸

𝑤[𝑢 → 𝑣] 𝑜[𝑢]

𝑜 𝑣 = 𝜎(𝑎 𝑣)

𝑥[1]

𝑥[2]

𝑥[3]

𝑥[𝑑]

⋯

ℎ𝐺 𝑉,𝐸 ,𝜎,𝑤 𝑥

Feed Forward Neural Networks
• Fix architecture (connection graph 𝐺(𝑉, 𝐸), transfer 𝜎)

ℋ𝐺 𝑉,𝐸 ,𝜎 = 𝑓𝑤 𝑥 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑛𝑒𝑡 𝑤𝑖𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤

• Capacity / Generalization ability / Sample Complexity

• ෩𝑶(𝑬) (number of edges, i.e. number of weights)
(with threshold 𝜎, or with RELU and finite precision; RELU with inf precision: ෩Θ 𝐸 ⋅ 𝑑𝑒𝑝𝑡ℎ)

• Expressive Power / Approximation

• Any continuous function with huge network

• Lots of interesting things naturally with small networks

• Any time T computable function with network of size ෩𝑶(𝑻)

Free Lunches
• ML as an Engineering Paradigm: Use data and examples, instead of expert

knowledge and tedious programming, to automatically create efficient
systems that perform complex tasks

• We only care about ℎ ℎ is an efficient system

• Free Lunch: 𝑻𝑰𝑴𝑬𝑻 = ℎ ℎ comp. in time 𝑇 has capacity 𝑂(𝑇) and
hence learnable with 𝑂(𝑇) samples, e.g. using ERM

• Even better: 𝑷𝑹𝑶𝑮𝑻 = program of length T has capacity 𝑂(𝑇)

• Problem: ERM for above is not computable!

• Modified ERM for 𝑻𝑰𝑴𝑬𝑻 (truncating exec. time) is NP-complete

• P=NP ➔ Universal Learning is possible! (Free Lunch)

• Crypto is possible (one-way functions exist)
➔ No poly-time learning algorithm for 𝑻𝑰𝑴𝑬𝑻
(that is: no poly-time 𝐴 and uses 𝑝𝑜𝑙𝑦(𝑇) samples s.t. if ∃ℎ∗ ∈ 𝑇𝐼𝑀𝐸𝑇
with 𝐿 ℎ∗ = 0 then 𝔼 𝐿 𝐴 𝑆 ≤ 0.4)

No Free (Computational) Lunch
• Statistical No-Free Lunch: For any learning rule A, there exists a source 𝒟

(i.e. reality), s.t. ∃ℎ∗ with 𝐿 ℎ∗ = 0 but 𝔼 𝐿 𝐴 𝑆 ≈
1

2
.

• Cheating Free Lunch: There exists A, s.t. for any reality 𝒟 and any
efficiently computable 𝒉∗, 𝐴 learns a predictor almost as good as ℎ∗

(with #samples=O(runtime of ℎ∗), but a lot of time).

• Computational No-Free Lunch: For every computationally efficient
learning algorithm 𝑨, there is a reality 𝒟 s.t. there is some comp. efficient

(poly-time) ℎ∗ with 𝐿 ℎ∗ = 0 but 𝔼 𝐿 𝐴 𝑆 ≈
1

2
.

• Inductive Bias: Assumption or property of reality 𝒟 under which a learning
algorithm 𝐴 runs efficiently and ensures good generalization error.

• ℋ or 𝑐(ℎ) are not sufficient inductive bias if ERM/SRM not efficiently
implementable, or implementation doesn’t always work (runs quickly and
returns actual ERM/SRM).

Feed Forward Neural Networks
• Fix architecture (connection graph 𝐺(𝑉, 𝐸), transfer 𝜎)

ℋ𝐺 𝑉,𝐸 ,𝜎 = 𝑓𝑤 𝑥 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑛𝑒𝑡 𝑤𝑖𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤

• Capacity / Generalization ability / Sample Complexity

• ෩𝑶(𝑬) (number of edges, i.e. number of weights)
(with threshold 𝜎, or with RELU and finite precision; RELU with inf precision: ෩Θ 𝐸 ⋅ 𝑑𝑒𝑝𝑡ℎ)

• Expressive Power / Approximation

• Any continuous function with huge network

• Lots of interesting things naturally with small networks

• Any time T computable function with network of size ෩𝑶(𝑻)

• Computation / Optimization

• Even if function exactly representable with single hidden layer with
Θ log𝑑 units, even with no noise, and even if we allow a much larger
network when learning: no poly-time algorithm always works
[Kearns Valiant 94; Klivans Sherstov 06; Daniely Linial Shalev-Shwartz ’14]

• Magic property of reality that makes local search “work”

[Neyshabur Tomioka S ICLR’15]

[Neyshabur Tomioka S ICLR’15]

Path
0

0.5

1

T
e

s
t

E
rr

o
r

1997

Norm

[Neyshabur Tomioka S ICLR’15]

Path
0

0.5

1

T
e

s
t

E
rr

o
r

1997

• What is the relevant “complexity measure” (eg norm)?

• How is this minimized (or controlled) by the opt algorithm?

• How does it change if we change the opt algorithm?

Norm

Cross-Entropy
Training Loss

0/1 Training Error 0/1 Test Error

M
N

IS
T

0 50 100 150 200 250 300
0.015

0.02

0.025

0.03

0.035

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

0 50 100 150 200 250 300
0.4

0.42

0.44

0.46

0.48

0.5
Path-SGD
SGD

C
IF

A
R

-1
0

0 50 100 150 200 250 300
0.4

0.42

0.44

0.46

0.48

0.5

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

SV
H

N

0 100 200 300 400
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0 100 200 300 400
0

0.1

0.2

0.3

0.4

0 100 200 300 400
0

0.5

1

1.5

2

2.5

0 100 200 300 400
0.65

0.7

0.75

0 100 200 300 400
0

0.2

0.4

0.6

0.8

0 100 200 300 400
0

1

2

3

4

5

Epoch Epoch

C
IF

A
R

-1
0

0

W
it

h
 D

ro
p

o
u

t

[Neyshabur Salakhudtinov S NIPS’15]

SGD vs ADAM

Te
st

 E
rr

o
r

(P
re

p
le

xi
ty

)

Tr
ai

n
iE

rr
o

r
(P

re
p

le
xi

ty
)

Results on Penn Treebank using 3-layer LSTM

[Wilson Roelofs Stern S Recht, “The Marginal Value of
Adaptive Gradient Methods in Machine Learning”, NIPS’17]

Different optimization algorithm
➔ Different bias in optimum reached

➔ Different Inductive bias
➔ Different generalization properties

Need to understand optimization alg. not just as reaching
some (global) optimum, but as reaching a specific optimum

Different optimization algorithm
➔ Different bias in optimum reached

➔ Different Inductive bias
➔ Different generalization properties

Need to understand optimization alg. not just as reaching
some (global) optimum, but as reaching a specific optimum

All Functions

The Deep Recurrent Residual Boosting Machine
Joe Flow, DeepFace Labs

Section 1: Introduction
We suggest a new amazing architecture and loss function
that is great for learning. All you have to do to learn is fit
the model on your training data

Section 2: Learning Contribution: our model
The model class ℎ𝑤 is amazing. Our learning method is:

𝐚𝐫𝐠𝐦𝐢𝐧
𝒘

𝟏

𝒎
σ𝒊=𝟏
𝒎 𝒍𝒐𝒔𝒔(𝒉𝒘 𝒙 ; 𝒚) (*)

Section 3: Optimization
This is how we solve the optimization problem (*): […]

Section 4: Experiments
It works!

min
𝑋∈ℝ𝑛×𝑛

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑋 − 𝑦 2
2 ≡ min

𝑈,𝑉∈ℝ𝑛×𝑛
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑈𝑉⊤ − 𝑦 2

2

• Underdetermined non-sensical problem, lots of useless global min

• Since 𝑈, 𝑉 full dim, no constraint on 𝑋, all the same non-sense global min

𝑈 ×

2 4 5 1 4 2
3 1 2 2 5 4
4 2 4 1 3 1
3 3 4 2 4
2 3 1 4 3 2

2 2 1 4 5
2 4 1 4 2 3

1 3 1 1 4 3
4 2 2 5 3 1

𝒚 𝑉⊤𝑋 =≈

Grad Descent on 𝑈, 𝑉
???

min 𝑿 ∗ solution
(with inf. small stepsize and initialization)
→ good generalization if Y (aprox) low rank

[Gunasekar Woodworth Bhojanapalli Neyshabur S 2017]

When 𝑦 = 𝑨𝑖 ,𝑊
∗ , 𝑊∗ low rank, 𝑨𝑖 RIP

[Yuanzhi Li, Hongyang Zhang and Tengyu Ma 2018]

Not always min 𝑿 ∗ !
[Zhiyuan Li, Yuping Luo, Kaifeng Lyu ICLR 2021]

GD on 𝑋 GD on 𝑈, 𝑉
exact

linesearch

GD on 𝑈, 𝑉
stepsize

=0.01

min 𝑋 ∗

Different optimization algorithm
➔ Different bias in optimum reached

➔ Different Inductive bias
➔ Different generalization properties

Need to understand optimization alg. not just as reaching
some (global) optimum, but as reaching a specific optimum

All Matrices
(all functions 𝒊 × 𝒋 → 𝒚𝒊𝒋)

Deep Learning

• Expressive Power

• We are searching over the space of all functions…

… but with what bias? What (implicit) assumptions?

• How does this bias look? Is it reasonable/sensible?

• Capacity / Generalization ability / Sample Complexity

• What’s the true complexity measure (inductive bias)?

• How does it control generalization?

• Computation / Optimization

• How and where does optimization bias us?
Under what conditions?

Ultimate Question: What is the true Inductive Bias? What makes reality
efficiently learnable by fitting a (huge) neural net with a specific algorithm?

The “complexity measure” approach

Identify 𝑐(ℎ) s.t.

• Optimization algorithm biases towards low 𝑐(ℎ)

• ℋ𝑐 𝑟𝑒𝑎𝑙𝑖𝑡𝑦 = ℎ 𝑐 ℎ ≤ 𝑐(𝑟𝑒𝑎𝑙𝑖𝑡𝑦) has low capacity

• Reality is well explained by low 𝑐 ℎ

• Mathematical questions:

• What is the bias of optimization algorithms?

• What is the capacity (≡sample complexity) of the sublevel sets ℋ𝑐?

• Question about reality (scientific Q?): does it have low 𝑐(ℎ)?

Simple Example: Least Squares

• Consider an under-constraint least-squares problem (𝑛 < 𝑚):
min
𝑤∈ℝ𝑛

‖𝐴𝑤 − 𝑏‖2

𝐴 ∈ ℝ𝑚×𝑛

• Claim: Gradient Descent (or SGD, or conjugate gradient descent, or
BFGS) converges to the least norm solution

min
𝐴𝑤=𝑏

𝑤 2

➢Proof: iterates always spanned by rows of 𝐴 (more details soon)

Implicit Bias in Least Squared
min ‖𝐴𝑤 − 𝑏‖2

• Gradient Descent (+Momentum) on 𝑤

➔ min
𝐴𝑤=𝑏

𝑤 2

• Gradient Descent on factorization 𝑊 = 𝑈𝑉

➔ min
𝐴 𝑊 =𝑏

𝑊 ∗ with stepsize↘ 0 and init ↘ 0, only in special cases

(commutative measurements; or incoherent problems)

• AdaGrad on 𝑤

➔ in some special cases min
𝐴𝑤=𝑏

𝑤 ∞, but not always,

and it depends on stepsize, adaptation parameters, momentum

• Coordinate Descent (steepest descent w.r.t. 𝑤 1)

➔ Related to, but not quite min
𝐴𝑤=𝑏

𝑤 1 (Lasso)

(with stepsize↘ 0 and particular tie-breaking ≈ LARS)

Implicit Bias in Logistic Regression

arg min
𝑤∈ℝ𝑛

ℒ 𝑤 =෍

𝑖=1

𝑚

ℓ 𝑦𝑖 𝑤, 𝑥𝑖

ℓ 𝑧 = log 1 + 𝑒−𝑧

• Data 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑚 linearly separable (∃𝑤∀𝑖𝑦𝑖 𝑤, 𝑥𝑖 > 0)

• Where does gradient descent converge?
𝑤 𝑡 = 𝑤 𝑡 − 𝜂𝛻ℒ(𝑤(𝑡))

• inf ℒ 𝑤 = 0, but minima unattainable

• GD diverges to infinity: 𝑤 𝑡 → ∞, ℒ 𝑤 𝑡 → 0

• In what direction? What does
𝑤 𝑡

𝑤 𝑡
converge to?

[Soudry Hoffer S 2017] based on [Telgarsky 2013 “Margins, shrinkage, and boosting”]

Implicit Bias in Logistic Regression

arg min
𝑤∈ℝ𝑛

ℒ 𝑤 =෍

𝑖=1

𝑚

ℓ 𝑦𝑖 𝑤, 𝑥𝑖

ℓ 𝑧 = log 1 + 𝑒−𝑧

• Data 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑚 linearly separable (∃𝑤∀𝑖𝑦𝑖 𝑤, 𝑥𝑖 > 0)

• Where does gradient descent converge?
𝑤 𝑡 = 𝑤 𝑡 − 𝜂𝛻ℒ(𝑤(𝑡))

• inf ℒ 𝑤 = 0, but minima unattainable

• GD diverges to infinity: 𝑤 𝑡 → ∞, ℒ 𝑤 𝑡 → 0

• In what direction? What does
𝑤 𝑡

𝑤 𝑡
converge to?

• Theorem:
𝑤 𝑡

𝑤 𝑡 2
→

ෝ𝑤

ෝ𝑤 2
ෝ𝑤 = argmin 𝑤 2 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝑤, 𝑥𝑖 ≥ 1

[Soudry Hoffer S 2017] based on [Telgarsky 2013 “Margins, shrinkage, and boosting”]

How Fast is the Margin Maximized?

Convergence to the max margin ෝ𝑤: *
𝑤 𝑡

𝑤 𝑡
−

ෝ𝑤

ෝ𝑤
= 𝑂

1

log 𝑡

Convergence of the margin itself:

max
𝑤 ≤1

min
𝑖
𝑦𝑖⟨𝑤, 𝑥𝑖⟩ − min

𝑖
𝑦𝑖

𝑤 𝑡

𝑤 𝑡
, 𝑥𝑖 = 𝑂

1

log 𝑡

Contrast with convergence of the loss:

ℒ 𝑤 𝑡 = 𝑂
1

𝑡

➔Even after we get extremely small loss, need to continue optimizing in
order to maximize margin

*For data in general position. With degenerate data, 𝑂 log log 𝑡 / log 𝑡

Training a conv net using SGD+momentum on CFAIR10

Other Objectives and Opt Methods
• Single linear unit, logistic loss

➔ hard margin SVM solution (regardless of init, stepsize)

• Multi-class problems with softmax loss
➔multiclass SVM solution (regardless of init, stepsize)

• Steepest Descent w.r.t. ‖𝑤‖

➔ argmin 𝑤 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝑤, 𝑥𝑖 ≥ 1 (regardless of init, stepsize)

• Coordinate Descent

➔ argmin 𝑤 1 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝑤, 𝑥𝑖 ≥ 1 (regardless of init, stepsize)

• Matrix factorization problems ℒ 𝑈, 𝑉 = σ𝑖 ℓ 𝐴𝑖 , 𝑈𝑉
⊤ ,

including 1-bit matrix completion

➔ argmin 𝑊 𝑡𝑟 𝑠. 𝑡. 𝐴𝑖 ,𝑊 ≥ 1 (regardless of init)

Different Asymptotics

• For least squares (or any other loss with attainable minimum):
• 𝑤∞ depends on initial point 𝑤0 and stepsize 𝜂

• To get clean characterization, need to take 𝜂 → 0

• If 0 is a saddle point, need to take 𝑤0 → 0

• For monotone decreasing loss (eg logistic)
• 𝑤∞ does NOT depend on initial 𝑤0 and stepsize 𝜂

• Don’t need 𝜂 → 0 and 𝑤0 → 0

• What happens at the beginning doesn’t effect 𝑤∞

Single Overparametrized Linear Unit

Train single unit with SGD using logistic (“cross entropy”) loss
→ Hard Margin SVM predictor
𝑤 ∞ ∝ argmin 𝑤 2 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝑤, 𝑥𝑖 ≥ 1

Even More Overparameterization:
Deep Linear Networks

Network implements a linear mapping:
𝑓𝑤 𝑥 = ⟨𝛽𝑤 , 𝑥⟩

Training: same opt. problem as logistic regression:
min
𝑤

ℒ(𝑓𝑤) ≡ min
𝛽

ℒ 𝑥 ↦ 𝛽, 𝑥

Train 𝑤 with SGD
→ Hard Margin SVM predictor
𝛽𝑤(∞) → argmin 𝛽 2 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

Linear Conv Nets

L-1 hidden layers, ℎ𝑙 ∈ ℝ𝑛, each with (one channel) full-width cyclic “convolution” 𝑤ℓ ∈ ℝ𝐷:

ℎ𝑙 𝑑 = ෍

𝑘=0

𝐷−1

𝑤𝑙 𝑘 ℎ𝑙−1[𝑑 + 𝑘 𝑚𝑜𝑑 𝐷] ℎ𝑜𝑢𝑡 = 𝑤𝐿, ℎ𝐿−1

With single conv layer (L=2), training weights with SGD

→ 𝐚𝐫𝐠𝐦𝐢𝐧 𝑫𝑭𝑻(𝜷) 𝟏 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

With multiple conv layers

→ critical point of 𝐦𝐢𝐧 𝑫𝑭𝑻(𝜷) ൗ𝟐 𝑳
𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

for ℓ 𝑧 = exp(−𝑧), almost all linearly separable data sets and initializations 𝑤(0) and any
bounded stepsizes s.t. ℒ → 0, and Δ𝑤(𝑡) converge in direction

Discrete Fourier Transform

[Gunasekar Lee Soudry S 2018]

min 𝜷 𝟐 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

min 𝑫𝑭𝑻(𝜷) ൗ𝟐 𝑳
𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

min 𝜷 ൗ𝟐 𝑳
𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

𝑳 = 𝟐

𝑳 = 𝟓

𝑳 = 𝟓

• Binary matrix completion (also: reconstruction from linear measurements)

• 𝑿 = 𝑈𝑉 is over-parametrization of all matrices 𝑋∈ ℝ𝑛×𝑚

• GD on 𝑈, 𝑉 (or explicitly minimize 𝑼 𝑭
𝟐 + 𝑽 𝑭

𝟐)

➔ implicitly minimize 𝑋 ∗ [Gunasekar Lee Soudry S 2018a]

• Linear Convolutional Network:

• Complex over-parametrization of all linear predictors 𝛽

• GD on weights (or explicitly minimize 𝒘𝒆𝒊𝒈𝒉𝒕𝒔 𝟐
𝟐)

➔ implicitly min 𝑫𝑭𝑻 𝜷 𝒑 for 𝑝 =
2

𝑑𝑒𝑝𝑡ℎ
(sparsity in freq domain)

[Gunasekar Lee Soudry S 2018b]
All Functions

• Binary matrix completion (also: reconstruction from linear measurements)
• 𝑿 = 𝑈𝑉 is over-parametrization of all matrices 𝑋∈ ℝ𝑛×𝑚

• GD on 𝑈, 𝑉 (or explicitly minimize 𝑼 𝑭
𝟐 + 𝑽 𝑭

𝟐)
➔ implicitly minimize 𝑋 ∗ [Gunasekar Lee Soudry S 2018a]

• Linear Convolutional Network:
• Complex over-parametrization of all linear predictors 𝛽
• GD on weights (or explicitly minimize 𝒘𝒆𝒊𝒈𝒉𝒕𝒔 𝟐

𝟐)

➔ implicitly min 𝑫𝑭𝑻 𝜷 𝒑 for 𝑝 =
2

𝑑𝑒𝑝𝑡ℎ
(sparsity in freq domain)

[Gunasekar Lee Soudry S 2018b]

• Infinite Width ReLU Net:
• Parametrization of essentially all functions ℎ:ℝ𝑑 → ℝ
• GD on weights (or explicitly min 𝒘𝒆𝒊𝒈𝒉𝒕𝒔 𝟐

𝟐)

➔ implicitly minimize max ∫ 𝒉′′ 𝒅𝒙 , ℎ′ −∞ + ℎ′ +∞ (d=1)

∫ 𝝏𝒃
𝒅+𝟏𝑹𝒂𝒅𝒐𝒏 𝒉 (d>1)

(need to define more carefully to handle non-smoothness; correction term for linear part)

[Savarese Evron Soudry S 2019][Ongie Willett Soudry S 2020][Chizat Bach 2020]

All Functions Parameter Space

ℎ

Optimization Geometry and hence Inductive Bias effected by:

• Geometry of local search in parameter space

• Choice of parameterization

𝑤

• Binary matrix completion (also: reconstruction from linear measurements)
• 𝑿 = 𝑈𝑉 is over-parametrization of all matrices 𝑋∈ ℝ𝑛×𝑚

• GD on 𝑈, 𝑉 (or explicitly minimize 𝑼 𝑭
𝟐 + 𝑽 𝑭

𝟐)
➔ implicitly minimize 𝑋 ∗ [Gunasekar Lee Soudry S 2018a]

• Linear Convolutional Network:
• Complex over-parametrization of all linear predictors 𝛽
• GD on weights (or explicitly minimize 𝒘𝒆𝒊𝒈𝒉𝒕𝒔 𝟐

𝟐)

➔ implicitly min 𝑫𝑭𝑻 𝜷 𝒑 for 𝑝 =
2

𝑑𝑒𝑝𝑡ℎ
(sparsity in freq domain)

[Gunasekar Lee Soudry S 2018b]

• Infinite Width ReLU Net:
• Parametrization of essentially all functions ℎ:ℝ𝑑 → ℝ
• GD on weights (or explicitly min 𝒘𝒆𝒊𝒈𝒉𝒕𝒔 𝟐

𝟐)

➔ implicitly minimize max ∫ 𝒉′′ 𝒅𝒙 , ℎ′ −∞ + ℎ′ +∞ (d=1)

∫ 𝝏𝒃
𝒅+𝟏𝑹𝒂𝒅𝒐𝒏 𝒉 (d>1)

(need to define more carefully to handle non-smoothness; correction term for linear part)

[Savarese Evron Soudry S 2019][Ongie Willett Soudry S 2020][Chizat Bach 2020]

• Does Implicit Bias of Gradient Descent just boil down to
regularizing 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 2 ?

• Answer: sort of, at least asymptotically with logistic/exp
loss, for 𝐷-homogenous models (details soon)

…but we’ll later see that not quite

Model: 𝑭 𝒘 = 𝒉𝒘 Model Class: 𝓗 = 𝐫𝐚𝐧𝐠𝐞(𝑭)

𝑓 𝑤, 𝑥 = ℎ𝑤 𝑥 = prediction on 𝑥 with params (“weights”) 𝑤

Linear models: 𝑓 𝑤, 𝑥 = ⟨𝛽𝑤 , 𝑥⟩ 𝐹 𝑤 = 𝛽𝑤

Loss: 𝐿𝑆 𝑤 =
1

𝑚
σ𝑖 ℓ 𝑓 𝑤, 𝑥𝑖 , 𝑦𝑖

𝐷-homogenous: 𝐹 𝑐𝑤 = 𝑐𝐷𝐹(𝑤), i.e. 𝑓 𝑐𝑤, 𝑥 = 𝑐𝐷𝑓(𝑤, 𝑥)

• 1-homogenous: standard linear 𝐹 𝑤 = 𝑤, 𝑓 𝑤, 𝑥 = ⟨𝑤, 𝑥⟩

• 2-homogenous:

• Matrix factorization 𝐹 𝑈, 𝑉 = 𝑈𝑉

• 2-Layer ReLU: 𝑓 𝑊, 𝑥 = σ𝑗𝑤2,𝑗 𝑤1,𝑗 , 𝑥 +

• D-homogenous:

• D layer linear network

• D layer linear conv net

• D layer ReLU net ℋ
ℝ𝑝

ℎ

𝑤

ℋ
ℝ𝑝

ℎ

𝑤

ℓlogistic ℎ 𝑤 , 𝑦 = log 1 + 𝑒−𝑦ℎ 𝑤 ≈ 𝑒−𝑦ℎ 𝑤 = ℓexp ℎ 𝑤 , 𝑦

Consider gradient descent w.r.t. logistic loss 𝐿𝑠 𝑤 = σ𝑖 ℓ 𝑓 𝑤, 𝑥𝑖 ; 𝑦𝑖

(or other exp-tail loss) on a D-homogenous model 𝑓 𝑤, 𝑥

• 1-homogenous: standard linear 𝐹 𝑤 = 𝑤, 𝑓 𝑤, 𝑥 = ⟨𝑤, 𝑥⟩

• 2-homogenous:

• Matrix factorization 𝐹 𝑈, 𝑉 = 𝑈𝑉

• 2-Layer ReLU: 𝑓 𝑊, 𝑥 = σ𝑗𝑤2,𝑗 𝑤1,𝑗 , 𝑥 +

• D-homogenous:

• D layer linear network

• D layer linear conv net

• D layer ReLU net

ℓlogistic ℎ 𝑤 , 𝑦 = log 1 + 𝑒−𝑦ℎ 𝑤 ≈ 𝑒−𝑦ℎ 𝑤 = ℓexp ℎ 𝑤 , 𝑦

Consider gradient descent w.r.t. logistic loss 𝐿𝑠 𝑤 = σ𝑖 ℓ 𝑓 𝑤, 𝑥𝑖 ; 𝑦𝑖

(or other exp-tail loss) on a D-homogenous model 𝑓 𝑤, 𝑥 :

Theorem [Nacson Gunasekar Lee S Soudry 2019][Lyu Li 2019]:
If 𝐿𝑠 𝑤 → 0, and small enough stepsize (ensuring convergence in direction):

𝒘∞ ∝ first order stationary point of

𝐚𝐫𝐠𝐦𝐢𝐧 𝒘 𝟐 𝒔. 𝒕. ∀𝒊𝒚𝒊𝒇 𝒘, 𝒙𝒊 ≥ 𝟏

Suggests implicit bias defined by 𝑹𝑭 𝒉 = 𝐚𝐫𝐠 𝐦𝐢𝐧
𝑭 𝒘 =𝒉

𝒘 𝟐 and

𝒉∞ = 𝑭 𝒘∞ ∝ first order stationary point of

𝐚𝐫𝐠𝐦𝐢𝐧𝑹𝑭(𝒉) 𝒔. 𝒕. 𝒚𝒊𝒇 𝒙𝒊 ≥ 𝟏

But need to be careful: f.o.s.p of (*) does not imply f.o.s.p of (**)

(**)

(*)

• But what about squared loss?
ℓ ℎ 𝑤 ; 𝑦 = ℎ 𝑤 − 𝑦 2

GD on 𝐿𝑠 𝑤 = σ𝑖 ℓ 𝑓 𝑤, 𝑥𝑖 ; 𝑦𝑖

• What optimization choices and hyperparameters effect the
implicit bias and how? E.g.

• Stepsize

• Initialization

• Initialize 𝑤 0 = 𝛼𝑤0 (we will want to take 𝛼 → 0)

• Stepsize→ 0, so i.e. gradient flow:

ሶ𝑤𝛼 = −∇𝐿𝑆 𝑤 and 𝑤𝛼 0 = 𝛼𝑤0

We are interested in 𝑤𝛼 ∞ = lim
𝑡→∞

𝑤𝛼 𝑡

Consider a “linear diagonal net” (ie linear regression with squared parametrization):

𝑓 𝑤, 𝑥 = σ𝑗 𝑤+ 𝑗 2 − 𝑤− 𝑗 2 𝑥[𝑗] = ⟨𝛽(𝑤), 𝑥⟩ with 𝛽(𝑤) = 𝑤+
2 − 𝑤−

2

And initialization 𝑤𝛼 0 = 𝛼𝟏 (so that 𝛽 𝑤𝛼 0 = 0).

What’s the implicit bias of grad flow w.r.t square loss 𝐿𝑠 𝑤 = σ𝑖 𝑓 𝑤, 𝑥𝑖 − 𝑦𝑖
2?

𝛽𝛼 ∞ = lim
𝑡→∞

𝛽(𝑤𝛼 𝑡)

𝑥[1]
+

𝑥[1]
+

𝑥[1]
+

𝑥[1]
+

-

-

-

-

𝑓 𝑤, 𝑥 = 𝑤⊤ 𝑑𝑖𝑎𝑔(𝑤)
+𝑥
−𝑥

𝛽(𝑡) = 𝑤+ 𝑡 2 −𝑤− 𝑡 2 𝐿 = 𝑋𝛽 − 𝑦 2
2

ሶ𝑤+ 𝑡 = −∇𝐿 𝑡 = −2𝑋⊤𝑟 𝑡 ∘ 2𝑤+ 𝑡

𝑟 𝑡 = 𝑋𝛽 𝑡 − 𝑦

𝑑𝛽

𝑑𝑤+

𝛽(𝑡) = 𝑤+ 𝑡 2 −𝑤− 𝑡 2 𝐿 = 𝑋𝛽 − 𝑦 2
2

ሶ𝑤+ 𝑡 = −∇𝐿 𝑡 = −2𝑋⊤𝑟 𝑡 ∘ 2𝑤+ 𝑡

ሶ𝑤− 𝑡 = −∇𝐿 𝑡 = +2𝑋⊤𝑟 𝑡 ∘ 2𝑤− 𝑡

𝑤+ 𝑡 = 𝑤+ 0 ∘ exp −2𝑋⊤න
0

𝑡

𝑟 𝜏 𝑑𝜏

𝑤− 𝑡 = 𝑤− 0 ∘ exp +2𝑋⊤න
0

𝑡

𝑟 𝜏 𝑑𝜏

𝛽 𝑡 = 𝛼2 𝑒−4𝑋
⊤ ∫0

𝑡
𝑟 𝜏 𝑑𝜏 − 𝑒4𝑋

⊤ ∫0
𝑡
𝑟 𝜏 𝑑𝜏

𝛽 ∞ = 𝛼2 𝑒−𝑋
𝑇𝑠 − 𝑒𝑋

⊤𝑠 = 2𝛼2 sinh𝑋⊤𝑠

𝑟 𝑡 = 𝑋𝛽 𝑡 − 𝑦

𝑋𝛽 ∞ = 𝑦

𝑠 = 4∫0
∞
𝑟 𝜏 𝑑𝜏 ∈ ℝ𝑚

min𝑄 𝛽 𝑠. 𝑡. 𝑋𝛽 = 𝑦

∇𝑄 𝛽∗ = 𝑋⊤ν

𝑋𝛽∗ = 𝑦

𝛽 ∞ = 𝛼2 𝑒−𝑋
𝑇𝑠 − 𝑒𝑋

⊤𝑠 = 2𝛼2 sinh𝑋⊤𝑠

𝑋𝛽 ∞ = 𝑦

min𝑄 𝛽 𝑠. 𝑡. 𝑋𝛽 = 𝑦

∇𝑄 𝛽∗ = 𝑋⊤ν

∇𝑄 𝛽 = sinh−1
𝛽

2𝛼2

𝑋𝛽∗ = 𝑦

sinh−1
𝛽 ∞

2𝛼2
= 𝑋⊤𝑠

𝑄 𝛽 =෍

𝑖

∫ sinh−1
𝛽 𝑖

2𝛼2
= 𝛼2෍

𝑖

𝛽 𝑖

𝛼2
sinh−1

𝛽 𝑖

2𝛼2
− 4 +

𝛽 𝑖

𝛼2

2

𝑋𝛽 ∞ = 𝑦

Linear Diagonal Nets
𝑓 𝑤, 𝑥 = σ𝑗 𝑤+ 𝑗 2 − 𝑤− 𝑗 2 𝑥[𝑗] = ⟨𝛽(𝑤), 𝑥⟩ with 𝛽(𝑤) = 𝑤+

2 − 𝑤−
2

With initialization 𝑤𝛼 0 = 𝛼𝟏 (so that 𝛽 𝑤𝛼 0 = 0).

Implicit bias of grad flow w.r.t square loss: 𝛽𝛼 ∞ = 𝒂𝒓𝒈𝒎𝒊𝒏
𝑿𝜷=𝒚

𝑸𝜶 𝜷

where 𝑸𝜶 𝜷 = σ𝒋𝒒
𝜷[𝒋]

𝜶𝟐
and 𝒒 𝒃 = 𝟐 − 𝟒 + 𝒃𝟐 + 𝒃𝐬𝐢𝐧𝐡−𝟏

𝒃

𝟐

If 𝛼 → ∞ (Kernel Regime): 𝛽𝛼 ∞
𝛼→∞

መ𝛽𝐿2 = arg min
𝑋𝛽=𝑦

𝛽 𝟐

If 𝛼 → 0 (“Rich” Regime): 𝛽𝛼 ∞
𝛼→0

መ𝛽𝐿1 = arg min
𝑋𝛽=𝑦

𝛽 𝟏

(special case of matrix factorization with commutative measurements)

Induced dynamics:

ሶ𝛽𝛼 = − 𝛽𝛼
2 + 4𝛼4⊙∇𝐿𝑠 𝛽𝛼

𝛽𝛼 ∞ = arg min
𝑋𝛽=𝑦

𝑄𝛼 𝛽

where 𝑄𝛼 𝛽 = σ𝑗 𝑞
𝛽[𝑗]

𝛼2
and 𝑞 𝑏 = 2 − 4 + 𝑏2 + 𝑏 sinh−1

𝑏

2

Sparse Learning
𝑦𝑖 = 𝛽∗, 𝑥𝑖 + 𝑁(0,0.01)

𝑑 = 1000, 𝛽∗ 0 = 5, 𝑚 = 100

Sparse Learning
𝑦𝑖 = 𝛽∗, 𝑥𝑖 + 𝑁(0,0.01)
𝑑 = 1000, 𝛽∗ 0 = 𝑘

How small does 𝛼 need to be to get 𝐿 𝛽𝛼 ∞ < 0.025

𝑚

Is implicit bias of GD just ℓ2 in param
space + mapping to func space?

Is initializing to 𝑤 0 = 𝛼𝟏 the same as regularizing distance to 𝛼𝟏?

𝛽𝛼
𝑅 = 𝐹 arg min

𝐿𝑆 𝑤 =0
𝑤 − 𝛼𝟏 2

2 = arg min
𝑋𝛽=𝑦

𝑅𝛼 𝛽

Where 𝑅𝛼 𝛽 = min
𝐹 𝑤 =𝛽

𝑤 − 𝛼𝟏 2
2

𝑅(⋅)
‖ ⋅ ‖2

ℎ

𝑤

Is implicit bias of GD just ℓ2 in param
space + mapping to func space?

Is initializing to 𝑤 0 = 𝛼𝟏 the same as regularizing distance to 𝛼𝟏?

𝛽𝛼
𝑅 = 𝐹 arg min

𝐿𝑆 𝑤 =0
𝑤 − 𝛼𝟏 2

2 = arg min
𝑋𝛽=𝑦

𝑅𝛼 𝛽

Where 𝑅𝛼 𝛽 = min
𝐹 𝑤 =𝛽

𝑤 − 𝛼𝟏 2
2

𝑅𝛼 𝛽 = σ𝑗 𝑟
𝛽[𝑗]

𝛼2
where 𝑟(𝑏) is solution of quartic equation:

𝑟4 − 6𝑟3 + 12 − 2𝑏2 𝑟2 − 8 + 10𝑏2 𝑟 + 𝑏2 + 𝑏4 = 0

Deep Diagonal Linear Net
𝛽(𝑡) = 𝑤+ 𝑡 𝐷 −𝑤− 𝑡 𝐷

Deep Diagonal Linear Net

𝛽(𝑡) = 𝑤+ 𝑡 𝐷 −𝑤− 𝑡 𝐷

𝛽 𝑡 = 𝛼𝐷 1 + 𝛼𝐷−2𝐷 𝐷 − 2 𝑋⊤න
0

𝑡

𝑟 𝜏 𝑑𝜏

−1
𝐷−2

− 1 − 𝛼𝐷−2𝐷 𝐷 − 2 𝑋⊤න
0

𝑡

𝑟 𝜏 𝑑𝜏

−1
𝐷−2

𝑟 𝑡 = 𝑋𝛽 𝑡 − 𝑦

𝑋𝛽 ∞ = 𝑦

𝑠 = 𝛼𝐷−2𝐷 𝐷 − 2 ∫0
∞
𝑟 𝜏 𝑑𝜏 ∈ ℝ𝑚

𝛽 ∞ = 𝛼𝐷ℎ𝐷 𝑋⊤𝑠∇𝑄 𝛽∗ = 𝑋⊤ν

𝑋𝛽∗ = 𝑦

𝑄𝐷(𝛽) =෍

𝑖

𝑞𝐷
𝛽 𝑖

𝛼𝐷

𝑞𝐷 = ∫ ℎ𝐷
−1

ℎ𝐷(𝑧) = 𝛼𝐷 1 + 𝛼𝐷−2𝐷 𝐷 − 2 𝑧
−1
𝐷−2 − 1 − 𝛼𝐷−2𝐷 𝐷 − 2 𝑧

−1
𝐷−2

KKT for min𝑄 𝛽 𝑠. 𝑡. 𝑋𝛽 = 𝑦:

Deep Diagonal Linear Net
𝛽(𝑡) = 𝑤+ 𝑡 𝐷 −𝑤− 𝑡 𝐷 𝛽 ∞ = arg min𝑄𝐷 ൗ𝛽

𝛼𝐷
𝑠. 𝑡. 𝑋𝛽 = 𝑦

𝑞𝐷(𝑧)

ℎ𝐷(𝑧) = 𝛼𝐷 1 + 𝛼𝐷−2𝐷 𝐷 − 2 𝑧
−1
𝐷−2 − 1 − 𝛼𝐷−2𝐷 𝐷 − 2 𝑧

−1
𝐷−2

𝑄𝐷,𝛼(𝛽) =෍

𝑖

𝑞𝐷
𝛽 𝑖

𝛼𝐷

𝑞𝐷 = ∫ ℎ𝐷
−1

Deep Diagonal Linear Net
𝛽(𝑡) = 𝑤+ 𝑡 𝐷 −𝑤− 𝑡 𝐷 𝛽 ∞ = arg min𝑄𝐷 ൗ𝛽

𝛼𝐷
𝑠. 𝑡. 𝑋𝛽 = 𝑦

For all depth 𝐷 ≥ 2, 𝛽 ∞
𝛼→0

arg min
𝑋𝛽=𝑦

𝛽 𝟏

• Contrast with explicit reg: For 𝑅𝛼 𝛽 = min
𝛽=𝑤+

𝐷−𝑤−
𝐷
𝑤 − 𝛼𝟏 2

2 , 𝑅𝛼 𝛽
𝛼→0

𝛽 ൗ𝟐 𝑫

also observed by [Arora Cohen Hu Luo 2019]

• Also with logistic loss, 𝛽 ∞ → ∝ 𝑆𝑂𝑆𝑃 𝑜𝑓 𝛽 ൗ𝟐 𝑫

• With sq loss, always ‖ ⋅ ‖𝟏, but we get there if quicker depth is higher

𝑞𝐷(𝑧)

[Gunasekar Lee Soudry Srebro 2018]
[Lyu Li 2019]

Logistic Loss vs Squared Loss

Depth two:

• Square loss: 𝛽 ∞ ∝ arg min
𝑋𝛽=𝑦

𝑄𝛼(𝛽)

• Logistic loss: ∀𝛼𝛽 ∞ ∝ arg min
𝑋𝛽=𝑦

𝛽 1

Deeper Diagonal Nets:

• Squared loss, 𝛽 ∞
𝛼→0

∝ arg min
𝑋𝛽=𝑦

𝛽 1

• Logistic loss, 𝛽 ∞ ∝ 𝑆𝑂𝑆𝑃 𝑜𝑓 𝛽 ൗ𝟐 𝑫

ℓ2

ℓ1

𝜖 = 10−1700

[Moroshko Gunasekar Woodworth Lee S Soudry 2020 “Implicit Bias in
Deep Linear Classification: Initialization Scale vs Training Accuracy”]

ℓ1

ℓ2

ℓ Τ2 3ℓ Τ2 3

Depth=3

𝜖 = 10−4300

Implicit bias of optimization
(and hence inductive bias) effected by:
• Parametrization (architecture)

• Optimization “geometry” (GD vs AdaGrad vs coordinate methods)

• Type (asymptotics) of loss function

• Initialization

• Optimization accuracy

• Early stopping

• Not so early stopping

• Stepsize, momentum, other opt. parameters

• Stochasticity (SGD vs GD, mini-batch size, label noise)

[Cheng Chatterji Bartlett Jordan 2018][HaoChen Wei Lee Ma 2020]

• ???

The “complexity measure” approach

Identify 𝑐(ℎ) s.t.

• Optimization algorithm biases towards low 𝑐(ℎ)

• ℋ𝑐 𝑟𝑒𝑎𝑙𝑖𝑡𝑦 = ℎ 𝑐 ℎ ≤ 𝑐(𝑟𝑒𝑎𝑙𝑖𝑡𝑦) has low capacity

• Reality is well explained by low 𝑐 ℎ

Can optimization bias can be described as 𝐚𝐫𝐠𝐦𝐢𝐧 𝒄 𝒉 𝒔. 𝒕. 𝑳𝑺 𝒉 = 𝟎 ??

• Not always [Dauber Feder Koren Livni 2020]

• Approximately? Enough to explain generalization??

Ultimate Question: What is the true Inductive Bias? What makes reality
efficiently learnable by fitting a (huge) neural net with a specific algorithm?

Deep Learning

• Expressive Power

• We are searching over the space of all functions…

… but with what inductive bias?

• How does this bias look in function space?

• Is it reasonable/sensible?

• Capacity / Generalization ability / Sample Complexity

• What’s the true complexity measure (inductive bias)?

• How does it control generalization?

• Computation / Optimization

• How and where does optimization bias us? Under what
conditions?

• Magic property of reality under which deep learning “works”

