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Tutorial outline

) Why rethink MAC today?

) Review of classical results on MAC
YP) New UMAC model. IT bounds

) Why standard solutions do not work for UMAC
JFC) UMAC codes from Compressed Sensing
KN) UMAC codes from MAC codes
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Internet-of-Things: Machine-Type Communication

® 5G and 6G: largely bet on new application domains

¢ Machine-type communication (MTC): main driver of unit sales
e MTC's requirements:

» huge # of devices
» grant-free access
» uncoordinated transmissions
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Internet-of-Things: Machine-Type Communication

5G and 6G: largely bet on new application domains

Machine-type communication (MTC): main driver of unit sales

MTC's requirements:
» huge # of devices
» grant-free access
» uncoordinated transmissions
» chief: energy efficiency

wireless sensor networks were expected to “change the world” every
year since ~~1990. What's different now?
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Internet-of-Things: Machine-Type Communication

5G and 6G: largely bet on new application domains

Machine-type communication (MTC): main driver of unit sales

MTC's requirements:
» huge # of devices
» grant-free access
» uncoordinated transmissions
» chief: energy efficiency

wireless sensor networks were expected to “change the world” every
year since ~21990. What's different now? Consumer interest
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2021: multiple commercial LPWANSs

" — v ', Works with
. v ] [@ Apple Find My]

amazon sidewalk e
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2021: multiple commercial LPWANSs

(A |

Why they need us? Amazon alone has > 102
devices already. These networks operate in con-
gested ISM bands (900 MHz and 2.4 GHz). Will
start choking on interference soon. Unless we do
some coding.
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Preview: what this talk is about?

[
100 bits (data) w 30000 real degrees of freedom
OO0 —= [:CI:D:D

30000
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Random-Access (UMAC) vs Classical MAC

UserID (data) w 30000 real degrees of freedom
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Random-Access (UMAC) vs Classical MAC

UserID (data) w 30000 real degrees of freedom
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Transmission costs: classical and new

e (Classical story:
Moving k bits costs energy Ej, x k

> Want to move bits faster (higher spectral efficiency p)? You pay more
» Fundamentally minimal E;, = No%
>
»

v

MAC: Same tradeoff if there are K > 1 users
...and orthogonalizing access is optimal
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Transmission costs: classical and new

e (Classical story:
Moving k bits costs energy Ej, x k

> Want to move bits faster (higher spectral efficiency p)? You pay more
» Fundamentally minimal E;, = N02p/—]’1
>
»

v

MAC: Same tradeoff if there are K > 1 users
...and orthogonalizing access is optimal

® New story: (this talk)

» with K > 1 of very low-rate users, tradeoff changes (new problem)

» Math: first-order phase transition

» Engineering: orthogonalization is bad

» Business: free lunch — adding more users costs nothing (no increase
in space-time-frequency resources or energy)
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Classical multiple-access IT
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Gaussian MAC

User 1

Tx j)))))

j((((( &
User 2 )))))

\
Tx j))))) - )))))L
1]

Rx

User K

Tx j)))))

Y(t) = Xa(t) + -+ Xi(t) + 2(1)
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Gaussian MAC

User 1

Tx j))))) +
G & +
Tx j))) —_— )
)))‘L . +
) i
= e (I <

Tx

j((((‘ Received
o outpot L L ] v

Y(t)=Xa(t) + -+ Xk (t) + Z(1)

® Users Send Coded WaVe'Forms X] (t) Tech note: synchronized block coding
¢ Additive Gaussian noise Z(t)
® Base station’s job: estimate X; from the knowledge of Y'(¢)
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2-user Gaussian MAC

Z
Y=X1+Xo+ 7 /L
7% N(0,1) X1 O—Y
E[(X1)?] < P, E[(X2)?] < Py Xy ——
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2-user Gaussian MAC

Z
Y=X1+Xo+ 7 /L
7% N(0,1) X1 O—Y
E[(X1)?] < P, E[(X2)?] < Py Xy ——

® Evaluating capacity region:

Ri+ Ry < I(X1,X9;Y)< -log(l+ P+ P)

N =

R, < I(XzY|X;) =1

—~

1
Xi; Xi+Z) < 5 log(1+ 1)
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2-user Gaussian MAC

Y=X1+Xo0+72

H—n
b.<

7% N(0,1) X1
E[(X1)%] < P1,E[(X2)%] < Py Xy ———

® Evaluating capacity region:

Ri+ Ry < I(X1,X9;Y)< -log(l+ P+ P)

N =

—~

1
Xi; Xi+Z) < 5 log(1+ 1)

Ry

Llog(1+ P1 + Py)
Llog(1+ P2)

Ry
Llog(1+ Pr1)
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2-GMAC rates for FDMA

Y=X1+Xo+Z2 ? Llog(1+ Py + P»)

7 % N(0,1) 3log(1+ F2)

E[(X1)%] < P1,E[(X2)%] < Py

Ry

1
® Here is a FDMA: 2log(1+ F1)
» Use Fourier transform to change n=time to n=frequency.
» Partition block: n = An+ (1 — A\)n

> User 1 sends in An: Ry = 3 log(1 + £t)

» User 2 sends in An: Ry = %log(l + %)
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2-GMAC rates for FDMA

Y=X1+Xo+Z2 ? Llog(1+ Py + P»)

7 % N(0,1) 3log(1+ F2)

E[(X1)%] < P1,E[(X2)%] < Py

Ry

1
® Here is a FDMA: 2log(1+ F1)
» Use Fourier transform to change n=time to n=frequency.
» Partition block: n = An+ (1 — A\)n

> User 1 sends in An: Ry = 3 log(1 + £t)

» User 2 sends in An: Ry = %log(l + %)

Ry
% log(1+ P1 + P2)

v
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2-GMAC rates for FDMA

Y=X1+Xo+Z2 ? Llog(1+ Py + P»)

7 % N(0,1) 3log(1+ F2)

E[(X1)%] < P1,E[(X2)%] < Py

Ry
1
® Here is a FDMA: 2 log(1+F1)
» Use Fourier transform to change n=time to n=frequency.
» Partition block: n = An+ (1 — A\)n
> User 1 sends in An: Ry = 3 log(1 + £t)
> User 2 sends in An: Ry = 2 log(1 + )
Ry
Llog(1+ P+ Py) P P,
/ = PR
achieves  optimal
sumrate
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2-GMAC rates for TIN

Y=X1+Xo+Z2 ? Llog(1+ Py + P»)
Z % N(0,1) 3log(1+ 7o)
E[(X1)?] < P1,E[(X2)?] < Py
R
¢ Treat-interference-as-noise (TIN): Llog(1 + pl)l

» Each user treats the other as noise (single-user decoders)
» Random coding ensures noise is Gaussian.

> Rates: Ry = 3log(1+ l_f—lp2),R2 3 log(1+ 1+P1)
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2-GMAC rates for TIN

Y=X1+Xo+Z2 ? Llog(1+ Py + P»)
Z % N(0,1) 3log(1+ 7o)
E[(X1)?] < P1,E[(X2)?] < Py
R
¢ Treat-interference-as-noise (TIN): Llog(1 + pl)l

» Each user treats the other as noise (single-user decoders)
» Random coding ensures noise is Gaussian.

> Rates: Ry = 3log(1+ l_f—lp2),R2 3 log(1+ 1+P1)

Ry
3 log(1 + Py + Py)

P
% log(1 + ﬁ)

1log(l—i- 1+P )

® TIN point can be inside/outside TDMA.
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T E
Spectral efficiency vs. N

Spectral efficiency and energy-per-bit:

» total # of data bits

p total real d.o.f.
Ey, . total energy spent  nKP

Ny 2xtotal # bits  2nCyum

e Consider K equal-power users:

1 B, KP
= —log(l+ KP —_— =
p=qlosl+KP), = AT KD
® regardless of K : (and any sumrate-optimal arch)
E, 2%-1
= _ > —~1.59 dB
NO 2p
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Spectral efficiency vs. N

Y Speci-r—\l affirian~y And anarcg nar hit-

Spectral efficiency vs Eb/No (classic Shannon IT)
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]\/YO

Spectral efficiency vs.

Spectral efficiency and energy-per-bit:

» total # of data bits

p total real d.o.f.
Ey, . total energy spent  nKP

Ny 2xtotal # bits  2nCyum

e Consider K equal-power users:

E, KP

1
— “log(1+ KP Eel
p=qlosl+KP), = AT KD

regardless of K : (and any sumrate-optimal arch)

E 220 _ 1
b > _1.59 dB
NO 2p

® Compare to TIN: p = % log, (1 +

P ) K—oo 1 Piot
1+<K’71)P 21112 1+P[,(7[
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. . E
Spectral efficiency vs. 3

Spectral efficiency and energy-per-bit:

» total # of data bits

p total real d.o.f.
Ey, . total energy spent  nKP

Ny 2xtotal # bits  2nCyum

e Consider K equal-power users:

1 B, KP
= —log(l+ KP —_— =
p=qlosl+KP), = AT KD
® regardless of K : (and any sumrate-optimal arch)
E, 2%-1
= _ > —~1.59 dB
N?( 2 P K= 1 P
® Compare to TIN: p = 3 logy(1 + 1+(,‘,71)13) ATVRES
1 Prot Ey
= , — = (14 Piot)In2
P 3T+ By Ny (T D)l
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Spectral efficiency vs. =

4V0
e Spectral efficiency and energy-per-bit:
12 Spectral efficiency vs Eb/No (classic Shannon IT)
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. . E
Spectral efficiency vs. 3

Spectral efficiency and energy-per-bit:

» total # of data bits

p total real d.o.f.
Ey, . total energy spent  nKP

Ny 2xtotal # bits  2nCyum

e Consider K equal-power users:

1 B, KP
= —log(l+ KP —_— =
p=qlosl+KP), = AT KD
® regardless of K : (and any sumrate-optimal arch)
E, 2%-1
= _ > —~1.59 dB
N?( 2 P K= 1 P
® Compare to TIN: p = 3 logy(1 + 1+(,‘,71)13) ATVRES
1 Prot Ey
= , — = (14 Piot)In2
P 3T+ By Ny (LT D)l

e For TIN: p < 515 = 0.72 bit/rdof, E,/Ny optimal for low sp.eff.
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Classical MAC: summary

Principles:
¢ Tradeoff depends on spectral efficiency (aka total rate from all
users), i.e. only on product K x logM
® Orthogonal schemes are optimal

e TIN attains minimum % when sp.eff. is low.
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Classical (LTE) recipee: avoid multi-user interferencel!

Radio Interface
Techniques

o N
AN oD

- ?C\ T

PR

Frequency
Frequency
Frequency

Time

Time

CDMA

TDMA
FDMA
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Classical (LTE) recipee: avoid multi-user interference!

Rad|o Interface
Techniques

.
/ \ (’”}

These are all orthogonal schemes
Key problem: they require coordination!

(or allocating dof to inactive devices)

Time U —
COMA
TDMA
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New model: unsourced MAC
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The classical model: K-user multiple-access channel

User 1

Tx j))))) +
G & +
Tx j))) —_— )
)»‘L . +
) i Z
. v EEEEED

Tx

j((((‘ Received
o outpot L L ] v

Y(t)=Xa(t) + -+ Xk (t) + Z(1)

e K users, each sends k bits

o C|aSSiC: K = Small and :IC > ]. (coordination cost ammortized)
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The classical model: K-user multiple-access channel

User 1

Tx j))))) +
G & +
Tx j))) —_— )
)))‘L . +
) i
= e (I <

Tx

j((((‘ Received
o outpot L L ] v

Y(t)=Xa(t) + -+ Xk (t) + Z(1)

K users, each sends k bits
C|aSSiC: K = Small and :IC > ]. (coordination cost ammortized)
New 1: k =small and K > 11
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The classical model: K-user multiple-access channel

User 1

Tx j))))) +
G & +
Tx j))) —_— )
)»‘L . +
) i Z
. v EEEEED

Tx

j((((‘ Received
o outpot L L ] v

Y(t)=Xa(t) + -+ Xk (t) + Z(1)

® K users, each sends k bits
o C|aSSiC: K = Small and :IC > ]. (coordination cost ammortized)
e New 1: k=small and K > 11

e New 2: Users are indistinguishable ( unsourced )
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Concept of a UMAC code

iid o
e Users: select K, messages W; ~ Uniform[M] wer s (DD 0

+
® Encoder f : maps W; to codeword f(W;) € R" 4
veer () 0
e Channel: YV = Zfi‘ll fWH)+2Z Noree CEE__IDZ“)

® Decoder g: inspects Y and produces a list g(Y) i OO vo
of K, messages
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Concept of a UMAC code

® Users: select K, messages W; “d Uniform[M] wer 1 (D
+
® Encoder f : maps W; to codeword f(W;) € R" 4
veer (] e
e «o

Noise

e Channel: Y = Zfi“l fV) +2

7

® Decoder g: inspects Y and produces a list g(Y) i OO vo
of K, messages

Definition

(f,g) form an (n, M, K,, P,e) UMAC code if both requirements hold:
* (energy): for each w € [M]: ||f(w)||*> < nP
® (PUPE): for each i € [K,]: P[W; € g(Y)] <
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Concept of a UMAC code

® Users: select K, messages W; “d Uniform[M] wer 1 (D
+
® Encoder f : maps W; to codeword f(W;) € R" 4
veer (] e
e «o

Noise

e Channel: Y = Zfi“l fV) +2

7

® Decoder g: inspects Y and produces a list g(Y) i OO vo
of K, messages

Definition

(f,g) form an (n, M, K,, P,e) UMAC code if both requirements hold:
* (energy): for each w € [M]: ||f(w)||*> < nP
® (PUPE): for each i € [K,]: P[W; € g(Y)] <

® Per-User Probability of Error = K%; S K« P[User ith msg lost]
® Sometimes, the message collision is included in the error event:

PW; & g(Y)or3j#i:W; =W;]<e
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UMAC model explained
—)[Message 1]—)[ Encoder

—)[Message 2]—)[ Encoder
Multiple .
Joint
M
-’[ essage 3]—)[ Encoder Access Decoder
Channel

-)[Message K]—)[ Encoder
Characteristics of UMAC model

® K, active devices, each with a log, M-bit message

® Multiple access channel.
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UMAC model explained

Characteristics of UMAC model

—)[Message 1]—)[ Encoder
—)[Message 2]—)[ Encoder

Multiple .
—)[Message 3]—)[ Encoder Access D.ej:;ndter

Channel

-)[Message K]—)[ Encoder

K, active devices, each with a logy M-bit message
Multiple access channel.
Every user employs same encoder f : [M] — R"

Decoder only reconstructs an unordered list of messages.
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UMAC model explained

—)[Message 1]—)[ Encoder
—)[Message 2]—)[ Encoder

Multiple .
—)[Message 3]—)[ Encoder Access D.ej:;ndter

Channel

-)[Message K]—)[ Encoder
Characteristics of UMAC model

® K, active devices, each with a log, M-bit message

® Multiple access channel.

® Every user employs same encoder f : [M] — R"

Decoder only reconstructs an unordered list of messages.

Goal: decoded list ~ list of sent messages (fraction wrong < PUPE)
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UMAC model explained

—)[Message 1]—)[ Encoder
—)[Message 2]—)[ Encoder

Multiple .
—)[Message 3]—)[ Encoder Access D.ej:;ndter

Channel

-)[Message K]—)[ Encoder
Characteristics of UMAC model

® K, active devices, each with a log, M-bit message

® Multiple access channel.

® Every user employs same encoder f : [M] — R"

Decoder only reconstructs an unordered list of messages.

Goal: decoded list ~ list of sent messages (fraction wrong < PUPE)

e Key: summarizes the main challenge of random-access
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Achievability bound

Theorem (P.'2017%)
For any (M,n, e, K,, P) and any P’ < P there exists a UMAC code with

—nE(t)

Kq
t
PUPE<po+) ¢
t=1""9

where

L (K 2 P
w175 ) + EPlC0) > ]

E(t) = max —pp1tR; — p1 R+ EO(P, 1, P,)

0<p,p1<1

1 M 1 K
Ri==log—, Ry=—log( “

n t! n t
Eo=--- (complicated expression)

Polyanskiy, “A perspective on massive random-access”’, 2017
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Achievability bound: preliminaries |

Probability of a Z ~ N(0,al,) to land in a ball “Gaussian ball” :

Pl Z +u| <v] < e "Frail

e from Chernoff bound:

P|Z +u| < v] < e R [evllzﬂllﬂ Yy >0.

2
_ ol
e I+2avy

(14+2a) 3

® By direct computation: E [eVHZJFUHQ} =

[lul?
14+2ay

® Thus, Epqy = min,~o —y(v? + )+ 5 In(1 + 2ay).
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Achievability bound: preliminaries |l

Probability of a union (Gallager's p-trick) :
p
Plu;A;] < | ) P4;] Vo< p<1
J

® Proof is simple: From union bound
PU;A;] < min | Y P[4, 1

J

Now use the fact min(z,1) < x”.
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Achievability bound: preliminaries |l

Probability of a union (Gallager's p-trick) :
p
Plu;A;] < | ) P4;] Vo< p<1
J

® Proof is simple: From union bound
PU;A;] < min | Y P[4, 1
J

Now use the fact min(z,1) < x”.
® |n applications one usually finds some good random variable V' such

that
P[A;|V] < e PV

for some computable E(V'). And then from the p-trick:

P[UT 1 Aj] < mPE [e—an(V)}
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Random-coding achievability: Proof |

e Codebook generation:
c; ~ N(0, PH®", i=1,...,M.

e Why generate with power P’ < P? Because we want to satisfy strict
power constraint:
leill?> < nP.

J.-F. Chamberland, K. Narayanan, and Y. Polyanskiy UMAC Part I: Information Theory



Random-coding achievability: Proof |

e Codebook generation:
c; ~ N(0, PH®", i=1,...,M.

e Why generate with power P’ < P? Because we want to satisfy strict
power constraint:
leill?> < nP.

® So each user before transmitting ¢; makes sure that ||c;||?> < nP,
otherwise transmits 0.

e With probability < pg then all K, users selected good and distinct
codewords:

1 /K
po = M< 2a> +KCLIP’[||01||2 > nP]

e Conditioning on this event, and from symmetry we can assume that
1, ...,CK, were transmitted.
® Proceed to discussing decoder...
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Random-coding achievability: Proof I

® Decoder receives
Y=c1+ - +ck, +72
his job is to recover a subset S C [M] of size K, of those codewords
that he believes were sent.
* Define sum-codewords ¢(S) £ 3, g ¢
e We will analyze maximum likelihood decoder:

S = argmgn le(S) =Y.
® Note: This decoder is not optimal. Why? Because our figure of
merit is not to decode all c¢/w correctly, but rather to decode each
one with high probability. (Similar: ML is not optimal for minimizing
BER)
* Note that selecting S we incur

1 N
PUPE = 5[] \ 5.

* So {t-misdecoded} = {|[K,]\ S| = t}.
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Y=c+ - +cx,+72

* Goal: bound P[t-misdecoded] < e~"#(1),
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Y=c+ - +cx,+72

* Goal: bound P[t-misdecoded] < e~"#(1),

® Note: t—misdecoded <= some subset Sy C [K,] of messages was
replaced with S{ C {K,+1,..., M} and |Sp| = |Sj| = t.
Denote F(Sp, Sy) = {|lc(So) — c(Sh) + Z|| < || Z||} - Then:
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Y=c+ - +ck, +7

* Goal: bound P[t-misdecoded] < e~"#(1),

® Note: t—misdecoded <= some subset Sy C [K,] of messages was
replaced with S, C {K, +1,..., M} and |Sy| = |S)| = t.
Denote F(Sp, Sy) = {|lc(So) — c(Sh) + Z|| < || Z||} - Then:

P[t—-misdecoded] < ‘P [ U  F(So,S))

Soe (") Soe (M)
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Y=c+ - +ck, +7

Goal: bound P[t-misdecoded] < e="#(1),

Note: ¢t—misdecoded <= some subset Sy C [K,] of messages was
replaced with S, C {K, +1,..., M} and |Sy| = |S)| = t.

Denote F(Sp, Sy) = {|lc(So) — c(Sh) + Z|| < || Z||} - Then:

P[t—-misdecoded] < ‘P [ U  F(So,S))
Soe (") Spe(M)

Note that P[F(So, S))|c(So), Z] < e~"Evatt (Gaussian ball)
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Y=c+ - +cx,+72

Goal: bound P[t-misdecoded] < e="#(1),

Note: ¢t—misdecoded <= some subset Sy C [K,] of messages was
replaced with S, C {K, +1,..., M} and |Sy| = |S)| = t.

Denote F(Sp, Sy) = {|lc(So) — c(Sh) + Z|| < || Z||} - Then:

P[t—-misdecoded] < ‘P [ U  F(So,S))
Soe("y?) spe(M7)
® Note that P[F(Sy, S})|c(So), Z] < e "Frait (Gaussian ball)
So we use Gallager's p-trick twice:
> Let F'(So) = Us; (S0, S)) and bound
PLF(S0)]e(S0), 2] < (M) enelmu & e—nP(c(50).2)

» Then bound P[USOF(So)] < (Iia)plE[e_n/’lE((:(S(l).Z)]
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Y=c+ - +ck, +7

Goal: bound P[t-misdecoded] < e="#(1),

Note: ¢t—misdecoded <= some subset Sy C [K,] of messages was
replaced with S, C {K, +1,..., M} and |Sy| = |S)| = t.

Denote F(Sp, Sy) = {|lc(So) — c(Sh) + Z|| < || Z||} - Then:

P[t—-misdecoded] < ‘P [ U  F(So,S))
Soe("y?) spe(M7)
® Note that P[F(Sy, S})|c(So), Z] < e "Frait (Gaussian ball)
So we use Gallager's p-trick twice:
> Let F'(So) = Us; (S0, S)) and bound
PLF(S0)]e(S0), 2] < (M) enelmu & e—nP(c(50).2)

» Then bound P[USOF(So)] < (Iia)plE[e_n/’lE((:(S(l).Z)]

® = F(t) = max,,, —pp1tR1 — p1R2 + Eo(p, p1)
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Random-coding: comparison to Classical MAC

Pl U U F(So,5)
Soe(") Soe (M)
® Sy selects those ¢ users were unlucky (got their messages
misdecoded)
e S, selects the wrong message for the unlucky users
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Random-coding: comparison to Classical MAC

Pl U U F(S,5)
Soe(") Soe (M)
® Sy selects those ¢ users were unlucky (got their messages
misdecoded)
e S, selects the wrong message for the unlucky users
® In classical MAC we also have 2% — 1 different error-events indexed
by Sy C [K] — misdecoded users. And

P[F(S0)] < " iesy RiI(Xsyi¥ [Xsg) ;

where I is the empirical mutual info.
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Random-coding: comparison to Classical MAC

Py U F(So,5)

Soe (") Spe (M)

® Sy selects those ¢ users were unlucky (got their messages
misdecoded)

e S, selects the wrong message for the unlucky users

® In classical MAC we also have 2% — 1 different error-events indexed
by Sy C [K] — misdecoded users. And

P[F(S0)] < " iesy RiI(Xsyi¥ [Xsg) ;

where I is the empirical mutual info.
e Asymptotically: I = I and thus P[Ug, F'(Sp)] — 0 whenever
> R <I(Xgy;Y|Xgs)  VSo C [K].
IS

L he para A nd sh d be

J.-F. Chamberland, K. Narayanan, and Y. Polyanskiy UMAC Part I: Information Theory



Converse bound

Every (n, Ko, M, P) UMAC code with PUPE < e must satisfy both:

bz (@5 1070

n M
—log(1+ K, P) > 1
20g( + )_og(K

a

Me
T+ (o)

) — K,(elog -

a

M 1
=K, <(1 — e)log% + 2eloge + €log e + O(M)>

<

2
® Here: Q(z) £ [ ﬁe_%dy, h(e) = €elogl +elogl e=1—ce
e First bound: almost independent of K.

® Second bound: compares sum-capacity with rate-distortion function.
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Converse: proof |

® In [PPV'11]%it was shown that any single user channel code over the
AWGN with parameters (n, M, P) and BLER e must satisfy

wpz (@G Q‘l(e))2

lPonanskiy, Poor, Verdi “Minimum energy to send k bits through the Gaussian channel with and without

feedback,” 2011
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Converse: proof |

® In [PPV'11]%it was shown that any single user channel code over the
AWGN with parameters (n, M, P) and BLER e must satisfy

wpz (@G Q‘l(e))2

® |t is easy to extend their argument to show that list-L decodable
codes must satisfy

nP > (Ql(ﬂz) + Ql(e)>2

lPonanskiy, Poor, Verdi “Minimum energy to send k bits through the Gaussian channel with and without

feedback,” 2011
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Converse: proof |

e In [PPV'11]%it was shown that any single user channel code over the
AWGN with parameters (n, M, P) and BLER e must satisfy

wpz (@G Q‘l(e))2

® |t is easy to extend their argument to show that list-L decodable
codes must satisfy

nP > (Ql(]@) + Ql(e)>2

¢ UMAC code (n, K4, M, P) can be used as a list-K, decodable single
user code: add (K, — 1) dummy ones at the receiver and run UMAC
decoder.

lPonanskiy, Poor, Verdi “Minimum energy to send k bits through the Gaussian channel with and without

feedback,” 2011
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Converse: proof |

e In [PPV'11]%it was shown that any single user channel code over the
AWGN with parameters (n, M, P) and BLER e must satisfy

wpz (@G Q‘l(e))2

® |t is easy to extend their argument to show that list-L decodable
codes must satisfy

nP > (Ql(]@) + Ql(e)>2

¢ UMAC code (n, K4, M, P) can be used as a list-K, decodable single
user code: add (K, — 1) dummy ones at the receiver and run UMAC
decoder. = the bound above applies with L = K.

lPonanskiy, Poor, Verdi “Minimum energy to send k bits through the Gaussian channel with and without

feedback,” 2011
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Converse: proof |l

® Define vector U € {0, 1} with U; = 1 iff some W; = 1.
Similarly U is the vector output by decoder.
® | -|l and d(,-) denote Hamming weight and Hamming distance, resp.
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Converse: proof |l

® Define vector U € {0, 1}M with U; = 1 iff some W, = i.
Similarly U is the vector output by decoder.
® | -|l and d(,-) denote Hamming weight and Hamming distance, resp.
e Condition on no message collisions from now on.
= U~ Uniform[(;\é)]
e ... and
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Converse: proof |l

® Define vector U € {0, 1}M with U; = 1 iff some W, = i.

Similarly U is the vector output by decoder.

|| - || and d(-,-) denote Hamming weight and Hamming distance, resp.
Condition on no message collisions from now on.

=U~ Uniform[(;\é)]

e ... and

Overall we have the Markov chain:

U— (X1,...,Xg,) =Y =U.
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Converse: proof |l

® Define vector U € {0, 1} with U; = 1 iff some W; = 1.
Similarly U is the vector output by decoder.
|| - || and d(-,-) denote Hamming weight and Hamming distance, resp.

Condition on no message collisions from now on.
=U~ Uniform[(;\é)]
e ... and

Overall we have the Markov chain:
U— (X1,...,Xg,) =Y =U.
So we can apply capacity vs rate-distortion method:

R(e) < I(U;U) < I(X[Fe,v) < glog(l + PK,).
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Converse: proof |l

® Define vector U € {0, 1}M with U; = 1 iff some W, = i.
Similarly U is the vector output by decoder.
|| - || and d(-,-) denote Hamming weight and Hamming distance, resp.
e Condition on no message collisions from now on.
=U~ Uniform[(;\é)]
e ... and

Overall we have the Markov chain:
U— (X1,...,Xg,) =Y =U.
So we can apply capacity vs rate-distortion method:

R(e) < I(U;U) < I(X[Fe,v) < glog(l + PK,).

* Final step: compute R(¢) 2 min{I(U;U) : (x)-holds}
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Converse: proof Il

Problem

Fix w € [0,m] and consider a fixed vector b and a random vector A on
Hamming sphere of radius w in {0,1}™, i.e. ||b]| = ||A|| = w. Find
max{H (A) : E[d(A,b)] < 2t}.

e WLOG b= (1,...,1,0,...,0)
— —

w m—w
® By averaging over permutations the problem reduces to
maximization over distribution of S = """ | A;:

max H(A) = max {E [log <;") (m S w)] LE[S] < t}
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Converse: proof Il

Problem

Fix w € [0,m] and consider a fixed vector b and a random vector A on
Hamming sphere of radius w in {0,1}™, i.e. ||b]| = ||A|| = w. Find
max{H (A) : E[d(A,b)] < 2t}.

e WLOG b= (1,...,1,0,...,0)
— —

w m—w
® By averaging over permutations the problem reduces to
maximization over distribution of S = """ | A;:

max H(A) = max {E [log <;") (m S w)] LE[S] < t}

> Bound via Stirling: log ("5") < log mT,S < Slogm — Slog%
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Converse: proof Il

Problem

Fix w € [0,m] and consider a fixed vector b and a random vector A on
Hamming sphere of radius w in {0,1}™, i.e. ||b]| = ||A|| = w. Find
max{H (A) : E[d(A,b)] < 2t}.

e WLOG b= (1,...,1,0,...,0)
— —

w m—w
® By averaging over permutations the problem reduces to
maximization over distribution of S = """ | A;:

max H(A) = max {E [log <Z> (m S w)] LE[S] < t}

> Bound via Stirling: log ("5") < log mT,S < Slogm — Slog%
> From Jensen: E[Slog S] > tlogt.
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Converse: proof Il

Problem

Fix w € [0,m] and consider a fixed vector b and a random vector A on
Hamming sphere of radius w in {0,1}™, i.e. ||b]| = ||A|| = w. Find
max{H (A) : E[d(A,b)] < 2t}.

e WLOG b= (1,...,1,0,...,0)
— —

w m—w
® By averaging over permutations the problem reduces to
maximization over distribution of S = """ | A;:

max H(A) = max {E [log <Z> (m S w)] LE[S] < t}

> Bound via Stirling: log ("5") < log mT,S < Slogm — Slog%
> From Jensen: E[Slog S] > tlogt.
» maxE [log ()] = wh(t/w) (max-entropy subject to E[S] < t)
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Converse: proof Il

Problem

Fix w € [0,m] and consider a fixed vector b and a random vector A on
Hamming sphere of radius w in {0,1}™, i.e. ||b]| = ||A|| = w. Find
max{H (A) : E[d(A,b)] < 2t}.

e WLOG b= (1,...,1,0,...,0)
— —

w m—w
® By averaging over permutations the problem reduces to
maximization over distribution of S = """ | A;:

max H(A) = max {E [log <Z> (m S w)] LE[S] < t}

> Bound via Stirling: log (™5") < log Z; < Slogm — Slog £
> From Jensen: E[S log 5] Z tlogt.
» maxE [log ()] = wh(t/w) (max-entropy subject to E[S] < t)

® Overall: max H(A) < tlog <™ + wh(L)
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Converse: proof IV

Problem (Strange rate-distortion problem3)

Find R(¢) £ min I(U;U) where U ~ Uniform[(%)] and

E[d(U,U)] < 2Kqe

3A very similar problem was considered in: Reeves-Gastpar, “Approximate Sparsity Pattern Recovery:
Information-Theoretic Lower Bounds,” 2013
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Converse: proof IV

Problem (Strange rate-distortion problem3)

Find R(¢) £ min I(U;U) where U ~ Uniform[(%)] and

E[d(U,U)] < 2Kqe

A

e [(U;U)=HU)—-HU|U)

3A very similar problem was considered in: Reeves-Gastpar, “Approximate Sparsity Pattern Recovery:
Information-Theoretic Lower Bounds,” 2013
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Converse: proof IV

Problem (Strange rate-distortion problem3)

Find R(¢) £ min I(U;U) where U ~ Uniform[(%)] and

E[d(U,U)] < 2Kqe

* [(U;U) = H(U) - H(U|U)
e HU) :log(%)
* From previous: H(U|U) < €K, log - + Kyh(e)

3A very similar problem was considered in: Reeves-Gastpar, “Approximate Sparsity Pattern Recovery:
Information-Theoretic Lower Bounds,” 2013
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Converse: proof IV

Problem (Strange rate-distortion problem3)

Find R(¢) £ min I(U;U) where U ~ Uniform[(%)] and

E[d(U,U)] < 2Kqe

I(U;U) = H(U) — HU|U)

H(U) = log (%)
* From previous: H(U|U) < €K, log - + Kyh(e)

R(e) > log () — Kallog SL + h(e)]

3A very similar problem was considered in: Reeves-Gastpar, “Approximate Sparsity Pattern Recovery:
Information-Theoretic Lower Bounds,” 2013
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Converse: proof IV

Problem (Strange rate-distortion problem3)

Find R(¢) £ min I(U;U) where U ~ Uniform[(%)] and

E[d(U,U)] < 2Kqe

I(U;U) = H(U) — HU|U)

H(U) = log (%)

e From previous: H(U|U) < eK, log flj‘é + Kqh(e)

R(e) > log (,) — Kallog 5, + h(e)]

This completes the proof: Every UMAC code must satisfy

Me

M
%bg(l + K,P) > log <K > - K, (e log + h(e)>

ENg

3A very similar problem was considered in: Reeves-Gastpar, “Approximate Sparsity Pattern Recovery:
Information-Theoretic Lower Bounds,” 2013
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® |et us evaluate numerically these bounds.

¢ Need to fix parameters (n, k, K,).
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® |et us evaluate numerically these bounds.
¢ Need to fix parameters (n, k, K,).
e Consider a typical LoRa network:

» payloads & = 100 bit
» a message in SF11 occupies = k21—1 complex d.o.f. = n =~ 30000.
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Let us evaluate numerically these bounds.

Need to fix parameters (n, k, K,).
Consider a typical LoRa network:

» payloads & = 100 bit
» a message in SF11 occupies = k21—1 complex d.o.f. = n =~ 30000.

Our choices from now on:

» Frame length n = 30000 (real d.o.f.)
User payload: k = 100 bits

Active users: K, = 1...300 (variable)
Target error PUPE = 0.1 or 0.001

nP

| 2
»
»
» Goal: Find minimal % £ 5
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IT bounds evaluation: PUPE=0.1

Energy—per-bit vs. number of users. Payload k = 100 bit, frame n = 30000 rdof, F’e =0.1

10 —— NOMA: random-coding achievabilit)
== Lower bound

8r 4

6r 4
o
©
g 4 ]
5
[}

. . . .
0 50 100 150 200 250 300
# active users
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IT bounds evaluation: PUPE=0.1

Energy-per-bit vs. number of users. Payload k = 100 bit, frame n = 30000 rdof, F’e =0.1

10 —— NOMA: random-coding achievabilit)
== Lower bound
8r 4
6r 4
8
g 4 For K, < 50 dominant term ¢t < 3
[}

For K, = 150 dominant term t = K,

. . . .
0 50 100 150 200 250 300
# active users

. Chamberland, K. Narayanan, and Y. Polyanskiy UMAC Part I: Information Theory



IT bounds evaluation: PUPE=0.1

Energy-per-bit vs. number of users. Payload k = 100 bit, frame n = 30000 rdof, F; =0.1

10 —— NOMA: random-coding achievabilitﬂ
- = Lower bound
8- ]
6F ]
g4 For K, < 50 dominant term ¢ < 3
For K, = 150 dominant term t = K,
oL
0 -
... Key insight: Ej only grows after K, > 150 (!!)
2 50 100 150 200 250 300

# active users
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e Surprise: The energy-per-bit stays almost constant
. as if only 1 user were sending!

® But this is for an “optimal” system (random-coding).
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e Surprise: The energy-per-bit stays almost constant
. as if only 1 user were sending!

But this is for an “optimal” system (random-coding).

What about performance of practically employed schemes?

We will consider two:

> ALOHA
» Treat-interference-as-Noise (TIN)
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Mother of all random-access: ALOHA
oV N U I A T
=1 =3 O

o e
SRR BRI

Cc
D
E

T

Slotted ALOHA protocol (shaded slots indicate collision)

® Each user places his ni-codeword into one of L subframes.

® |f two users select same subframe: both are lost.
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Fundamental limits vs. ALOHA

Energy—per-bit vs. number of users. Payload k = 100 bit, frame n = 30000 rdof, F’e =0.1
10

—— NOMA: random-coding achievabilit)
* Lower bound
——ALOHA

Eb/NO, dB

. . . .
0 50 100 150 200 250 300
# active users
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Fundamental limits vs. ALOHA

Energy-per-bit vs. number of users. Payload k = 100 bit, frame n = 30000 rdof, F; =0.1
10

—— NOMA: random-coding achievabilit)
== Lower bound
——ALOHA

Eb/NO, dB

Under ALOHA energy efficiency drops catas-
trophically.

Why? B/c we need Q(K,) subframes =
single user's code operates at high sp.eff.

. . . .
0 50 100 150 200 250 300
# active users
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Treat interference as noise (TIN)

Theorem (DT-TIN bound)
There exists C C B(0,v/nP) of size M such that

PUPE < | [eflﬂxl %YHogM“} +P[y3(n) > ng]

where Y = Y- K X, + Z, X; ~ N(0, P'I,)®" and Z ~ N(0,1,,) and

. 1 2 _ 12
i(w;y) = nCron(P') + 252 | iy — el |

Remarks:

® Decoder outputs K, closest codewords: PUPE
< P[X; ¢ {top-K, closest c/w to Y'}]

e Achieves about log M ~ nCrin(P) — /nVrin(P)Q ' (e€)
O 26
CT[N(P) = %log (1 + W) ) VTUV(P) = fﬁ[ép'

® Spectral efficiency as K, — oo is bounded by logT?e ~ 0.72 bit.
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Treat interference as noise (TIN): evaluation

Energy-per-bit vs. number of users. Payload k = 100 bit, frame n = 30000 rdof, P, = 0.1

ALOHA

DT-TIN bound

NOMA: random-coding achievability
== Lower bound

Eb/NO, dB

0 50 100 150 200 250 300
# active users
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Treat interference as noise (TIN): evaluation

Energy-per-bit vs. number of users. Payload k = 100 bit, frame n = 30000 rdof, P, = 0.1
10 T T

ALOHA

= DT-TIN bound

= NOMA: random-coding achievability
== Lower bound

Eb/NO, dB

We see that both the attempt to orthogonal-
ize users (ALOHA) or ignore co-interference
(TIN) lead to disastrous loss of energy effi-
ciency. =

Need new codes (shortly TBA)

0 50 100 150 200 250 300
# active users
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Effect of n and k

® Good engineer: How do these curves change with blocklength n and
payload size k7

® Good info-theorist: Can we formulate an asymptotic question
n— oo’
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Effect of n and k

® Good engineer: How do these curves change with blocklength n and
payload size k7

® Good info-theorist: Can we formulate an asymptotic question
n— oo’

® |et us evaluate the bounds for various n...
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Comparing random coding bound at different n

5.5

T
n=30000, k=100

Eb/No, dB

05 L L L L L
0 100 200 300 400 500 600
Number of active users, Ka
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Comparing random coding

5.5

n=60000, k=100

4.5

Eb/No, dB
©
w o

N
&)

05 Il Il Il Il Il
0 200 400 600 800 1000 1200

Number of active users, Ka
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Comparing random coding bound at different n

5.5 T

n=30000, k=100
n=60000, k=100
n=120000, k=100 [

4.5

Eb/No, dB
@
w o

I
&)

05 L L L L
0 500 1000 1500 2000 2500
Number of active users, Ka
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Comparing random coding bound at different n

5.5 T
n=30000, k=100
n=60000, k=100
5 n=120000, k=100
4.5
4
Y Bounds do not look comparable.
3 Next: Figure out correct axes to plot on
b4 <
8

L L L
500 1000 1500 2000 2500
Number of active users, Ka
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Ly

Effective N

and spectral efficiency

® So far we used axes:
Ey a nP

No 2k

® Problem: As n changes there is no “convergence to the limit".

K, vs —
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Ey
Effective o and spectral efficiency
® So far we used axes:
K, vs 2 Ey a nP
BN T 2%

® Problem: As n changes there is no “convergence to the limit".

® The issue is that we have not defined our quantities correctly. It
turns out the key quantities in this problem are:

> Effective number of total bits &,y = log, (%) ~ K, log, 2L

(total information transmitted)
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Ey
Effective o and spectral efficiency
® So far we used axes:
K, vs 2 Ey a nP
BN T 2%

® Problem: As n changes there is no “convergence to the limit".

® The issue is that we have not defined our quantities correctly. It
turns out the key quantities in this problem are:

> Effective number of total bits ko = log, (&) = K, log, <X
(total information transmitted)

» = effective spectral efficiency and energy-per-bit are

é ktot & _ nPKa
n’ No ) crr 2kiot

p
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Effective f,l' and spectral efficiency

® So far we used axes: 5, P
n
K,vs — £
No 2k
® Problem: As n changes there is no “convergence to the limit".
® The issue is that we have not defined our quantities correctly. It
turns out the key quantities in this problem are:
> Effective number of total bits &,y = log, (%) ~ K, log, 2L
(total information transmitted)

» = effective spectral efficiency and energy-per-bit are

A ktot (Eb> - nPKa
f

p n ’ ﬁo 2kt0t

® |Let us try replotting in these new axes:

UMAC Part I: Information Theory
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Effective Ej, /Ny vs spectral efficiency: different n (k

6 T T
n=30000, k=100 (ach)
n=60000, k=100 (ach)
n=120000, k=100 (ach)
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Spectral efficiency, p
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Effective Ej, /Ny vs spectral efficiency: different n (k = 100)

6 T T
n=30000, k=100 (ach)
n=60000, k=100 (ach)
n=120000, k=100 (ach)

51

4

Let us add converse bounds.

Effective Eb/No, dB
n w
T

L
0 0.2 0.4 0.6 0.8

1 1.2 1.4 1.6

Spectral efficiency, p
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Effective Ej,/Ny vs spectral efficie

Effective Eb/No, dB

J.-F. Chamberland, K. Narayanan, and Y. Polyanskiy

w

0 0.2

. different n (k

L=

T
n=30000, k=100 (ach)
— — —n=30000, k=100 (converse)
n=60000, k=100 (ach)
=60000, k=100 (converse)
n=120000, k=100 (ach)
— — —n=120000, k=100 (converse)

0.4 0.6

L
0.8 1
Spectral efficiency, p
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Effective E},/Ny vs spectral efficiency: different n (k = 10

6 T

T T
n=30000, k=100 (ach)

— — —n=30000, k=100 (converse)
n=60000, k=100 (ach)

— — —n=60000, k=100 (converse)

5r n=120000, k=100 (ach)

— — —n=120000, k=100 (converse)

4
3 We found the right axes: n almost does not
P4
8, matter. What about k7

L L L L L
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Spectral efficiency, p
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Effective Ej, /Ny vs spectral efficiency: different k

6 T T
— — —n=30000, k=100 (ach)
— — —n=60000, k=100 (ach)
~ — —n=120000, k=100 (ach)
n=30000, k=200 (ach)
5r n=60000, k=200 (ach)
n=120000, k=200 (ach)
;/
/7,
;?
7z 7,
4+ /7 E
7 7,
8 4
o
2 77
ﬁ 3+ /7 4
E W
E: 7
= 47
w p 2 7,
7 7,
2r P 7 B
7z 2 ~
4
27y
1y - 1
0 L L L L L L L L L
0 0.2 0.4 0.6 0.8 1 1.2 1.4 16 1.8 2

Spectral efficiency, p
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Effective Ej, /Ny vs spectral efficiency: different k

— — —n=30000, k=100 (ach)
— — —n=60000, k=100 (ach)
— — —n=120000, k=100 (ach)
n=30000, k=200 (ach)
n=60000, k=200 (ach)
n=120000, k=200 (ach)

77
7

7
/7,
7

Increasing k reduces the
part is almost unaffected.

ﬁ—g—floor. High p

Effective Eb/No, dB
w

L
0 0.2 0.4 0.6 0.8

1

|
1.2

Spectral efficiency, p
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Asymptotics and open problems

® As good info-theorists we should be excited: curves seem to converge
to some limit as n — 0.
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Asymptotics and open problems

® As good info-theorists we should be excited: curves seem to converge
to some limit as n — 0.

® To identify this limit, let us notice that our problem is in fact
equivalent to support recovery in compressed sensing.
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Same-codebook codes = compressed sensing

e UMAC = all users share same codebook

e UMAC = decoder only reconstructs list of messages (i.e. vector
{0, 1}M of weight K,)

® Equivalent to compressed-sensing (CS)  pin-kim-Rao'11]
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Same-codebook codes = compressed sensing

e UMAC = all users share same codebook
e UMAC = decoder only reconstructs list of messages (i.e. vector
{0, 1}M of weight K,)
® Equivalent to compressed-sensing (CS)  pin-kim-Rao'11]
® Let same-codebook (column) vectors be c1,...¢;.
X=(cr | - | em)
* Let B € {0,1}M with 8; = 1 if codeword j was transmitted
[ )

Then the problem is:
Y =XB+2,  Goal: E[|S — B(Y)|] — min
(linear regression with sparsity ||5]|o = K, aka CS).

J.-F. Chamberland, K. Narayanan, and Y. Polyanskiy UMAC Part I: Information Theory



Same-codebook codes = compressed sensing

e UMAC = all users share same codebook

e UMAC = decoder only reconstructs list of messages (i.e. vector
{0, 1}M of weight K,)

® Equivalent to compressed-sensing (CS)  pin-kim-Rao'11]

® Let same-codebook (column) vectors be c1,...¢;.

X=(a | - | cm)
* Let B € {0,1}M with 8; = 1 if codeword j was transmitted
® Then the problem is:
Y =XB+2,  Goal: E[|S — B(Y)|] — min

(linear regression with sparsity ||5]|o = K, aka CS).
e Suppose the entries of X are iid A/(0, P). Then we get Gaussian
random design CS (GCS).
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Same-codebook codes = compressed sensing

e UMAC = all users share same codebook

e UMAC = decoder only reconstructs list of messages (i.e. vector
{0, 1}M of weight K,)

® Equivalent to compressed-sensing (CS)  pin-kim-Rao'11]

® Let same-codebook (column) vectors be c1,...¢;.

X:(c1 | ’ CM)

* Let B € {0,1}M with 8; = 1 if codeword j was transmitted
® Then the problem is:

Y =XB+2,  Goal: E[|S — B(Y)|] — min

(linear regression with sparsity ||5]|o = K, aka CS).

e Suppose the entries of X are iid A/(0, P). Then we get Gaussian
random design CS (GCS).

e Fundamental limits of GCS were studied in the limit of n — oo at a
fixed aspect ratio 0 = 7 and sparsity ™ = % The minimal PUPE

in this limit is given by replica method.
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Finite blocklength bound vs. n = oo asymptotics

Effective Eb/No, dB

w

T T
n=30000, k=100 (ach)
n=60000, k=100 (ach)
n=120000, k=100 (ach)

= = =n=infty, k = 91.5..100.0 (Replica Method, matched sparsity)

L
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Spectral efficiency, p
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Finite blocklength bound vs. n = oo asymptotics

6 T T

n=30000, k=100 (ach)

n=60000, k=100 (ach)

n=120000, k=100 (ach)
5 = = =n=infty, k = 91.5..100.0 (Replica Method, matched sparsity)
4

Lessons: The [P."17] bound is about 0.5 —
0.7 dB not tight for small K,. Replica
method ~ our converse bound.

Effective Eb/No, dB
w

L
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Spectral efficiency, p
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Extra: replica method*

“More details in Section V.A of Kowshik-Polyanskiy, “Fundamental limits of
many-user MAC with finite payloads and fading”, 2021
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Asymptotics of random-access

® We say that £ is asymptotically achievable effective E},/Nj at
(Mecgy, pye€) if 3(n, M, K,,€) RA-code with M = MsrK,,
K, = pn and codewords of energy

llll3 < 2€ logy My

for all n — .

e Asymptotic fundamental limit: minimal achievable &, i.e.

log, M
E (Mcgg, p1,€) = limsup 082

982 B, M, Ky, e
n—oo log My b @e)
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Asymptotics of RA and CS

® Recall connection to the compressed sensing.

e Call E > 0 feasible at a given ratio p/n and sparsity 7 if:

Y =VEXB+Z,  Z~N(0,1,),B€R

» Columns of X are of unit energy
> B {0,1)7 and [ 8]0 = 7,
> 35(Y, X) such that

I8l < wn  (FDR)
1B—=Bllo < 2€lBllo

® Then we have E} = min W
2 e
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Asymptotics of RA and CS

® Recall connection to the compressed sensing.

e Call E > 0 feasible at a given ratio p/n and sparsity 7 if:

Y =VEXB+Z,  Z~N(0,1,),B€R

» Columns of X are of unit energy
> B {0,1)7 and [ 8]0 = 7,
> 35(Y, X) such that

I8l < wn  (FDR)
1B—=Bllo < 2€lBllo

® Then we have E} = min W
2 e

® When X ZZ‘Jij\/'(O, 1/n) this is well studied in stat. physics.
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Replica method prediction

e Consider a scalar problem:
B=+EA+N, A~Ber(r) Il N~N(01)
e Define I1(F1) = I(A; B) and
p*(Ey,7) = min {IP’[A —0lA=1]:PlAd=1] = w}
A

® |t can be seen that p* is a solution of

VEL = Q0 +Q <7Tp*>.

1—m
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Replica method prediction

e Consider a scalar problem:
B=\EA+N, A~Ber(r)l N~N(0,1)
Define I;(E;) = I(A; B) and

p*(Ey,7) = min {IP’[A —0lA=1]:PlAd=1] = w}
A
® |t can be seen that p* is a solution of
VE=a )+t (7).
e Stat. physics predicts that mference in
Y =VEXB+2, X N(0,1/n),B ~ Ber®(r)

is asymptotically equivalent to a scalar problem with E; = En
n € [0,1] (the multi-user efficiency) is given as a solution of

1
7 = argmin [flll(:vE) + 5(1’ -1- 1HZE):|

-F. Chamberland, K. Narayanan, and Y. Polyanskiy UMAC Part I: Information Theory



=+/nEA+ N, A ~ Ber(m) 1L N ~ N(0,1)
Y =VEXB+2, X N(0,1/n),B ~ Ber®(r)

Theorem (Replica formula exact for binary /)

Consider a sequence of random variables
Vo = ]P)[/Bl = 1‘Y7X] S [07 1]

as p,n — oo with p/n = const. Then

v, @pa=1)B].
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B =\/nEA+ N, A ~ Ber(m) 1L N ~ N(0,1)

Y =VEXB+2Z, XY N(0,1/n),B ~ Ber® ()

Theorem (Replica formula exact for binary ()

Consider a sequence of random variables
V., =P[g1 =1]Y, X] € [0,1]

as p,n — oo with p/n = const. Then

v, YPa=1B.

o Pfister-Reeves and Barbier-Macris have shown that
Var[f1|Y, X] — Var[A|B|

e This is not enough to conclude the proof.
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=+nEA+ N, A ~ Ber(m) 1L N ~ N(0,1)
Y =VEXB+2Z XY N(©0,1/n),B ~ Ber® ()

Theorem (Replica formula exact for binary /)

Consider a sequence of random variables
V., =P[5 =1|Y, X] € [0,1]

as p,n — oo with p/n = const. Then

v, 4pa=1)B].

® Possible to argue indirectly for binary 8 only.
® If we have some sequence G,, = G, (Y, X) € [0,1] s.t
E[(Gn — £1)?] — Var[81|Y; X] then G, 4 E[51]Y; X].
For binary, this is = P[5, = 1| X,Y].
e AMP started at true [ yields such a G,,. The law of G,, is known to

J.-F. Chamber|and K. Narayanan, and Y. Polyanskly UMAC Part I: Information Theory



Finite blocklength bound vs. n = oo asymptotics

Effective Eb/No, dB

w

T T
n=30000, k=100 (ach)
n=60000, k=100 (ach)
n=120000, k=100 (ach)

= = =n=infty, k = 91.5..100.0 (Replica Method, matched sparsity)

L
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Spectral efficiency, p
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Finite blocklength bound vs. n = oo asymptotics

6 T T

n=30000, k=100 (ach)

n=60000, k=100 (ach)

n=120000, k=100 (ach)
5 = = =n=infty, k = 91.5..100.0 (Replica Method, matched sparsity)
4

Lesson: The [P.'17] bound is 0.5 — 0.7 dB
not tight.

Effective Eb/No, dB
w
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Spectral efficiency, p
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Finite blocklength bound vs. n = oo asymptotics

6 T T

n=30000, k=100 (ach)

n=60000, k=100 (ach)

n=120000, k=100 (ach)
5 = = =n=infty, k = 91.5..100.0 (Replica Method, matched sparsity)
4

Lesson: The [P.'17] bound is 0.5 — 0.7 dB
not tight.

Effective Eb/No, dB
w

) /4

Details: for each K, compute E, at
; kepr =k —logy(Ky).
Scale E, down by k—‘jgﬁ

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Spectral efficiency, p
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Perfect multi-user interference elimination

_yp|L———mu = 0.002

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 25 3

E /N, dB
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Perfect multi-user interference elimination

0.5
E /N, dB
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Perfect multi-user interference elimination
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Perfect multi-user interference elimination
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g
% 10°
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Perfect multi-user interference elimination

——mu = 0.005
——mu=0.008
107" mu= 0.01 I I I I I I I I
-2 -1.5 -1 -0.5 0 0.5 1 15 2 25 3
E /N, dB
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UMAC framework:
® To save battery: sensors sleep all the time, except transmissions.

® .. uncoordinated transmissions.

Single shot: devices wake up, blast the packet, go back to sleep.

There exist low Ej,/Ny schemes with high # of users.

... but standard ideas (orthogonalize, TIN) lead to sharp E}/Ny
growth as # users grows.
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UMAC framework:
® To save battery: sensors sleep all the time, except transmissions.

® .. uncoordinated transmissions.

Single shot: devices wake up, blast the packet, go back to sleep.

There exist low Ej/Ng schemes with high # of users.

... but standard ideas (orthogonalize, TIN) lead to sharp E}/Ny
growth as # users grows.

Next steps:
@ Failure of standard coding solutions
® Coded Compressed Sensing
©® Non-CS methods for UMAC
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Coding for Unsourced Random Access

» Brief review of coding for the Gaussian MAC (GMAC)
» Why codes for GMAC cannot be directly used for URA
» Approaches to designing codes for URA

2/92



Traditional Gaussian multiple access channel (GMAC)

» K users, each user has a B-bit message
» n channel uses
» Classical information theory - fix K and let n, B — oo

wy EFQB

z, c R"™ i
| 1 [isisisia K
y= E z;+z
j=1 N R R

S x w1, Wa, .. ., W
| > [ Co = + Decoder—

Wy
e

P, = Pr{ () (w £ 00))
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Traditional Gaussian multiple access channel (GMAC)

» K users, each user has a B-bit message
» n channel uses
» Classical information theory - fix K and let n, B — oo

B
w; € Fy z, €R®
[ | — X
y= E z;+ 2
j=1 . . N
Wy - w1y, W, ..., WK
| > [ Co = + Decoder—
Wr Ty
|« [

P, = Pr{ () (w £ 00))

Assumptions
» User identity is conveyed separately
» Resources are allocated based on identity
» Codebooks are different but assumed to be known at the decoder

4/92



Coding for the Traditional GMAC

P2

Achievable sum rate

i < liog (1422
i:1pl 2 e o2

P1

Achieving points on the GMAC region
» Corner points can be achieved using successive interference cancellation
» Any point can be achieved through rate-splitting
» These require coordination among users

» Equal rate point is harder to achieve without coordination

5/02



Coding Schemes for the Equal Rate Point

» Time/Frequency/Code Division Multiple Access (T/F/CDMA)
» Ping et al. - Interleave division multiple access (IDMA)

» Yedla, Pfister, N. ' 11 - Spatially coupled LDPC

» Truhachev, Schlegel - Spatially coupled MA

» Sasoglu et al."13 - Polar codes for MAC

All these schemes require coordination between users to pick parameters

6/92



TDMA/FDMA/CDMA

» TDMA/FDMA

® Requires coordinated allocation of time/frequency slots
® Without coordination, there will be collisions

7/92



TDMA/FDMA/CDMA

» TDMA/FDMA

® Requires coordinated allocation of time/frequency slots
® Without coordination, there will be collisions

» Orthogonal CDMA
® Users need to be 'assigned’ spreading sequences
Kiot > K - spreading sequence length will be too large
Kiot = 10000, n = 30000 and B = 100
Not enough dimensions for coding

8/92



Interleave Division Multiple Access - Ping et al.” 06

» Each user encodes with the same code & picks a different interleaver
» Message passing decoding and demodulation

» Close to capacity performance for small number of users

- P . LE+00
Transmitter for user-1 o~
x ot R ao i - Scheme Il
Multiple . 88
: Access \ 8 ! 16 16
Channel 1.E-02 H
s g K=1
@ o a )
1E-03 \ - v 1
——————————————— — LE-04
r a0 o : \ \ : \
Decoder
(OEC) | @)} tened UV | bromentary | LE03
-1 -0.5 0 05 1 15 2 25
Signal r .
H | H N ‘ P Estimator EyN, (4B)
2 fens e ) 1 fess OO | R [
K, | Decoder L N
tepee(c UNL - feore (v} | | Fig. 7. Performance of IDMA systems based on the turbo-Hadamard code

________________ | [31] and wrbo code over AWGN channels. Ny = 1, It = 30, Niggo = 4095
for Scheme T and Nigo = 4096 for Scheme I1.

» The interleavers have to be different and known to the receiver

» Performance is not very good for large number of users
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SC-LDPC for GMAC - Yedla, Pfister, N '11

» Spatially coupled LDPC codes with different interleavers

» Empirically shown to be universal for MAC

pmA | N W A\[b,

)\(w)

A(z)

" I B I | .

2

21

2 L
19 L BP-AC (4.8)
18

17 | T

16

£15 BP-ACPR, LDPC(3,6)

_ |
14 3 }

13 /
BP-ACPR, )/
1.2 LDPC(4,8, 64,5) YAl
i \ ==
1 MAC-ACPR i
boundary far rate
0.9 12 BP-ACPR, LDPC(3,6,64,5)

0’3.8 09 1 111213141516 171819 2 2122
hy

» [Interleavers need to be chosen in a coordinated manner

» [nterleavers need to be known at the receiver

» Not a good solution for short block lengths
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Coupling data transmission.. - Truhachev & Schlegel '12

w Binary Error vy Symbol Replication @ l
P tati
™| Correction Encoder M Times ermutation b - @—»
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Coupling data transmission.. - Truhachev & Schlegel '12

W Binary Error v, | Symbol Replication @ l
P
Correction Encoder M Times ermutation —®—

» Requires coordination to choose offsets

» Not a good solution for short block lengths

12/92



Polar Codes for MAC - Sasoglu'13

uz fl\ x2

o

Ry Ry Ry
1
0 Ry O Ry 0 =~ R,
0 0 0 1
(000) 11 (101)

Ry Ry

1 1

0 >Ry, 0 = R

0 0 1

(111) (112)

Fig. 1. Capacity regions of the five extremal MACs.

» Polar codes can be optimized for MAC

» Frozen bits have to be chosen in a coordinated fashion
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Takeaways

Main points from this part
» Traditional GMAC channel model is not suitable for modeling loT
» Existing coding schemes for GMAC need to be modified
» Finite Block Length achievability bounds serve as a good benchmark
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Takeaways

Main points from this part
» Traditional GMAC channel model is not suitable for modeling loT
» Existing coding schemes for GMAC need to be modified
» Finite Block Length achievability bounds serve as a good benchmark

Rest of the talk - Two main approaches to coding for URA

» Connections between Unsourced MAC and Compressed Sensing
» Modifying codes for GMAC to make them work for URA

15 /902



Unsourced Random Access
as Compressed Sensing



Unsourced Random Access — Encoding Function

Multiple

—)[Message 3H Encoder Access Joint
Decoder

Channel

—)(Message KH Encoder

Characteristics of URA framework
» K active devices, each with a B-bit message

» Multiple access channel



Unsourced Random Access — Encoding Function

—)[Message 1H Encoder

Multiple

—)[I\/Iessage 3]—>[ Encoder Access Joint
Decoder

Channel

—)[Message K]—)[ Encoder

Characteristics of URA framework

» Every device employs the same encoder f : {0,1}8 — R”

» Decoder must produce an unordered list of messages



Unsourced Random Access — Index Representation

Time

Matrix ¢

w xapul 28essay

CS-Style Format:

signal = ®m




Unsourced Random Access — CS Analogy

—)[Message 1]—)[ Encoder
—)[Message 2]—)[ Encoder
Multiple .
Joint
—)[Message 3]—)[ Encoder Access Decoder

Channel

IT T T T T TTTTTTT T




Abstract CS Challenge

Problem setting
» Noisy compressed sensing

y=®s+z

where s is K sparse
» s has non-negative integer entries
> @®.shape ~ 32,768 x 2128

» z is additive Gaussian noise

Practical issue
» Width of sensing matrix is huge
» Existing CS solvers will not execute at that scale
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Matrix Width & Sparsity Undersampling Tradeoff
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Time-Division Unsourced Random Access

Slot partitioning

» Observations become

Yo = ®ysp + z¢

Slot 1 Slot 2 Slot 3

where £ is slot label
» Device gets slot based on message

» Channel uses divided among slots

Drawbacks
> Matrices remain wide 2128/L

» Devices assigned randomly within slots



Classical Coding Techniques

Multi-User Coding

» Matrix becomes codebooks
y=®;s5; + ®Prsy + 2

» Device picks code based on bits
» Well-studied for single user
» Fast decoding for large dictionary

Drawbacks
» Low complexity joint multi-user decoders are not available
» Devices may collide within codebook selection
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Data Fragmentation
(O[T TV T T I |

/
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Dim 2%  Dim 2 Dim 2'¢ Dim 26

l

Drawbacks
» Unordered lists of fragments
» Need to perform disambiguation



Pertinent References

»> Y. Polyanskiy. A perspective on massive random-access. Proc. Int. Symp. on
Information Theory (ISIT), 2017.

» O. Ordentlich and Y. Polyanskiy. Low complexity schemes for the random access
Gaussian channel. Proc. Int. Symp. on Information Theory (ISIT), 2017.

» A. Vem, K. R. Narayanan, J.-F. Chamberland, and J. Cheng. A user-independent
successive interference cancellation based coding scheme for the unsourced
random access Gaussian channel. IEEE Trans. on Communications, 2019.
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compressed sensing scheme for unsourced multiple access. IEEE Trans. on
Information Theory, 2020.

» R. Calderbank and A. Thompson. CHIRRUP: A practical algorithm for
unsourced multiple access. Information and Inference, December 2019.



A Quest for Low-Complexity:
Coded Compressed Sensing



Abstract CS Challenge

Problem setting
» Noisy compressed sensing

y=®s+z

where s is K sparse
» s has non-negative integer entries
> @®.shape ~ 32,768 x 2128

» z is additive Gaussian noise

Practical issue and potential direction
» Width of sensing matrix is huge
» Undersampling fraction and sparsity are very small
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Unsourced Random Access — Index Representation

Binary message 00000011
CITTT7

Message index 00010---0
T TTTTTTTTTI T I T TTTTT77]

Codeword (modulated signal)
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Time




Data Fragmentation
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Drawbacks
» Unordered lists of fragments
» Need to perform disambiguation



Fragmentation with Disambiguation

(I T T T |
l Encoding

(N HE B N

o/ O\ Partition

N (e (T [

Lol bl

Distinct compressive sensing instances

Stitching through outer code
» Split problem into sub-components suitable for CS framework
» Get lists of sub-packets, one list for every slot

» Stitch pieces of one packet together using error correction



Coded Compressive Sensing — Device Perspective

w bits + p parity bits
[ | | [ - |
Allocating parity bits l

L T T M - Tl Coupled

1
SIS ]

Slot 1 Slot 2 Slot 3 Slot L

» Collection of L CS matrices and 1-sparse vectors

» Each CS generated signal is sent in specific time slot

V. K. Amalladinne, J.-F. Chamberland, and K. R. Narayanan. A coded compressed sensing scheme for unsourced multiple access.
IEEE Transactions on Information Theory, 2020.



Coded Compressive Sensing — Multiple Access

B R R . i
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1 CC e (T
1 CC e (T
1 CC e [T
1 CC e [T
1 CC e (T

List 1 List 2 List 3 List L

» [ instances of CS problem, each solved with non-negative LS
> Produces L lists of K decoded sub-packets (with parity)

» Must piece sub-packets together using tree decoder



Coded Compressive Sensing — Stitching Process

I Z--- [T (T

C 1~

C— 1 T [T
List 1 List 2 List 3 List L

Tree decoding principles
» Every parity is linear
combination of bits in
preceding blocks
> Late parity bits offer better
performance

» Early parity bits decrease
decoding complexity

» Correct fragment is on list



Coded Compressive Sensing — Understanding Parity Bits

SEE T G B

I T 1

w bits p bits

» Consider binary information vector w of length k
» Systematically encoded using generator matrix G, with p = wG
» Suppose alternate vector w; is selected at random from {0,1}*

Lemma
Probability that randomly selected information vector w, produces same
parity sub-component is given by

Pl’(p — pr) _ 2—rank(G)

Proof: {p =p;} = {wG = w,G} = {w + w, € nullspace(G)}



Coded Compressive Sensing — General Parity Bits

(v [ w@ [p@] we) Ip(s)I w( }»(4)]

1 Il
r T

l
T T 1
w1 w2 P2 w3 Pa

» True vector (wj, (1), w;,(2),w; (3),w;(4))
» Consider alternate vector with information sub-block
(w; (1), w;(2),w;(3),w;,(4)) pieced from lists
» To survive stage 4, candidate vector must fulfill parity equations

(wi (1) — w5 (1) [G12] = 0
(1) = wi (1) we(2) — i 2)) | €22 =0

Gia
(Wi (1) — wj, (1), w;p(2) — wi, (2), Wi (3) — w;,(3)) [G2,4] =0
G34



Coded Compressive Sensing — General Parity Bits

(v [ w@ [p@] we) [pe)] we) [e@)
t } t . } wa t o

I I
I T

wi w2 p2 w3 P

|
1

» When indices are not repeated in (wj (1), w;,(2),w;(3),w;(4)),
probability is governed by

Gio Giz Gis
rank 0 G273 G274
0 0 Gug

» But, when indices are repeated, sub-blocks may disappear

Gioly,2iy Gislyziy  Giralyzi
rank 0 G2731{,'37g,-2} G2741{,-475,~2}
0 0 Gsal{jzi)



Candidate Paths and Bell Numbers

Slot1  Slot2 Slot3  Slot 4 Probability that wrong path is

Level 4 O ________ O ________ O ________ consistent with parities is
Pr(p = pr) =2~ rank(G)
Level 3 O ........................ O
where
Level 2 D)oo ) foorC ) O G172 G1,3 G174
G=| 0 Gy3 Gyy
Level 1 O ................ O ........ O

0 0 G

[ w [ w [p@] we) [mE)] we [

When Levels Do NOT Repeat




Candidate Paths and Bell Numbers

Slot 1 Slot 2 Slot 3 Slot 4 Probability that wrong path is
Level 4 O ________ O ________ O ________ O consistent with parities is
Pr(p = pr) =2~ rank(G)
Level 3 O ........ O ........ O ........ O
where

0 Gos O
0 0 Gsy

Level 2 O ........................ [0 G]_73 0 ]
G =

Levell C —C }----( )-eoeeee

([ w [ w [p@] we) [kE)] we [me)

When Levels Repeat




Bell Numbers and j-patterns

1,1,1,1
1,2,1,1
1,2,2,1
1,1,3,1

Integer Sequences
» K. paths

level 1

» Reduce complexity 1,2,3,1
through equivalence ~ 1212)
. . o 1,2,2,2) L'
» Online Encyclopedia of 3 1232 &
Integer Sequences (OEIS) o o YR
A000110 3 1,2,3,3)
| g 1 1,1,1,4)
Bell numbers grow rapidly . e
» Hard to compute K 1,2,2,4)
ted b f 2 1,1,3,4)
expected number o o

surviving paths ~ =--mmmeemoommmmeoooeoeoot oo

Need Approximation




Allocating Parity Bits (approximation)

» py: # parity bits in sub-block £ €2, ... L,
» Py: # erroneous paths that survive stage £ € 2,..., L,

» Complexity Ciree: # nodes on which parity check constraints verified

Expressions for E[P] and Ciyee
> Py Pe—1 ~ B((Pe—1 + 1)K —1,p0), pr=2"P, g =1—ps

E[P¢] = E[E[P¢|Pe-1]]
= E[((Pe—1 + 1)K — 1)p(]
= peKE[Pe—1] + pe(K — 1)

14 /4
=Y K(k-1)]]n
r=1 j=r

> Ctree - K+Zle_;21 (PZ + ]-)K]
» E[Cirec] can be computed using the expression for E[Py]



Optimization of Parity Lengths

» py: # parity bits in sub-block £ € 2,... L,
» P;: # erroneous paths that survive stage £ € 2,... L,

Relaxed geometric programming optimization

minimize  E[Cireo]
(p2;---5pL)

subject to  Pr(Pp > 1) < &tyee Erroneous paths

L
sz =M-B Total # parity bits
£=2

pe€{0,...,N/L} V£€e€2 ...,L Integer constraints

» Solved using standard convex solver, e.g., CVX



Choice of Parity Lengths

» K=200 L=11, N/L=15

H Ctree ‘ E[Cirecl ‘ Parity Lengths po,..., pL
0.006 Infeasible Infeasible
0.0061930 | 3.2357 x 10™* | 0,0,0,0, 15, 15, 15, 15, 15, 15
0.0061931 | 3357300 0,3,8,8,8,8,10,15,15,15
0.0061932 | 1737000 0,4,8,8,8,8,9,15,15,15
0.0061933 | 926990 0,5,8,8,8,8,8,15,15,15
0.0061935 | 467060 1,8,8,8,8,8,8,11,15,15
0.0062 79634 1,8,8,8,8,8,8,11,15,15
0.007 7357.8 6,8,8,8,8,8,8,8,13,15
0.008 6152.7 7,8,8,8,8,8,8,8,12,15
0.02 5022.9 6,8,8,9,9,9,9,9,9,14
0.04 4158 7,8,8,9,9,9,9,9,9,13
0.6378 3066.3 9,9,9,9,9,9,9,9,9,9




Choice of Parity Lengths

> K =200, L=11, N/L=15

Parity Lengths po, ..., pL

|

0,0,0,0,15,15,15, 15, 15, 15

0,3,8,8,8,8,10,15,15, 15

0,4,8,8,8,8,9,15,15, 15

0,5,8,8,8,8,8,15,15, 15

1,8,8,8,8,8,8,11,15,15

1,8,8,8,8,8,8,11,15,15

6,8,8,8,8,8,8,8,13,15

7.8,8,8,8,8,8,8,12,15

6,8,8,9,9,9,9,9,9, 14

7,8,8,9,9,9,9,9,9,13

9,9,9,9,9,9,9,9,9,9




Performance of CCS and Previous Schemes

12 T L

10 - . N

Required E,/Np (dB)
o

= mmm1 Random Coding

= = = 4-Fold ALOHA

2 e OP-Exact
el SIC T=4
- .-----u-.----.----.--"' e CCS
0.----,------ 1 | |
25 50 100 150 200 250 300

Number of active users K



Leveraging CCS Framework

CHIRRUP: a practical algorithm for unsourced multiple access

Robert Calderbank, Andrew Thompson
(Submitted on 2 Nov 2018)

Unsourced multiple access abstracts grantless simultaneous communication of a large number of devices (messages) each of which transmits (is
transmitted) infrequently. It provides a model for machine-to-machine communication in the Internet of Things (IoT), including the special case of
radio-frequency identification (RFID), as well as neighbor discovery in ad hoc wireless networks. This paper presents a fast algorithm for unsourced
multiple access that scales to 2! devices (arbitrary 100 bit messages). The primary building block is multiuser detection of binary chirps which are
simply codewords in the second order Reed Muller code. The chirp detection algorithm originally presented by Howard et al. is enhanced and
integrated into a peeling decoder designed for a patching and slotting framework. In terms of both energy per bit and number of transmitted
messages, the proposed algorithm is within a factor of 2 of state of the art approaches. A significant advantage of our algorithm is its computational
efficiency. We prove that the worst-case complexity of the basic chirp reconstruction algorithm is O[nK (log, .+ K)], where n is the codeword
length and K is the number of active users, and we report computing times for our algorithm. Our performance and computing time results
represent a benchmark against which other practical algorithms can be measured.

Subjects: Signal Processing (eess.SP)
Citeas: arXiv:1811.00879 [eess.SP]
(or arXiv:1811.00879v1 [eess.SP] for this version)

Submission history
From: Andrew Thompson [view email]
[v1] Fri, 2 Nov 2018 14:25:46 UTC (470 KB)

Which authors of this paper are endorsers? | Disable Mathjax (What is Math/ax?)

» Hadamard matrix based compressing scheme + CSS

» Ultra-low complexity decoding algorithm

S. D. Howard, A. R. Calderbank, S. J. Searle. A Fast Reconstruction Algorithm for Deterministic Compressive Sensing using
Second Order Reed-Muller Codes. CISS 2008



Example: CHIRRUP

» Sensing matrix based on 2nd-order Reed-Muller functions,

b
or(a) = C jairars
. o
R is binary symmetric matrix with zeros on diagonal, wt represent
weight, and /i = /—1
» Every column of form

or.5([0]2)
| or,b([1]2)

XR,b = :
| or,b([2™ — 1]2)

[]2 is integer expressed in radix of 2
> Information encoded into R and b

» Fast recovery: Inner-products, Hardmard project onto Walsh basis,
get R row column at a time, dechirp, Hadamard project to b



Enhanced Coded Compressed Sensing

An enhanced decoding algorithm for coded compressed sensing
Vamsi K. Amalladinne, Jean-Francois Chamberland, Krishna R. Narayanan

Coded compressed sensing is an algorithmic framework tailored to sparse recovery in very large dimensional spaces. This framework is originally envisioned for the
unsourced multiple access channel, a wireless paradigm attuned to mach Coded sensing uses a divide-and-conquer approach to
break the sparse recovery task into sub-components whose dimensions are amenable to conventional compressed sensing solvers. The recovered fragments are then
stitched together using a low complexity decoder. This article introduces an enhanced decoding algorithm for coded compressed sensing where fragment recovery and
the stitching process are executed in tandem, passing information between them. This novel scheme leads to gains in performance and a significant reduction in
computational complexity. This algorithmic opportunity stems from the realization that the parity structure inherent to coded compressed sensing can be used to
dynamically restrict the search space of the subsequent recovery algorithm.

Comments: Submitted to ICASSP2020
Subjects:  Information Theory (€s.T); Signal Processing (eess.SP)
Citeas:  arXiv:1910.09704 [cs.iT]

(or arXiv:1910.09704v1 [cs.IT] for this version)

Bibliographic data
[Enable Bibex (What is Bibex?)]

Submission history
From: Vamsi Amalladinne [view email]
[v1] Tue, 22 Oct 2019 00:17:37 UTC (65 KB)

Leverage algorithmic opportunity
» Extending CCS framework by integrating tree code
» Decisions at early stages inform later parts

» Algorithmic performance improvements



Coded Compressive Sensing with Column Pruning

Slot 1 Slot 2 Slot 3
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» Active partial paths determine possible parity patterns
» Admissible indices for next slot determined by possible parities

» Inadmissible columns can be pruned before CS algorithm



Coded Compressive Sensing with Column Pruning

Possible indices

|

i
i
gt et

Original sensing matrix

Pruned matrix

» For K small, width of sensing matrix is greatly reduced
» Actual sensing matrix is determined dynamically at run time

» Complexity of CS algorithm becomes much smaller



Expected Column Reduction Ratio

Column Reduction Ratio

Slot 1 @ Slot 1 (sim)
--=--Slot 2 + Slot 2 (sim)
P Slots 3-9 O Slots 3-9 (sim) 7 [
———— Slot 10 x Slot 10 (sim)
————— Slot 11 A Slot 11 (sim)
1 ==========_=_§_=_=_=3—=-=—=—=%=%=
e R L SO
e prrrT 000°
’,r’ ++++ OOOO Lo
045:/'++++ 1o —_____-—“'
| o,o-op-qg'o——
o00-¢
5 "y X X pa X K 2
40 60 80 100 120 140

Number of Messages K

» Parity allocation parameters, with wy + p; = 15,

(p17 pP2,..., PlO) = (67 8787 87 87 87 8787 137 15)

» Pruning is more pronounced at later stages

> Effective width of sensing matrix is greatly reduced

[ ]



Leveraging CCS Framework

Non-Bayesian Activity Detection, Large-Scale Fading Coefficient Estimation, and Unsourced
Random Access with a Massive MIMO Receiver

Fengler, Saeid i , Peter Jung, Giuseppe Caire

In this paper, we study the problem of user activity detection and large-scale fading coefficient estimation in a random access wireless uplink with a massive MIMO base
station with a large number M of antennas and a large number of wireless single-antenna devices (users). We consider a block fading channel model where the M~
dimensional channel vector of each user remains constant over a coherence block containing L signal dimensions in time-frequency. In the considered setting, the
number of potential users Ky is much larger than L but at each time slot only K, << Ky of them are active. Previous results, based on compressed sensing, require
that K, < L, which is a bottleneck in massive deployment scenarios such as Internet-of~Things and unsourced random access. In this work we show that such limitation
can be overcome when the number of base station antennas M is sufficiently large. We also provide two algorithms. One is based on Non-Negative Least-Squares, for
which the above scaling result can be rigorously proved. The other consists of a | plexity iterative ise minimi of the likelihood function of the
underlying problem. Finally, we use the proposed approximated ML algorithm as the decoder for the inner code in a concatenated coding scheme for unsourced random
access, where all users make use of the same codebook, and the massive MIMO base station must come up with the list of transmitted messages irrespectively of the
identity of the transmitters. We show that reliable communication is possible at any E,/Ny provided that a sufficiently large number of base station antennas is used, and
that a sum spectral efficiency in the order of O(Llog(L)) is achievable.

Comments: 50 pages, 8 figures, submitted to IEEE Trans. Inf. Theory
Subjects:  Information Theory (cs.IT)
Citeas:  arXiv:1910.11266 [es.T]

(0r arXiv:1910.11266v1 [cs.IT] for this version)

Bibliographic data
[Enable Bibex (What is Bibex?)]

From: Alexander Fengler [view email]
[v1] Thu, 24 Oct 2019 16:32:30 UTC (661 KB)

Which authors of this paper are endorsers? | Disable Mathjax (What is Mathjax?)

» Activity detection in random access
» Massive MIMO Receiver



Massive MIMO-URA
—){Message 1]—»{ Encoder

—){Message 2]—){ Encoder
_)(Message 3)—){ Encoder MlMO | " Dizlondter

—)[Message K]—){ Encoder

Signal model

» Signal received at time instant t with slot ¢

y(t, 0) = Sop g xu(t, i (0) + 2(t, €)

» Number of receive antennas M > 1
» Block fading — channel does not change within CCS slot
» Spatial correlation negligible — hy(¢) ~ CN(0, 1)



Multiple Measurement Vector — CS Interpretation

> Received signal during slot ¢: Y(¢) = A(()F(O)H(¢) + Z(¢)
> Column y;(¢) of Y(¥) is the signal received at antenna i during slot ¢
> H(/) has entries drawn i.i.d. from CN(0,1)
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Pertinent References

» V. K. Amalladinne, J.-F. Chamberland, and K. R. Narayanan. A coded compressed sensing
scheme for unsourced multiple access. |IEEE Trans. on Information Theory, 2020.

» R. Calderbank and A. Thompson. CHIRRUP: A practical algorithm for unsourced multiple
access. Information and Inference: A Journal of the IMA, 2018.

» V. K. Amalladinne, J.-F. Chamberland, and K. R. Narayanan. An enhanced decoding
algorithm for coded compressed sensing. In International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), May 2020.

» A. Fengler, S. Haghighatshoar, P. Jung, and G. Caire. Non-Bayesian activity detection,

large-scale fading coefficient estimation, and unsourced random access with a massive
MIMO receiver. IEEE Trans. on Information Theory, 2021.



Connecting Coding and
Compressed Sensing via
Approximate Message Passing



Coded Compressive Sensing — Divide and Conquer
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» Data fragmentation and indexing
» Outer encoding for disambiguation



CCS — Approximate Message Passing

SPARCs for Unsourced Random Access

Alexander Fengler, Peter Jung, Giuseppe Caire
(Submitted on 18 Jan 2019)

This paper studies the optimal achievable performance of compressed sensing based unsourced random-access communication over the real ANGN
channel. "Unsourced"” means, that every user employs the same codebook. This paradigm, recently introduced by Polyanskiy, is a natural
consequence of a very large number of potential users of which only a finite number is active in each time slot. The idea behind compressed sensing
based schemes is that each user encodes his message into a sparse binary vector and compresses it into a real or complex valued vector using a
random linear mapping. When each user employs the same matrix this creates an effective binary inner multiple-access channel. To reduce the
complexity to an acceptable level the messages have to be split into blocks. An outer code is used to assign the symbols to individual messages. This
division into sparse blocks is analogous to the construction of sparse regression codes (SPARCs), a novel type of channel codes, and we can use
concepts from SPARCs to design efficient random-access codes. We analyze the asymptotically optimal performance of the inner code using the
recently rigorized replica symmetric formula for the free energy which is achievable with the approximate message passing (AMP) decoder with
spatial coupling. An upper bound on the achievable rates of the outer code is derived by classical Shannon theory. Together this establishes a
framework to analyse the trade-off between SNR, ity and i rates in the ic infinite limit. Finite

simulations show that the combination of AMP decoding, with suitable approximations, together with an outer code recently proposed by
Amalladinne et. al. outperforms state of the art methods in terms of required energy-per-bit at lower decoding complexity.

Comments: 16 pages, 7 Figures
Subjects:  Information Theory (cs.IT)
Cite as arXiv:1901.06234 [cs.IT]
(or arXiv:1901.06234v1 [csT] for this version)

» Connection between CCS indexing and sparse regression codes
» Circumvent slotting under CCS and dispersion effects
» Introduce denoiser tailored to CCS



CCS Reuvisited
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Columns are possible signals

» Bit sequence split into L fragments
» Each bit 4 parity block converted to index in [0,2™/L — 1]

» Stack sub-codewords into (n/L) x 2™/t sensing matrices



Coded Compressed Sensing — Unified View

Sampling matrix

o

L-sparse message vector

> Slots produce block diagonal (unified) matrix
P> Message is one-sparse per section
> Width of A is smaller: L2/ instead of 2

[euSis panieday



CCS — Full Sensing Matrix

Sampling matrix

L-sparse message vector

» Complexity reduction due to narrower A
» Use full sensing matrix A
» Decode inner code with low-complexity AMP

[euSis paniaday



CCS — Approximate Message Passing

Governing Equations
» AMP algorithm iterates through

(t=1)

z) =y — ADn, (r) + z div D, (r)

n

Onsager correction

() = ATZ0 4 Dy, (r(9)
——

Denoiser

Initial conditions z(® = 0 and n, (r'®) = 0

» Application falls within framework for non-separable functions

Task

» Define denoiser and compute Onsager correction term



Marginal Posterior Mean Estimate (PME)

Proposed Denoiser (Fengler, Jung, and Caire)

» State estimate based on Gaussian model
R (q,r,7) = H\/ s+7'§—r}
g exp <—(2{?)>

(1-q)ew (~4 )—I—qexp( (’2{57)2)

with (essentially) uninformative prior g = K/m fixed
> 7, (r(t)) is aggregate of PME values

> 7, is obtained from state evolution or 72 = ||z(!)|]?/n



Performance of CCS-AMP versus Previous Schemes
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Incorporating Lessons from Enhanced CCS

» Integrate outer code structure into inner decoding
[ ] [ ] [ ]

column pruning
column pruning

column pruning
“~
-

List 1 List 2 List3 ==~

Challenges
» CCS-AMP inner decoding is not a sequence of hard decisions
> List size for CCS-AMP is effective length of index vector

V. K. Amalladinne, A. K. Pradhan, C. Rush, J.-F. Chamberland, K. R. Narayanan. On approximate message passing for unsourced
access with coded compressed sensing. 1SIT 2020



Redesigning Outer Code

Properties of Original Outer Code
» Aimed at stitching message fragments together
» Works on short lists of K fragments

» Parities allocated to control growth and complexity

OO0

AR s N
aaadao

Challenges to Integrate into AMP
1. Must compute beliefs for all possible 2" fragments
2. Must provide pertinent information to inner AMP decoder

3. Should maintain ability to stitch outer code



Factor Graph Interpretation of Outer Code
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» Outer code with circular convolution structure
1

Ha, s, ([V(O]2) o 75 FET L JT FFT(e) | | (@)
HgmHo 5EN(3p)\se



Outer Code and Mixing

» Multiple devices on same graph
» Parity factor mix concentrated values

» Suggests triadic outer structure



Redesigning Outer Code

Solutions to Integrate into AMP

» Parity bits are generated over Abelian group amenable to
FWHT or FFT

» Discrimination power proportional to # parities

New Design Strategy
1. Information sections with parity bits interspersed in-between

2. Parity over two blocks (triadic dependencies)



Belief Propagation — Message Passing Rules

v(3) v(6) v(9) v(12)

> Message from check node a, to variable node s € N(ap):
y‘ap—>5(k) = Zkap:kp:k gap (kap) HsjeN(ap)\s l"’sjv—)ap(kj)
» Message from variable node sy to check node a € N(s):

/J‘se—m(k) X Af(k) HapeN(s@)\a l'l'ap—>s;_z(k)

» Estimated marginal distribution

psz(k) o8 )‘Z(k) HaEN(SZ) l‘l'a*}Sg(k)



Approximate Message Passing Algorithm

Updated Equations
AMP two-step algorithm

z(tfl)

z) =y — ADn, (rV) + div Dn (r(®))

n

Correction

r(t+1) = ATz(t) _|_ D nt (r(t))
——

Denoiser

Initial conditions z(® = 0 and n, (r®) = 0

» Denoiser is BP estimate from factor graph
» Message passing uses fresh effective observation r
» Fewer rounds than shortest cycle on factor graph

» Close to PME, but incorporating beliefs from outer code

R. Berthier, A. Montanari, and P.-M. Nguyen. State Evolution for Approximate Message Passing with Non-Separable Functions.
Information and Inference: A Journal of the IMA 2020



Preliminary Performance Enhanced CCS

Required Ey/No (dB)

=0+ Original AMP+Tree
=—e— Enhanced AMP+Tree

1 | | | |

0 50 100 150 200

Number of active devices K

250

300

Average run-time (sec)

18

=0+« Original AMP+Tree
=o— Enhanced AMP+Tree

-
)
T

“g......-..-......,...-

o

e
o
00

0 | | | |

0 50 100 150 200
Number of active devices K

» Performance improves significantly with enhanced CCS-AMP

decoding

» Computational complexity is approximately maintained

» Reparametrization may offer additional gains in performance?

250



CCS and AMP Summary

Summary
» New connection between CCS and AMP
» Natural application of BP on factor graph as denoiser

» OQuter code design depends on sparsity

1. Degree distributions (small graph)
2. Message size (birthday problem)
3. Final step is disambiguation

» Many theoretical and practical challenges/opportunities exist

+7 \N

Coding plays increasingly central role in large-scale CS



Coded Demixing for Single-Class URA

A
[Al]H N [Az]ﬂ N [Ae]H

» Create multiple bins with
(incoherent) matrices

" PUPE =5%
» Devices pick a bucket randomly L
| |

and use CCS-AMP encoding : :
2 22 24 26 28 3 32 34
» Perform joint demixing Ey/No (dB)
CCS-AMP decoding at access
point

J. R. Ebert, V. K. Amalladinne, S. Rini, J.-F. Chamberland, K. R. Narayanan. Stochastic Binning and Coded Demixing for
Unsourced Random Access. arXiv:2104.05686
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What this part is about

» Review of Slotted ALOHA with interference cancellation
» Extension to the Unsourced Gaussian MAC
» Sparse IDMA for Unsourced multiple access

16 /92



Uncoordinated MAC Frame Structure

» K active devices out of many, many devices

Frame Length

| Beacon | Inference | Slot 1 | Slot 2 | 000 | Slot J — 1 | Slot J | Feedback

» Beacon employed for coarse synchronization

Slot Count Reporting

| Population Estimation

» Same devices transmit within frame
» Focus is on what happens within the Frame Length
» Each device may or may not use slots within the frame

17 /92



Unsourced MAC - SIC UGMAC Scheme

S
85—~
. =
5 =2
- —
5 8
g 8
I ¢
T 3 B
g &
: 38
~ = —>
—
Key Features
» Schedule selected based on message bits
» Devices can transmit in multiple sub-blocks
» Scheme facilitates peeling decoder
A. Vem, K. Narayanan, J. Cheng, JFC. A User-Ind dent S ive Interference Cancellation Based

Coding Scheme for the Unsourced Random Access Gaussian Channel. |IEEE Trans on Comm, 2019

18/ 92



What Happens within a Slot?

[ e | rm) (e | <

f(wP)

Implementation Notes
> Message is partitioned into two parts w = (wp, w,)

» Every device uses identical codebook built from LDPC-type codes
tailored to T-user real-adder channel

» w, dictate permutation on encoder and recovered through CS
» Non-negative ¢;-regularized LASSO

A. Vem, K. Narayanan, J. Cheng, JFC. A User-Ind dent S ive Interference Cancellation Based
Coding Scheme for the Unsourced Random Access Gaussian Channel. |IEEE Trans on Comm, 2019

19/92



Unsourced MAC - SIC UGMAC Scheme for T =2

Key Features
» Devices repeat codewords in multiple slots based on w,
» Schedule selected based on message bits

» Scheme facilitates peeling decoder

20/92



Unsourced MAC - SIC UGMAC Scheme for T =2

Key Features
» Devices repeat codewords in multiple slots based on w,
» Schedule selected based on message bits

» Scheme facilitates peeling decoder
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Unsourced MAC - SIC UGMAC Scheme for T =2

Key Features
» Devices repeat codewords in multiple slots based on w,
» Schedule selected based on message bits

» Scheme facilitates peeling decoder

X3 +X3 + X5+ X+ 71
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Unsourced MAC - SIC UGMAC Scheme for T =2

X1+ X3+ %5 + X + 71

X3 +%g + 7

Key Features
» Devices repeat codewords in multiple slots based on w,
» Schedule selected based on message bits

» Scheme facilitates peeling decoder

23/02



Unsourced MAC - SIC UGMAC Scheme for T =2

X3 + X5 +Xe + 71

X3 +%g + 7

Key Features
» Devices repeat codewords in multiple slots based on w,
» Schedule selected based on message bits

» Scheme facilitates peeling decoder
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Unsourced MAC - SIC UGMAC Scheme for T =2

X3 + X5 +Xe + 71

X3 +%g + 7

Key Features
» Devices repeat codewords in multiple slots based on w,
» Schedule selected based on message bits

» Scheme facilitates peeling decoder

25/0902



Unsourced MAC — SIC UGMAC Scheme for T =2
L1

X3 +%g + 7

Key Features
» Devices repeat codewords in multiple slots based on w,
» Schedule selected based on message bits
» Scheme facilitates peeling decoder
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Unsourced MAC - SIC UGMAC Scheme for T =2

X5 + X + 71

Key Features

» Devices repeat codewords in multiple slots based on w,
» Schedule selected based on message bits
» Scheme facilitates peeling decoder

27 /92



Unsourced MAC - SIC UGMAC Scheme for T =2

g = (W), W) .

— .
Wy = (W5, wS) N

— .
Wy = (W5, w§) N |:|
iy = (65, 05) N i

L Jsmra

Key Features

» Devices repeat codewords in multiple slots based on w,
» Schedule selected based on message bits
» Scheme facilitates peeling decoder

28 /92



Unsourced MAC - SIC UGMAC Scheme for T =2

Wy = (4, 4§) -_;l_>-
Wy = (W5, wS) 2
— -
Wy = (W5, w§) -_;1_)- I:l
Vg = (WY, wg) -
S O
L1

o = (68 7§)
—

Successfully decoded

Key Features
» Devices repeat codewords in multiple slots based on w,
» Schedule selected based on message bits
» Scheme facilitates peeling decoder

29 /92



Required Ep\Np in dB

25

20

=== Random Coding-YP-17 I I
- T =1

- T=2

= T=4

A-T=5

-ex OP-17 L.
«=x4-fold ALOHA

50 100 150 200
Number of active users K
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Limitations of Sparsifying Collisions

Drawbacks of Slots
» Second order dispersion effects comes into play in FBL
» Energy expended solely to resolving collisions
> Gray slots are discarded during decoding process (60%)

\{
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Limitations of Sparsifying Collisions

Drawbacks of Slots
» Second order dispersion effects comes into play in FBL
» Energy expended solely to resolving collisions
> Gray slots are discarded during decoding process (60%)

Y

To fix this - Sparse IDMA

An IDMA like scheme which does not divide the number of channel uses
into slots

32/02



Sparse IDMA - Encoding

" P SN T, (V)

wp, = 1(wp) Wp 7 T,

v v - ” T, (V/
Icn Encodevl [ Repeat I £ IZevoPaddmgI A I Permute I o)

» Divide the message into two parts: w, W,
> w, is transmitted using compressed sensing
» w, is transmitted using a channel code

> Based on w;, a repetition pattern and permutation pattern is chosen
for the channel coding part

N (o o @@=
N @ @ @ @
= @ @ @ @ @
' @@ o @ @

s iz

User Transmission

18

Time
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CS Decoder and the Joint Graph

CS Decoder

A
—@

@ ¢ (@ o
i |

—> Permute J Permute

» Decode the first part using non-negative least square
» Recover the permutation patterns from the first part
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CS Decoder and the Joint Graph

CS Decoder

f(wﬁ) =1

» Decode the first part using non-negative least square

» Recover the permutation patterns from the first part

» Use the permutation patterns to decode the second part of the
message by using message passing decoder

35/02



Density Evolution and Threshold

Density Evolution

Compute It 1f, , 1E, (i), IESY (i) from 118, SN 1ESL (i), 1E5L(0)
fort=1,2,---,00

4R. Storn and K. Price, “Differential evolution a simple and efficient heuristic for
global optimization over continuous spaces,” Journal of Global Optimization.
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Density Evolution and Threshold

Density Evolution
Compute It 1f, , 1E, (i), IESY (i) from 118, SN 1ESL (i), 1E5L(0)

fort=1,2,---,00

Threshold

Threshold 0*= maximum o such that /,_,.(i/) — 1 for each i € E

4R. Storn and K. Price, “Differential evolution a simple and efficient heuristic for

global optimization over continuous spaces,” Journal of Global Optimization.
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Density Evolution and Threshold

Density Evolution

Compute 1%, IE . 1E (i), IE55(7) from 1572, [EEL 1EL (i), 1651 ()
fort=1,2,---,00
Threshold

Threshold 0*= maximum o such that /,_,.(i/) — 1 for each i € E

Optimization
Optimize the protograph and repetition factor to maximize the threshold
using differential evolution*

4R. Storn and K. Price, “Differential evolution a simple and efficient heuristic for

global optimization over continuous spaces,” Journal of Global Optimization.
38/92



Rate of the LDPC Code vs K

== Rate=0.125, v(x
=@ Rate=0.4, v(x

~— —~

UTEEL O A

o
“"‘
.

Required E,/Ny (dB)

1 | | | | |
25 50 100 150 200 250 300
Number of active users K,

» Optimal rate changes with K

30/02



Performance Comparison

12
=+ Random Coding
..... 4-Fold ALOHA R
10 sic T=4 = -
—g— cCs

AMP+Tree Code
8 | ——m— Sparse IDMA

e Polar Codes

Required E,/No (dB)
o

0
25 50 100 150 200 250 300

Number of active users K

» B =100, N = 30000
» Only 3.2 dB away from Polyanksiy's achievability result
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Takeaways

» Slotted ALOHA - interference cancellation for handling interference

» Proposed an IDMA like scheme for using the dimensions better
» Sparse IDMA vs. IDMA

® Sparsity allows us to control interference
® Makes it easier to design LDPC like codes

» Low complexity scheme for large number of users

41 /92



What this part is about

> (Non-orthogonal) spreading sequences for controlling interference
» Spreading + Polar codes + list decoding

42 /92



Encoding

» Divide the message into two parts: wg, w,
» Based on w; a spreading sequence is chosen from the set S
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Encoding

w = (W, W, h(-)

w, € ]Fé3 c e Fr
Polar Code BPSK

» Divide the message into two parts: wg, w,
» Based on w; a spreading sequence is chosen from the set S

» w, is encoded using a polar code

44 /92



Encoding

W, EIFBS | |
w:(ﬂsvﬂc — 2 h() LS: |:51 c s e Som
§j€Rns
w, € F c € Fy u x€R"
Polar Code BPSK  —> H®§J

» Divide the message into two parts: wg, w,

» Based on w; a spreading sequence is chosen from the set S
» w, is encoded using a polar code

> Coded bits are spread using the spreading sequence s;

45 /92



Encoding

vVvyVvYVYyyvyy

w, € F& ' | | |
w= (wow) 25 h() s = [51 S So8e
LT |
§j S Rns
w, € F c € Fy u x€R"
Polar Code BPSK — UWS;

Divide the message into two parts: wg, W,

Based on w; a spreading sequence is chosen from the set S

w, is encoded using a polar code

Coded bits are spread using the spreading sequence s;

2B is not too large

With non-trivial probability, multiple users will choose the same s;

46 /92



Transmitter from the Spreading Sequence Perspective

Sequence 1

Sequence 2 ——— +

Sequence 25

> M;: set of active users who choose s;

47 /92



Transmitter from the Spreading Sequence Perspective

Vi = E Uy

kEMl
Sequence 1
Vo = E Uy
keM,
Sequence 2 ———— +
VoBs = E Uy
B keM,s,
Sequence 2%

> M;: set of active users who choose s;

» Sum of the codewords associated with sequence TS Zke/\/lj Uy
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Transmitter from the Spreading Sequence Perspective

Vi = E Uy

kEMl

Sequence ] ——— v; ®s;
Vo = E Uy
kEMQ
Sequence 2— v, ® 5 +
VB = E Uy
B keM,z|
Sequence 2% —————— Vo5 & Sys

> M;: set of active users who choose s;

» Sum of the codewords associated with sequence TS Zke/\/lj Uy
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Transmitter from the Spreading Sequence Perspective

Vi = E Uy

kEMl

Sequence ] ——— v; ®s;
Vo = E Uy
kEMQ
Sequence 2— v, ® 5 +
VB = E Uy
B keM,z|
Sequence 2% —————— Vo5 & Sys

> M;: set of active users who choose s;
» Sum of the codewords associated with sequence s:: v, = ZkeMJ_ Uy

-J
> V=[] v - M;JT
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Transmitter from the Spreading Sequence Perspective

Vi = E Uy

kEMl
Sequence ] ——— v; ®s;
Vo = E Uy
kGMz
Sequence 2— v, ® 5 +
VB = E Uy
B kGMz&
Sequence 2% —————— Vo5 & Sys

> M;: set of active users who choose s;

» Sum of the codewords associated with sequence TS ZkeMj Uy

T
> Vi=[v{ v - V|
>¥:
y(1:n)y(ns+1:2ng)---y((i —ns+1:ing)---y(N—ng+1:n)
——
A VA yr Yo,
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Transmitter from the Spreading Sequence Perspective

Vi = E Uy

keM
Sequence ] ————— v; ®5;
V2 = Z Uk Y = SV + Z
Vv u N
keM Matrix representation of y
Sequence 2 — 7 Vo @ S +
VB = Z Uy
B keM,z|
Sequence 2% —————— Vo5 & Sys

> M;: set of active users who choose s;

» Sum of the codewords associated with sequence TS ZkeMj Uy

T
> Vi=[v{ v - V|
>¥:
y(1:n)y(ns+1:2ng)---y((i —ns+1:ing)---y(N—ng+1:n)
——
A VA yr Yo,
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Main Components of the Receiver

< C
Y ~ JscL | ()
P
Y S P. <, \/
Xy osic Y sso Pyl MMSE 2 JscL 25 ()
Pp
<
JSCL K ()

» Blind Spreading Sequence detector (SSD)
» Soft Output MMSE Multi-user Detector

> Joint successive cancellation list (JSCL) decoder of polar codes +

CRC

> Successive interference canceller (SIC)

53/02



[llustration of Decoding: K =3

> User 1 picks sg, v5 = Uy

» Users 2 and 3 pick s;, v; = U, + U

/

y=y—-0 JscL £)
é SIC Y SSD MMSE JSCL f()
JSCL )

0
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[llustration of Decoding: K =3

> User 1 picks sg, v5 = Uy

» Users 2 and 3 pick s;, v; = U, + U

y=y-0 JSCL ()
{§17 2} \
y y
—  sIC SSD MMSE JscL ()
{537 1}
So, 1
{50, 1} JscL ()
Iteration 1

> S'D = {§17§37§9}-
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[llustration of Decoding: K =3

> User 1 picks sg, v5 = Uy

» Users 2 and 3 pick s;, v; = U, + U

§=y-0 P, A JIsc (2
{§17 2} % \
é SIC Y SSD MMSE =3 JSCL f(-)
{§37 1} EQ
So, 1
{s0. 1) JscL ()
Iteration 1

> S'D = {§17§37§9}-
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[llustration of Decoding: K =3

> User 1 picks sg, v5 = Uy

» Users 2 and 3 pick s;, v; = U, + U

y=y—0 ~
P, JscL ()
(.2) / V1 ® s;
P 0
é SIC X SSD MMSE =3 JSCL f(-) —
So, 1
{s0. 1) JscL ()
Iteration 1

> S'D - {§17§37§9}-
» Decoded users: 2,3.

57 /92



[llustration of Decoding: K =3

> User 1 picks sg, v5 = Uy

» Users 2 and 3 pick s;, v; = U, + U

P, JscL
(.2) / V1 ® s;
P 0

é SIC Y SSD MMSE =3 JSCL f(-) —

{s3.1} Py g
So, 1
{s0. 1) JscL ()
V1 ® 51
Iteration 1

> S'D - {§17§37§9}-
» Decoded users: 2,3.
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[llustration of Decoding: K =3

> User 1 picks sg, v5 = Uy

» Users 2 and 3 pick s;, v; = U, + U

A

y=y— (v ®s1)

JscL ()
fs21) \
Yy Yy
—  sIc SSD MMSE JscL ()
{557 1}
Sqe, 1
{o15, 13 JscL ()
Iteration 1 Iteration 2

> S'D - {§17§37§9}-
» Decoded users: 2,3.

» Sp = {s3,55,515}-
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[llustration of Decoding: K =3

> User 1 picks sg, v5 = Uy

» Users 2 and 3 pick s;, v; = U, + U

g=y— (Ml ® 51) 53 JsCL )
é SIC Y SSD MMSE — JSCL f(-)
Sqe, 1
{o1s, 1} JscL ()
Iteration 1 Iteration 2

> S'D - {§17§37§9}-
» Decoded users: 2,3.

» Sp = {s3,55,515}-
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[llustration of Decoding: K =3

> User 1 picks sg, v5 = Uy

» Users 2 and 3 pick s;, v; = U, + U

A

y=y— (v ®s1)

P3 JSCL () 0
fs5.1) % ®\ﬁ
Ve @5
é SIC ¥ SSD MMSE — JsCL f(-) S
Sk, 1 /
{o15, 13 JscL ()
Iteration 1 Iteration 2

> S'D - {§17§37§9}-
» Decoded users: 2,3.

» Sp = {s3,55,515}-
» Decoded users: 1.
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[llustration of Decoding: K =3

> User 1 picks sg, v5 = Uy

» Users 2 and 3 pick s;, v; = U, + U

P3 JscL f() 0
fs5.1) % ®\ﬁ
\ S

é SIC ¥ SSD MMSE — JsCL f(-) S

Sk, 1 /

{o15, 13 JscL ()

(vs @ s5)
Iteration 1 Iteration 2

> S'D - {§17§37§9}-
» Decoded users: 2,3.

» Sp = {s3,55,515}-
» Decoded users: 1.
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(Blind) Spreading Sequence Detector

y,S

Energy Estimator

Sorting

. . _ T 2
> For each s; € S compute the statistic ¢; = Z (y,- §j)

Ne

i=1
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(Blind) Spreading Sequence Detector

e 1> Sj
e €p; §jz
)
Energy Estimator Sorting Thresholding
€55,

. . _ T 2
> For each s; € S compute the statistic ¢; = Z (y,- §j)

» Sort sequences in descending order of their statistics

Ne

i=1
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(Blind) Spreading Sequence Detector

y,S

e 8.5 & 8j> [ Ml
€ €2 S), €j2>S) M, |
Energy Estimator Sorting Thresholding
€55,

Ne

. . _ T 2
> For each s; € S compute the statistic ¢; = Z (y,- §j)

i=1

» Sort sequences in descending order of their statistics

> Based on ej compute estimate WJ\ of | M|
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(Blind) Spreading Sequence Detector

el ej17§j1 ej17§j17 |Mj1|
€ ej2:§j2 ej27§j21 A lj2|
y.S . . .
Energy Estimator _ Sorting : Thresholding : D
: —
€58, E ‘MJ| =K —+
— jeD

Ne
- 2
> For each s; € S compute the statistic ¢; = Z (y,T§j)
i=1
Sort sequences in descending order of their statistics
Based on e; compute estimate | M| of [ M;]
Output first |D| sequences from the sorted list

Define M := diag(| M|, | Mo, . .., |M\|D|\)

vvyVvVvyy
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MMSE Estimator

» The received signal is hypothesized as

Y=SpVp+2Z
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MMSE Estimator

» The received signal is hypothesized as

Y=SpVp+2Z

» Pass Y through a MMSE filter to obtain an estimate Y,

Vi
- Vo ~
V=|"|=MSL(SpSH+ /) 1Y
- Linear MMSE filter
Vip|

68 /92



MMSE Estimator

» The received signal is hypothesized as

Y=SpVp+2Z

» Pass Y through a MMSE filter to obtain an estimate Y,

Vi
- Vo ~
V=|"|=MSL(SpSH+ /) 1Y
- Linear MMSE filter
VD

» The error covariance matrix is given by
T = lp| — MSL(SpSh + In,) 'MSp

> We convert v; and ¥j; into LLRs to be fed to Polar decoder
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JSCL Decoding of Polar Codes

» Recall that multiple users can pick the same spreading sequence

» m-user GMAC over [, is equivalent to single user AWGN over F7'.
z ~ N(0,0°) z ~ N(0,

User 107 l%
User 2B o AL dm DS e o

LA —
User m c(m, ) 7(+)
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JSCL Decoding of Polar Codes

» Recall that multiple users can pick the same spreading sequence

» m-user GMAC over [, is equivalent to single user AWGN over F7'.
) z ~ N(0,0°) z ~ N(0,

c(1,i
User 14“\1 (L
User 2 <(2.1) @ o y(7) o~ (i) e(m.i) ZT(c(k, i) J
User m c(m. ) 7(+)

>g(:,i):[g(1,i) c(2,i) - g(m,i)]

> Pr(c(:, i) = gly(i)) o< exp (~ VO HE) for g ¢ By
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Example: JSC Decoding of Polar Codes

>» m=2n.=2

d(1,1) € Fy @(2, 1) ey

d(1,2) clFy d(272) € Fy
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Example: JSC Decoding of Polar Codes

>» m=2n.=2
4
Py,1) = Pr(d(2,1)|y(1)) = {Pr(00]y(1)), Pr(01]y(1)), Pr (10y(1)), Pr (11]y(1))

>
Py,0) = Pr(d(2,2)]y(2)) = {Pr(00]y(2)), Pr(01]y(2)), Pr (10y(2)) , Pr (11]y(2))

Paen
(&)

Pi2,2)
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Example: JSC Decoding of Polar Codes

>» m=2n.=2
>
Py,1) = Pr(d(2,1)|y(1)) = {Pr(00]y(1)), Pr(01]y(1)), Pr (10y(1)), Pr (11]y(1))

Py,0) = Pr(d(2,2)]y(2)) = {Pr(00]y(2)), Pr(01]y(2)), Pr (10y(2)) , Pr (11]y(2))

Pa2,1) ® Pyea,2) @ Pa2,1)

Pi2,2)

> Py = Pae1) ® Py
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Example: JSC Decoding of Polar Codes

>» m=2n.=2
>
Py,1) = Pr(d(2,1)|y(1)) = {Pr(00]y(1)), Pr(01]y(1)), Pr (10y(1)), Pr (11]y(1))

Py,0) = Pr(d(2,2)]y(2)) = {Pr(00]y(2)), Pr(01]y(2)), Pr (10y(2)) , Pr (11]y(2))

3(1 1) @ Pa@a)

Pi2,2)

> Py = Pae1) ® Py
> Based on P, ;) make a hard decision g(l, 1) on d(1,1)
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Example: JSC Decoding of Polar Codes

>» m=2n.=2
>
Py,1) = Pr(d(2,1)|y(1)) = {Pr(00]y(1)), Pr(01]y(1)), Pr (10y(1)), Pr (11]y(1))

Py22) = Pr(d(2,2)ly(2)) = {Pr(00]y(2)) , Pr (01]y(2)), Pr (10]y(2)), Pr (11]y(2))

d11 @Edzl)

P(ll)@d2l)®Pd22 Pa.2)

> Py = Pae1) ® Py
> Based on P, ;) make a hard decision g(l, 1) on d(1,1)
Pd(l 2) — Pd(1 1)+d(2,1) © Ed(272)
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Successive Interference Cancellation

> If the decoding is successful, remove v; from y

¥:¥_¥j®§j
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Choice of Parameters

Parameters to ChOOSG
» Spreading sequence length
» Rate of the code

» Number of spreading sequences in the master list
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Density Evolution Using Meta-Converse (MC) Bound

> 3 = I|D\ — MS%(S'DS% + Ins)ill\/hsD

v; ® 51, with probability 1 — Pe;

> f(Pe;) =
(Pe)) {07 with probability Pe;
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SNR versus Length of Spreading Sequences
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Comparison
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Comparison
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Comparison
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Comparison
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Comparison
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Comparison
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Comparison
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Comparison
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Comparison
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Simulation Results

Required Ey/No (dB)

» List size - 32

> m-4

[ T T T
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» CRC length - 16 bits
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Take Aways

» Proposed a receiver with complexity O(K3) (can be reduced)

v

Blind sequence detection + classical SIC+MMSE receivers

v

Near finite length bound achieving codes are required
(CRC+Polar+List)

All these are standard components of a 5G system

vy

Scaling with the number of users should be improved
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