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Phase Noise Channels

Phase noise arises due to

Imperfections in the oscillator circuits at the transceivers

Even for high-quality oscillators: if the continuous-time
waveform is processed by long filters at the receiver (e.g., long
symbol time, OFDM systems), the phase uncertainty
accumulates!

Fast and slow fading effects in wireless environments

Nonlinear propagation effects in fiber-optic commun.
(amplitude mod. is converted into phase mod.
−→ phase-noise strength depends also on signal amplitude)
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Phase Noise Channels

Questions:

Models for phase noise channels

Impact of phase noise on channel capacity

Signal and code design
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Representation of continuous-time waveforms

Assume input waveform {X (t)}Tt=0 is square integrable:

X (t) ∈ L2[0,T ] −→
∫ T

0
|X (t)|2dt <∞

Let {φm(t)}m be a complete orthonormal basis of L2[0,T ],
i.e. ∫ T

0
φm(t)φn(t)?dt =

{
1 m = n
0 m 6= n

X (t) =
∞∑

m=1

Xmφm(t), Xm =

∫ T

0
X (t)φm(t)?dt

Equivalent representations: {X (t)}Tt=0 ⇐⇒ X1X2 · · ·
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Mutual information for random waveforms

The average mutual information between {X (t)}Tt=0 and
{Y (t)}Tt=0 is [Gallager, 1968]

I
(
{X (t)}Tt=0 ; {Y (t)}Tt=0

)
= lim

n→∞
I (X1 · · ·Xn ;Y1 · · ·Yn)

(if it exists)

Xm =

∫ T

0
X (t)φm(t)?dt, Ym =

∫ T

0
Y (t)φm(t)?dt
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Example: mutual information for a phase noise channel

Input-output relation:

Y (t) = X (t)e jΘ(t) + W (t)

Choose an incomplete orthonormal basis as

φm(t) =
1√
∆

rect

(
t −m∆ + ∆/2

∆

)
, m = 1 . . . n, ∆ = T/n

Ym =

∫ T

0
Y (t)φm(t)?dt =

∫ m∆

(m−1)∆

Y (t)√
∆

dt

= Xm

∫ m∆

(m−1)∆

e jΘ(t)

∆
dt + Wm
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Example: mutual information for a phase noise channel

Discretized model:

Ym = Xm

∫ m∆

(m−1)∆

e jΘ(t)

∆
dt + Wm

Both amplitude fading and phase noise!

Commonly used discrete-time phase noise channel model:

Ym = Xme
jΘm + Wm, Θm = Θ((m − 1)∆)

How different are the two models in terms of capacity?
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Receivers with finite time resolution

Tx

Integrate

and dump

TxDetector

How small should ∆ be?

It depends on the statistics of {Θ(t)}
In general, as small as possible

Oversampling helps! ∆↘ =⇒ I (X1 · · ·Xn ;Y1 · · ·Yn)↗
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Oversampled channel model

YmL+` = Xm FmL+` + Wm, ` = 1, . . . , L

m = 1, . . . , n

FmL+` =

∫ (mL+`)∆

(mL+`−1)∆

e jΘ(t)

∆
dt, ∆ =

Tsymb

L

… …
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Wiener phase noise
Widely used for modeling oscillators
Also known as Brownian motion:

Θ(t) = Θ(0) + γ

∫ t

0
Z (t ′)dt ′

where Z is a white Gaussian process
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0
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where Z is a white Gaussian process

Variance increases: Θ(t) ∼ N (0, γ2t)

Samples are not independent: E [Θ(t)Θ(s)] = γ2 min{t, s}
Process with memory!

Oversampling, i.e. L > 1, increases information rates
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Wiener phase noise channel
Define Θk = Θ((k − 1)∆) and Nk ∼ N (0, 1):

Θk = Θk−1 + γ
√

∆Nk

YmL+` = Xme
jΘmL+`

∫ (mL+`)∆

(mL+`−1)∆

e j(Θ(t)−ΘmL+`)

∆
dt + WmL+`

Contour plot of the unnormalized fading
pdf for ∆ = 6 and γ = 1. (Y. Wang et al.,
TCOM 2006, vol. 54, no. 5)

L. Barletta — Information Rates for Phase Noise Channels 21/33



Department of Information, Electronics and
Bioengineering Politecnico di Milano

Wiener phase noise channel
Define Θk = Θ((k − 1)∆) and Nk ∼ N (0, 1):

Θk = Θk−1 + γ
√

∆Nk

YmL+` = Xme
jΘmL+`

∫ (mL+`)∆

(mL+`−1)∆

e j(Θ(t)−ΘmL+`)

∆
dt + WmL+`

Contour plot of the unnormalized fading
pdf for ∆ = 6 and γ = 1. (Y. Wang et al.,
TCOM 2006, vol. 54, no. 5)

L. Barletta — Information Rates for Phase Noise Channels 21/33



Department of Information, Electronics and
Bioengineering Politecnico di Milano

Wiener phase noise channel
Define Θk = Θ((k − 1)∆) and Nk ∼ N (0, 1):

Θk = Θk−1 + γ
√

∆Nk

YmL+` = Xme
jΘmL+`

∫ (mL+`)∆

(mL+`−1)∆

e j(Θ(t)−ΘmL+`)

∆
dt + WmL+`

Contour plot of the unnormalized fading
pdf for ∆ = 6 and γ = 1. (Y. Wang et al.,
TCOM 2006, vol. 54, no. 5)

L. Barletta — Information Rates for Phase Noise Channels 21/33



Department of Information, Electronics and
Bioengineering Politecnico di Milano

Oversampled Discrete-time Wiener Phase Noise
Channel

Let us study the capacity of a simpler model

Θk = Θk−1 + γ
√

∆Nk

YmL+` = Xme
jΘmL+` + WmL+`

Capacity under an average power constraint:

lim
T→∞

1

T

∫ T

0
|X (t)|2 dt ≤ P
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∆Nk

YmL+` = Xme
jΘmL+` + WmL+`

Capacity under an average power constraint:

E

[
1

T

∫ T

0
|X (t)|2 dt

]
≤ P

=⇒ E
[
|Xm|2

]
≤ P∆

C(P,∆, γ) = lim
n→∞

sup
FXm : E[|Xm|2]≤P∆

1

n
I (X1 · · ·Xn ;Y1 · · ·Yn)
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How to compute capacity

Challenges:

Channel with memory

How to deal with oversampling?

Unknown optimal input distribution

We will see how to:

Get rid of the memory

Compute an upper bound to capacity

We assume iid Xm’s with Xm ∼ U [0, 2π)
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A capacity upper bound
Define X n

1 = X1 · · ·Xn

1

n
I (X n

1 ;Yn
1) =

1

n

n∑
m=1

I
(
X n

1 ;Ym |Ym−1
1

)

(DPI) ≤ 1

n

n∑
m=1

I
(
X n

1 ,ΘmL+1;Ym |Ym−1
1

)
=

1

n

n∑
m=1

I
(
X n

1 ;Ym |ΘmL+1,Y
m−1
1

)
+ I
(

ΘmL+1;Ym |Ym−1
1

)
(Markov) =

1

n

n∑
m=1

I (Xm;Ym |ΘmL+1) + I
(

ΘmL+1;Ym |Ym−1
1

)
(Stationary) = I (X1;Y1 |ΘL+1) +

1

n

n∑
m=1

I
(

ΘmL+1;Ym |Ym−1
1

)
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A capacity upper bound

Assumption: iid Xm’s with Xm ∼ U [0, 2π)

I
(

ΘmL+1;Ym |Ym−1
1

)
(DPI) ≤ I

(
ΘmL+1; ΘmL+1 ⊕ Xm ⊕ γ

√
∆NmL+1

∣∣∣Ym−1
1

)

= 0

1

n
I (X n

1 ;Yn
1) ≤ I (X1;Y1 |ΘL+1)
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Polar decomposition

I (X1;Y1 |ΘL+1) = I ( |X1|, X1;Y1 |ΘL+1)

= I ( |X1|;Y1 |ΘL+1)︸ ︷︷ ︸
amplitude mod.

+ I ( X1;Y1 |ΘL+1, |X1|)︸ ︷︷ ︸
phase mod.

Different bounding techniques are used for the two terms

Reveal all phase noise samples to the receiver: amplitude mod.
on AWGN channel
Application of the I-MMSE formula to the phase mod. term

C ≤ 1

2
log

(
1 +

P

2

)

+log(2π)+
1

2
log

(
P∆

(√
1 +

4

γ2P∆2
− 1

))
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Degrees of freedom
Define the degrees of freedom as

D(α) = lim
P→∞

C(P,∆ = P−α, γ)

log(P)

Full DoF

Amplitude Mod.

Phase Mod.
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Conclusions

The capacity pre-log depends on the growth rate of receiver’s
time resolution ∆

If ∆ ∼ 1/
√
P, an asymptotic capacity pre-log of 0.75 can be

achieved, but not surpassed

Even with infinite time resolution CPN < CAWGN

For any γ > 0! Even for very high-quality oscillators!

Conjectures:

Simplifying the model by discarding the amplitude fading is
too much
The fundamental tension between additive noise and phase
noise limits the degrees of freedom
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Thanks for your attention!
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Derivation of the average power constraint

lim
T→∞

1

T

∫ T

0
|X (t)|2 dt = E

[
1

T

∫ T

0
|X (t)|2 dt

]

= E

 1

T

∫ T

0

∣∣∣∣∣
n∑

m=1

Xm

L∑
`=1

φmL+`(t)

∣∣∣∣∣
2

dt


(orthogonality) = E

[
1

T

n∑
m=1

L∑
`=1

∫ (mL+`)∆

(mL+`−1)∆

|Xm|2

∆
dt

]

=
Ln

T
E
[
|Xm|2

]
=

1

∆
E
[
|Xm|2

]
≤ P
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