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Capacity of Additive Noise Models

Consider the (memoryless, stationary, scalar) additive noise channel

Y = X + N,

where the noise N is a random variable on (R,B(R)) with
probability density function pN .

The capacity is defined by

C = sup
µX∈P

I (µX ,PY |X )

subject to µX ∈ Λ

Key Question: What is the capacity for general constraints
and non-Gaussian noise distributions?
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Non-Gaussian Noise Models

In many applications, the noise is non-Gaussian.

Example 1: Poisson Spatial Fields of Interferers.

Noise in this model is the interference

Z =
∑
i∈Φ

r
−η/2
i hiXi .
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Non-Gaussian Noise Models

Suppose that

(i) Φ is a homogeneous Poisson point process;
(ii) (hi ) and (Xi ) are processes with independent elements;
(ii) E[|hiXi |4/η] <∞.

Then, the interference Z converges almost surely to a
symmetric α-stable random variable.
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Non-Gaussian Noise Models

Example 2: Molecular Timing Channel.

In the channel

Y = X + N,

the input X corresponds to time of release.
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Non-Gaussian Noise Models

In the channel

Y = X + N,

the noise N corresponds to the diffusion time from the transmitter
to the receiver.

Under Brownian motion models of diffusion, the noise
distribution is inverse Gaussian or Lévy stable.

pN(x) =

√
λ

2πx2
exp

(
−λ(x − µ)2

2µ2x

)
.
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Capacity of Non-Gaussian Noise Models

The capacity is defined by

C = sup
µX∈P

I (µX ,PY |X )

subject to µX ∈ Λ

The noise is in general non-Gaussian.

Question: What is the constraint set Λ?

7 / 40



Constraint Sets

A familiar constraint common in wireless communications is

ΛP = {µX ∈ P : EµX [X 2] ≤ P}

corresponding to an average power constraint.

Other constraints appear in applications. For example,

Λc = {µX ∈ P : EµX [|X |r ] ≤ c}

where 0 < r < 2. This corresponds to a fractional moment
constraint (useful in the study of α-stable noise channels).

In the molecular timing channel,

ΛT = {µX ∈ P : EµX [X ] ≤ T , PµX (X < 0) = 0}

is the relevant constraint.
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Capacity of Non-Gaussian Noise Channels

The capacity is defined by

C = sup
µX∈P

I (µX ,PY |X )

subject to µX ∈ Λ

Since the channel is additive,

I (µX ,PY |X ) =

∫ ∞
−∞

∫ ∞
−∞

pN(y − x) log
pN(y − x)

pY (y)
dydµX (x).

There are two basic questions that can be asked:

(i) What is the value of the capacity C?

(ii) What is the optimal solution µ∗X ?
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Topologies on Sets of Probability Measures

Point set topology plays an important role in optimization theory.

For example, it allows us to determine whether or not the optimum
can be achieved (i.e., the sup becomes a max).
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Topologies on Sets of Probability Measures

In applications, we usually optimize over Rn, which has the
standard topology induced by Euclidean metric balls.

In the capacity problem, we optimize over sets of probability
measures in subsets of P.

Question: What is a useful topology on the set of probability
measures?
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Topologies on Sets of Probability Measures

A useful choice is the topology of weak convergence.

Closed sets S are defined by sequences of probability measures
(µi ) ⊂ S and a limiting probability measure µ ∈ S such that

lim
i→∞

∫ ∞
−∞

f (x)dµi (x) =

∫ ∞
−∞

f (x)dµ(x).

for all bounded and continuous functions f .

It turns out that the topology of weak convergence for probability
measures is metrizable.

There exists a metric d on P such that d metric-balls generate the
topology of weak convergence (known as the Lévy-Prokhorov
metric).
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Topologies on Sets of Probability Measures

In addition, Prokhorov’s theorem gives a characterization of
compactness.

Prokhorov’s Theorem: If a subset Λ ⊂ P of probability
measures is tight and closed, then Λ is compact in the

topology of weak convergence.

A set of probability measures Λ is tight if for all ε > 0, there exists
a compact set Kε ⊂ R such that

µ(Kε) ≥ 1− ε, ∀µ ∈ Λ.
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Existence of the Optimal Input

The capacity is defined by

C = sup
µX∈P

I (µX ,PY |X )

subject to µX ∈ Λ

Question: Does the capacity-achieving input exist?

This is answered by the extreme value theorem.

Extreme Value Theorem: If Λ is weakly compact and
I (µX ,PY |X ) is weakly continuous on Λ, then µ∗X exists.
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Support of the Optimal Input

Question: When is the optimal input discrete and compactly
supported?

The initial results on this question were due to Smith [Smith1971].

Theorem: For amplitude and average power constraints, the
optimal input for the Gaussian noise channel is discrete and

compactly supported.
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Support of the Optimal Input

More generally, the support of the optimal input can be studied via
the KKT conditions.

Let M be a convex and compact set of channel input
distributions. Then, µ∗X ∈M maximizes the capacity if and
only if for all µX ∈M

EµX

[
log

(
dPY |X (Y |X )

dPY (Y )

)]
≤ I (µ∗X ,PY |X ).

Equality holds at points of increase ⇒ constraints on optimal
inputs.

Significant progress recently; e.g., [Fahs2018,Dytso2019].
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Characterizing the Capacity

In general, it is hard to compute the capacity in closed-form.
Exceptions are Gaussian and Cauchy noise channels under various
constraints.

Theorem [Lapidoth and Moser]: Let the input alphabet X
and the output alphabet Y of a channel W (·|·) be seperable
metric spaces, and assume that for any Borel subset B ⊂ Y
the mapping x 7→W (B|x) from X to [0, 1] is Borel
measurable. Let Q(·) be any probability measure on X , and
R(·) any probability measure on Y. Then, the mutual
information I (Q;W ) can be bounded by

I (Q;W ) ≤
∫

D(W (·|x)||R(·))dQ(x)
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A Change in Perspective

New Perspective: the capacity is a map

(pN ,Λ) 7→ C .

Definition
Let K = (pN ,Λ) and K̂ = (p̂N , Λ̂) be two tuples of channel
parameters. The capacity sensitivity due to a perturbation from
channel K to the channel K̂ is defined as

CK→K̂
∆
= |C (K)− C (K̂)|.

Egan, M., Perlaza, S.M. and Kungurtsev, V., “Capacity sensitivity in
additive non-Gaussian noise channels,” Proc. IEEE International
Symposium on Information Theory, Aachen, Germany, Jun. 2017.
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A Strategy

I Consider a differentiable function f : Rn → R, which admits a
Taylor series representation

f (x + ‖e‖ẽ) = f (x) + ‖e‖Dẽf (x)T ẽ + o(‖e‖).

(ẽ is unit norm).

I This yields

|f (x + ‖e‖ẽ)− f (x)| ≤ ‖Dẽf (x)‖‖e‖+ o(‖e‖),

i.e., the sensitivity.

Question: what is the directional derivative of the optimal
value function of an optimization problem (e.g., the capacity)?
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A Strategy

I In the case of vector, smooth optimization problems there is a
good theory.

I E.g., envelope theorems.

Proposition

Let the real valued function f (x, y) : Rn × R→ R be twice
differentiable on a compact convex subset X of Rn+1, strictly
concave in x. Let x∗ be the optimal value of f on X and denote
ψ(y) = f (x∗, y). Then, the derivative of ψ(y) exists and is given
by

ψ′(y) = fy (x∗, y).
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A Strategy

A sketch of the proof:

1. Use the implicit function theorem to write ψ(y) = f (x∗(y), y).

2. Observe that

ψ′(y) = fy (x∗(y), y) + (∇xf (x∗(y), y))T
dx∗(y)

dy

= fy (x∗(y), y).

Generalizations of this result due to Danskin and Gol’shtein.
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A Strategy

Recall:

C (Λ, pN) = sup
µX∈Λ

I (µX , pN)

Question: What is the effect of

I Constraint perturbations: C (Λ) (fix pN)?

I Noise distribution perturbations: C (pN) (fix Λ)?
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Constraint Perturbations

Common Question: What is the effect of power on the capacity?

Another Formulation: What is the effect of changing the set of
probability measures

Λ2 = {µX : EµX [X 2] ≤ P}.

Natural Generalization: What is the effect of changing Λ on

C (Λ) = sup
µX∈P

I (µX ,PY |X )

subject to µX ∈ Λ.
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Constraint Perturbations

Question: Do small changes in the constraint set lead to
small changes in the capacity?

To answer this question, we need to formalize what a small change
means.

Key Idea: The constraint set is viewed as a point-to-set map.

Example: Consider the power constraint

Λ2(P) = {µX : EµX [X 2] ≤ P}

is a map from R to a compact set of probability measures
Λ2 : R⇒ P
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Constraint Perturbations

When the power P (or more generally, any other parameter) is
changed, Λ2(P) can expand or contract.

There are therefore two aspects to continuity of a point-to-set map.

Definition
A point-to-set map Λ : R⇒ P is upper hemicontinuous at P ∈ R
if for all ε > 0 there exists a δ > 0 such that d(P,P) < δ implies
that Λ(P) ⊆ ηε(Λ(P)).

Definition
A point-to-set map Λ : R⇒ P is lower hemicontinuous at P ∈ R if
for all ε > 0 there exists a δ > 0 such that d(P,P) < δ implies
that Λ(P) ⊆ ηε(Λ(P)).

Λ is continuous if it is both upper and lower hemicontinous.
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Lemma 1: Berge’s Maximum Theorem

Theorem (Berge’s Maximum Theorem)

Let Θ and S be two metric spaces, Γ : Θ⇒ S a compact-valued
point-to-set map, and ϕ : S ×Θ→ R be a continuous function on
S ×Θ. Define

σ(θ) = arg max{ϕ(s, θ) : s ∈ Γ(θ)}, ∀θ ∈ Θ

ϕ∗(θ) = max{ϕ(s, θ) : s ∈ Γ(θ)}, ∀θ ∈ Θ

and assume that Γ is continuous at θ ∈ Θ. Then, ϕ∗ : Θ→ R is
continuous at θ.

Implication: continuity of the capacity in P if

1. I (µX ,PY |X ) is weakly continuous on Λ

2. Λ : R⇒ P is continuous.
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Bounding the Capacity Sensitivity

We now have general conditions to ensure that the capacity
sensitivity

|C (Λ(P))− C (Λ(P ′))| → 0, P → P ′.

However, the capacity is in general a complicated function of the
constraint parameters.

Question: Is there a general way of bounding the capacity
sensitivity?
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Bounding the Capacity Sensitivity

Key tool: Regular subgradients.

Definition
Consider a function f : Rn → R and a point x ∈ Rn with f (x)
finite. For a vector, v ∈ Rn, v is a regular subgradient of f at x,
denoted by v ∈ ∂̂f (x), if there exists δ > 0 such that for all
x ∈ Bδ(x)

f (x) ≥ f (x) + vT (x− x) + o(|x− x|).

Related to subgradients in convex optimization.

What are conditions for existence?
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Lemma 2: Existence of Regular Subgradients

Theorem (Rockafellar and Wets 1997)

Suppose f : Rn → R is finite and lower semicontinuous at x ∈ Rn.
Then, there exists a sequence xk →

f
x with ∂̂f (xk) 6= ∅ for all k.

Rockafellar, R. and Wets, R., Variational Analysis. Berlin Heidelbeg:
Springer-Verlag, 1997

Implication:

1. Let f (P) = C (Λ(P))

2. Apply Berge’s maximum theorem and regular subgradients.

This yields general estimates of the capacity sensitivity.
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Example 1: RHS Constraint Perturbations

I Consider constraints

Λ(b) = {µX ∈ P : EµX [f (|X |)] ≤ b}

where f is positive, non-decreasing and lower semicontinuous.

I The capacity is given by

sup
µX∈P

I (µX ,PY |X )

subject to µX ∈ Λ(b).

I Need to establish continuity in b.
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Example 1: RHS Constraint Perturbations

Theorem
Let b ∈ R+ and suppose that the following conditions hold:

(i) Λ(b) is non-empty and compact.

(ii) I (µX ,PY |X ) is weakly continuous on Λ(b).

Then, C (b) is continuous at b.

It is now possible to apply the Rockafellar-Wets regular
subgradient existence theorem.

Suppose b > b̃ with C (b) <∞ and C (b̃) <∞. If b − b̃ and ε > 0
are sufficiently small

C (b)− C (b̃)− ε ≤ |v ||b − b̃|+ o(|b − b̃|)
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Example 2: Discrete Input Constraints

Consider the general constraint set Λ (allowing for continuous
inputs).

C (Λ) = sup
µX∈P

I (µX ,PY |X )

subject to µX ∈ Λ,

E.g., Λ = Λp = {µX ∈ P : EµX [|X |p] ≤ b}.

Let P∆ be the set of probability measures on (R,B(R)) that have
mass points in the set ∪∆′>∆∆′Z. Let Λ be a compact subset of
P.
The discrete approximation of C (Λ) is then defined as

C (Λ∆) = sup
µX∈P

I (µX ,PY |X )

subject to µX ∈ Λ∆,

where Λ∆ = P∆ ∩ Λ.
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Example 2: Discrete Input Constraints

The capacity sensitivity in this case is:

CΛ→Λ∆
= |C (Λ)− C (Λ∆)|,

I.e., the cost of discreteness.

Again, we need to establish continuity in order to apply the
Rockafellar-Wets theorem.
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Example 2: Discrete Input Constraints

Theorem (Egan, Perlaza 2018)

Let Λ be a non-empty compact subset of P. If the mutual
information I (·,PY |X ) is weakly continuous on Λ, then
C (Λ∆)→ C (Λ) as ∆→ 0.

(i) Gaussian model
I pN(x) = 1√

2πσ2
exp

(
−x2/(2σ2)

)
, σ > 0.

I Λ = {µX ∈ P : EµX
[X 2] ≤ b}, b > 0.

(ii) Cauchy model
I pN(x) = 1

πγ
(

1+( x
γ )2

) , γ > 0.

I Λ = {µX ∈ P : EµX
[|X |r ] ≤ b}, b > 0.

(iii) Inverse Gaussian model

I pN(x) =
√

λ
2πx3 exp

(
−λ(x−γ)2

2γ2x

)
, x > 0, λ, γ > 0.

I Λ = {µX ∈ P : EµX
[X ] ≤ b}, b > 0.
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Example 2: Discrete Input Constraints

Theorem (Egan, Perlaza 2018)

Suppose that Λ is a non-empty compact subset of P and the
mutual information I : P → R is weakly continuous on Λ . If
C = supµX∈Λ I (µX ,PY |X ) <∞, then for all ε > 0 there exists
v ∈ R such that for ∆ sufficiently small,

C (Λ)− C (Λ∆)− ε ≤ |v |∆ + o(∆)

holds.
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Recipe Review

If the model parameter is finite dimensional:

1. Establish continuity via Berge’s maximum theorem.

2. Apply regular subgradient existence theorem.

Remark: The method applies to more general channels; e.g.,
vector channels

Egan, M., “On Capacity Sensitivity in Additive Vector Symmetric -Stable
Noise Channels”, Proc. IEEE WCNC (Invited Paper MoTION Workshop),
2019.

What if the model parameter is not finite dimensional?

E.g., the noise distribution?
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Noise Distribution Perturbations

In the case of noise pdf perturbations, the relevant capacity
sensitivity is

Cp0
N→p1

N
= |C (p0

N)− C (p1
N)|.

Let (piN)i be a sequence of pdfs converging to p0
N (in e.g., TV,

weakly, KL divergence...).

Question: Does

C (piN)→ C (p0
N) as i →∞

hold?
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Noise Distribution Perturbations

Theorem (Egan, Perlaza 2017)

Let {piN}∞i=1 be a pointwise convergent sequence with limit p0
N and

let Λ be a compact set of probability measures not dependent on
pN . Suppose the following conditions hold:

(i) The mutual information I (µX , p
i
N) is weakly continuous on Λ.

(ii) For the convergent sequence {piN}∞i=1 and all weakly
convergent sequences {µi}∞i=1 in Λ,

lim
i→∞

I (µi , p
i
N) = I (µ0, p

0
N).

(iii) There exists an optimal input probability measure µ∗i for each
noise probability density piN .

Then, limi→∞ C (piN) = C (p0
N).
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Lemma 3: Mutual Information Bound

Lemma (Egan, Perlaza, Kungurtsev 2017)

Let p0
N , p

1
N be two noise probability density functions and Λ be a

compact subset of P such that C (p0
N) <∞ and C (p1

N) <∞.
Then, the capacity sensitivity satisfies

|C (p0
N)− C (p1

N)|
≤ max{|I (µ∗0, p0

N)− I (µ∗0, p
1
N)|, |I (µ∗1, p0

N)− I (µ∗1, p
1
N)|}.

Observation: To compute the estimate, we need to characterize
the optimal input distribution.

I.e. is the support discrete, continuous, compact?
⇒

Connects to questions about the optimal input structure.

39 / 40



Conclusions

Key Question: How sensitive are information measures to
model assumptions?

Many noise models and constraints are highly idealized.

The capacity sensitivity framework provides a means of
investigating what happens when idealizations are

relaxed.
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