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Overview

PART I: Information theoretic limits
Motivation
Point-to-point oint source-channel coding (JSCC) problem
Separation Theorem
JSCC with receiver side information
JSCC over multi-user networks (broadcast, multi-access and relay
channels)

PART II: Practical systems
Uncoded/ analog transmission
Compressive sensing for JSCC
Deep JSCC
Learning over noisy channels
Over-the-air stochastic gradient descent
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Future Autonomous Systems

Intelligence is the key for future autonomous systems!
and, so is communications . . .
new objectives, new constraints, new problems!
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Unkept 5G Promises: Tactile Internet

“Internet network that combines ultra low latency with extremely high
availability, reliability and security” (ITU)
Next generation Internet of Things (IoT): human-machine and
machine-machine interaction: haptic interaction with visual feedback
Augmented reality (AR), virtual reality (VR), automation, robotics,
remote education, telepresence, . . .
1ms round trip delay?
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Fundamental Problem of Information Theory

Encoder DecoderChannel

Transmit source to the destination “reliably”
Source: i.i.d. samples from pS

Channel: memoryless with pY |X

Encoder: fm,n : Sm → Xn

Decoder: gm,n : Y n → Ŝm

Rate: n
m

Probability of error Pm,ne = Pr{Sm 6= Ŝm}
Rate r is achievable if there exists a sequence of encoders and decoders
such that Pm,ne → 0 as n,m→∞ while n

m
≤ r.

Minimum achievable rate is called the source-channel capacity
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Special Cases

Encoder DecoderChannel

Channel Coding
Assume: source is binary 1/2
i.e., entropy is H(S) = 1 bit per sample
Inverse of the minimum source-channel rate is the maximum number of
bits per channel use one can transmit reliably over this channel

Source Coding
Assume: Channel is error free with capacity 1 bit per channel use
Minimum source-channel rate gives us the minimum number of bits per
sample we need to compress this source reliably
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Lossy Transmission

Encoder DecoderChannel

Additive distortion measure: d(s, ŝ):

d(Sm, Ŝm) = 1
m

m∑
i=1

d(Si, Ŝi)

A rate- distortion pair (r,D) is achievable if there exists a sequence of
encoders and decoders with n

m
≤ r and limm,n→∞E[d(Sm, Ŝm)] ≤ D.
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Shannon’s Source-Channel Separation Theorem

Source 
Encoder

Source 
Decoder

Channel 
Encoder

Channel 
DecoderChannel

First compress the source
Match quantized bits to the optimal channel code
No loss of optimality

Separation Theorem
(Lossless) Rate r is achievable iff H(S) ≤ rC
(Lossy) For given rate r and distortion measure d(·, ·),
the minimum achievable distortion is given by D(rC)

where D(R) is the distortion-rate function of the source,
and C is the capacity of the channel.
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Separate Coding Scheme

Optimal source-channel rate is r = H(S)
C

, where C = max pXI(X;Y )
Random coding: generate 2mH(S) source codewords of length m with
probability pS
Also, generate 2mH(S) = 2nC length-n channel codewords with capacity
achieving input distribution pX

SOURCE  SPACE 

CHANNEL  SPACE 

First the channel codeword, then the source codeword is decoded with
arbitrarily small probability of error
In practice concatenate near optimal source and channel codes, such as
LDGM followed by LDPC etc..
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Converse Proof

If Pe → 0, then H(S) < rC, for any sequence of encoder-decoder pairs
with n ≤ r ·m.
From Fano’s inequality:

H(Sm|Ŝm) ≤ 1 + Pm,ne log |Sm| = 1 + Pm,ne m log |S|

Hence,

H(S) = 1
m
H(Sm|Ŝm) + 1

m
I(Sm; Ŝm) (Chain rule)

≤ 1
m

(1 + Pm,ne m log |S|) + 1
m
I(Sm; Ŝm) (Fano’s inequality)

≤ 1
m

(1 + Pm,ne m log |S|) + 1
m
I(Xn;Y n)

(Data processing inequality, Sm −Xn − Y n − Ŝm)

≤ 1
m

+ Pm,ne log |S|+ rC (Capacity theorem)

Letting m,n→∞, if Pm,ne → 0, we get H(S) ≤ rC.

Optimality of separation continues to hold in the presence of feedback!
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Deniz Gündüz Joint Source and Channel Coding



Converse Proof

If Pe → 0, then H(S) < rC, for any sequence of encoder-decoder pairs
with n ≤ r ·m.
From Fano’s inequality:
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H(Sm|Ŝm) ≤ 1 + Pm,ne log |Sm| = 1 + Pm,ne m log |S|

Hence,

H(S) = 1
m
H(Sm|Ŝm) + 1
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≤ 1
m

+ Pm,ne log |S|+ rC (Capacity theorem)

Letting m,n→∞, if Pm,ne → 0, we get H(S) ≤ rC.

Optimality of separation continues to hold in the presence of feedback!
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Benefits and Limitations of Separation

Separation is good, because ...
brings modularity,
we can benefit from existing source and channel coding techniques

Image 
Encoder

Audio 
Encoder

Channel 
Encoder

Channel 
DecoderChannel

Image 
Decoder

Audio 
Encoder

but ...
infinite delay and complexity,
ergodic source and channel assumption
and no separation theorem for multi-user networks
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Receiver Side Information

Encoder DecoderChannel

Receiver has correlated side information: sensor network
Separation optimal (Shamai, Verdu, ’95): Optimal source-channel rate
r = H(S|T )

C

Lossy transmission: minimum distortion DWZ(rC), where DWZ is the
Wyner-Ziv rate-distortion function
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No Side Information (reminder)

When there is no side information, no need for binning.

SOURCE  SPACE 

CHANNEL  SPACE 
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With Side Information: Binning

When there is side information at the receiver, we map multiple source
codewords to the same channel codeword:

SOURCE  SPACE 

CHANNEL  SPACE 
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With Side Information: Binning

First decode channel codeword. There are multiple candidates for source
codeword from the same bin:

SOURCE  SPACE 
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With Side Information: Binning

Correlated side information Tm: Choose source codeword in the bin jointly
typical with Tm:

SOURCE  SPACE 
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Random Binning (Slepian-Wolf Coding)

Typical set Typical set 

Randomly assign source vectors to bins such that there are
∼ 2m[I(S;T )−ε] elements in each bin.
Sufficiently few elements in each bin to decode Sm using typicality.
Even if the sender knew Tm, source coding rate could not be lower
than H(S|T ).
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Lossy Compression: Wyner-Ziv Coding

In lossy transmission, we first quantize, then bin:
Fix PW |S . Create a codebook of m-length codewords Wm of size
∼ 2m[I(S;W )+ε].
Randomly assign these codewords into bins such that there are
∼ 2n[I(T ;W )−ε] elements in each bin.
Sufficiently few elements in each bin to decode Wm using typicality.
Since T − S −W , correct Wm satisfies typicality (conditional typicality
lemma)
Once Wm is decoded, use it with side information Tm through a
single-letter function Ŝi = φ(Ti,Wi).

Minimum source coding rate within distortion D :

RWZ(D) = min
W,φ:T−S−W,E[d(S,φ(T,W ))]≤D

I(S;T )− I(W ;T )

= min
W,φ:T−S−W,E[d(S,φ(T,W ))]≤D

I(S;W |T )
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Generalized Coding Scheme

SOURCE  SPACE 

CHANNEL  SPACE 

Generate M = 2mR bins with

H(S|T ) ≤ R ≤ H(S)

Randomly allocate source sequences to bins.
B(i): sequences in ith bin

Joint decoding: Find bin index s.t.
1 corresponding channel input xn(i) is typical with channel output Y n,
2 there exist exactly one codeword in the bin jointly typical with side

information Tm

Prob of error: Prob. of having another bin satisfying above conditions:

2mR2−n(I(X;Y )−3ε) |B(i) ∩ Amε (S)| 2−m(I(S;T )−3ε)

≤ 2−n(I(X;Y )−3ε)2−m(H(S|T )−2ε)

goes to zero if m(H(S|T )) ≤ nI(X;Y ).
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Generalized Coding Scheme

Separate decoding: List indices i s.t. xn(i) and Y n are jointly typical.
Source decoder finds the bin with a jointly typical sequence with Tm

Separate source and channel coding is a special case for R = H(S|T ):
single element in list
Works without any binning at all: generate an iid channel codeword
for each source outcome, i.e., R = log |S0|
Decoder outputs only typical sequences: no point having ≥ 2m(H(S)+ε)

bins. R = H(S) equivalent to no-binning
Transfer complexity of binning from encoder to decoder
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Virtual Binning

Channel is virtually binning the channel codewords; equivalently the source
codewords (or, outcomes)

SOURCE  SPACE CHANNEL  SPACE 
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Virtual Binning

When the channel is good, there will be fewer candidates in the list

SOURCE  SPACE CHANNEL  SPACE 
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Virtual Binning

When the channel is weak, there will be more candidates

SOURCE  SPACE CHANNEL  SPACE 
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When Does It Help?

Multiple receivers with different side information.
Strict separation suboptimal.

Encoder
Decoder 1

Channel
Decoder 2

Source-channel capacity:

max
p(x)

min
i=1,2

I(X;Yi)
H(S|Ti)

If p(x) maximizes both I(X;Y1) and I(X;Y2), then we can use the
channel at full capacity for each user.

E. Tuncel, Slepian–Wolf coding over broadcast channels, IEEE Trans. Information
Theory, Apr. 2006.
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Separate Source and Channel Coding with Backward Decoding

Randomly partition all source outputs into
- M1 = 2nH(S|T1) bins for Receiver 1
- M2 = 2nH(S|T2) bins for Receiver 2

Fix p(x). Generate
- M1M2 length-n codewords with

∏n

i=1 p(xi): x
n(w1, w2), wi ∈ [1 : Mi].

1 · · · M2

1 xn(1, 1) xn(1,M2)
...

M1 xn(M1, 1) xn(M1,M2)

D. Gunduz, E. Erkip, A. Goldsmith and H. V. Poor, Reliable joint source-channel
cooperative transmission over relay networks, IEEE Trans. Information Theory, Apr.
2013.
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Backward decoding

Send Bm samples over (B + 1)n channel uses with n/m = r.
w1,i ∈ [1 : M1]: bin index for receiver 1, i = 1, . . . , B
w2,i ∈ [1 : M2]: bin index for receiver 2, i = 1, . . . , B

Block 1 Block 2 · · · Block i · · · Block B + 1
xn(w1,1, 1) xn(w1,2, w2,1) · · · xn(w1,i, w2,i−1) · · · xn(1, w2,B)

Receiver 1 decodes reliably if

H(S|T1) ≤ r · I(X;Y1)

Receiver 2 decodes reliably if

H(S|T2) ≤ r · I(X;Y2)
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Lossy Broadcasting

First quantize, then broadcat quantized codeword

Encoder
Decoder 1

Channel
Decoder 2

(D1, D2) is achievable at rate r if there exist W satisfying W − S − (T1, T2),
input distribution pX(x) and reconstruction functions φ1, φ2 such that

I(S;W |Ti) ≤ rI(X;Yi),
E[dk(S, φi(W,Ti))] ≤ Di

for i = 1, 2.
J. Nayak, E. Tuncel, D. Gunduz, Wyner-Ziv coding over broadcast channels: Digital

schemes, IEEE Trans. Information Theory, Apr. 2010.
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Time-varying Channel and Side Information

Encoder DecoderFading
Channel

Time-varying 
side-information

I. E. Aguerri and D. Gunduz, Joint source-channel coding with time-varying channel and
side-information, IEEE Trans. Information Theory, vol. 62, no. 2, pp. 736 - 753, Feb. 2016.
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Two-way MIMO Relay Channel

Compress-and-forward at the relay
Lossy broadcasting with side information
Achieves optimal diversity-multiplexing trade-off

D. Gunduz, A. Goldsmith, and H. V. Poor, MIMO two-way relay channel:
Diversity-multiplexing trade-off analysis, Asilomar Conference, Oct. 2008.

D. Gunduz, E. Tuncel, and J. Nayak, Rate regions for the separated two-way relay
channel, Allerton Conf. on Comm., Control, and Computing, Sep. 2008.
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Multi-user Networks: No Separation

Separation does not hold for multi-user channels

Encoder Decoder

Channel

Binary two-way multiplying channel: Xi ∈ {0, 1}, i = 1, 2

Y = X1 ·X2

Capacity still open: Shannon provided inner/ outer bounds
Consider correlated signals S1 and S2:

0 1
0 0 0.275
1 0.275 0.45

With separation, they need to exchange rates

H(S1|S2) = H(S2|S1) = 0.6942 bpss
C. E. Shannon, Two-way communication channels, in Proc. 4th Berkeley Symp. Math.

Satist. Probability, vol. 1, 1961, pp. 611-644.
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Two-way Channel with Correlated Sources

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
1

R
2

(H(S
1
 |S

2
), H(S

2
|S

1
 ))

Hekstra− Willems outer bound

Shannon outer bound

Shannon inner bound

Symmetric transmission rate with independent channel inputs bounded
by 0.64628 bpcu (Hekstra and Willems)
Uncoded transmission allows reliable decoding!

A. P. Hekstra and F. M. W. Willems, Dependence balance bounds for single-output
two-way channels, IEEE Trans. Inform. Theory, Jan. 1989.
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Multiple Access Channel (MAC) with Correlated Sources

Decoder
Encoder 1

Encoder 2

Binary input adder channel: Xi ∈ {0, 1}, Y = X1 +X2

p(s1, s2): p(0, 0) = p(1, 0) = p(0, 1) = 1/3
H(S1, S2) = log 3 = 1.58 bits/sample
Max. sum rate with independent inputs: 1.5 bits/channel use
Separation fails, while uncoded transmission is optimal

T. M. Cover, A. El Gamal and M. Salehi, Multiple access channels with arbitrarily
correlated sources, IEEE Trans. Information Theory, Nov. 1980.
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Relay Channel

DestinationSource Channel

Relay

Introduced by van der Meulen
Characterized by p(y1, y2|x1, x2)
Capacity of relay channel not known
Multi-letter capacity given by van der Meulen:

C = sup
k

Ck = lim
k→∞

Ck

where
Ck , max

p(xk
1 ),{x2i(yi−1

1 )}k
i=1

1
k
I(Xk

1 ;Y k2 )

Various achievable schemes: amplify-and-forward, decode-and-forward,
compress-and-forward

T. M. Cover and A. E. Gamal, Capacity theorems for the relay channel, IEEE Trans.
Inf. Theory, Sep. 1979.
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Various achievable schemes: amplify-and-forward, decode-and-forward,
compress-and-forward

T. M. Cover and A. E. Gamal, Capacity theorems for the relay channel, IEEE Trans.
Inf. Theory, Sep. 1979.
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Relay Channel with Destination Side Information

DestinationSource Channel

Relay

Separation still optimal
Proof of separation in a network whose capacity is not known!

D. Gunduz, E. Erkip, A. Goldsmith and H. Poor, Reliable joint source-channel
cooperative transmission over relay networks, IEEE Trans. Inform. Theory, Apr. 2013.
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Relay and Destination Side Information

DestinationSource Channel

Relay

Source-channel rate r is achievable if,

r ·H(S|T1) ≤ I(X1;Y1|X2)
r ·H(S|T2) ≤ I(X1, X2;Y2)

for some p(x1, x2).
Decode-and-forward transmission
Optimal for physically degraded relay channel (X1 − (X2, Y1)− Y2)
with degraded side information (S1 − T1 − T2)
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Achievability

Block Markov encoding
Regular encoding and joint source-channel sliding window decoding

More complicated decoder
Less delay

Regular encoding and separate source-channel backward decoding
Simpler decoder
More delay
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Backward decoding

Randomly partition all source outputs into
- M1 = 2nH(S|T1) bins: Relay bins
- M2 = 2nH(S|T2) bins: Destination bins

Fix p(x1, x2). Generate
- M1 codewords of length n with

∏n

i=1 p(x2,i). Enumerate as xn2 (w2).
- For each xn2 (w2), generate M1 codewords of length n with∏n

i=1 p(x1,i|xn2,i). Enumerate as xn1 (w1, w2)
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Backward decoding

Send Bm samples over (B + 1)n channel uses with n/m = r.
w1,i ∈ [1,M1]: relay bin index of source block i = 1, . . . , B
w2,i ∈ [1,M2]: destination bin index of block i = 1, . . . , B

Block 1 Block 2 · · · Block i · · · Block B + 1
xn1 (w1,1, 1) xn1 (w1,2, w2,1) · · · xn1 (w1,i, w2,i−1) · · · xn1 (1, w2,B)
xn2 (1) xn2 (w′2,1) · · · xn2 (w′2,i−1) · · · xn2 (w′2,B)

Relay decodes reliably if

H(S|T1) ≤ r · I(X1;Y1|X2)

Destination decodes reliably if

H(S|T2) ≤ r · I(X1, X2;Y1)
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Do we need coding?

Encoder DecoderChannel

Let Si ∼ N (0, 1) i.i.d. Gaussian
Memoryless Gaussian channel:

Yi = Xi + Zi, ZiN (0, N), 1
m

E[Xm(Xm)T ] ≤ P

Capacity: 1
2 log

(
1 + P

N

)
Distortion-rate function: D(R) = 2−2R

Dmin =
(

1 + P

N

)−1

What about uncoded/ analog transmision?

Xi =
√
PSi

MMSE at the receiver
Uncoded symbol-by-symbol transmission is optimal!

T. J. Goblick, Theoretical limitations on the transmission of data from analog
sources, IEEE Trans. Inf. Theory, vol. 11, pp. 558- 567, Oct. 1965.
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To Code or Not To Code

Encoder DecoderChannel

S can be communicated over channel p(y|x) uncoded if
X ∼ pS(x) attains the capacity C = maxp(x) I(X;Y )
test channel pY |X(ŝ|s) attains the rate-distortion function
R(D) = minp(ŝ|s):E[d(S,Ŝ)≤D] I(S; Ŝ)

Then, we have C = R(D).

M. Gastpar, B. Rimoldi, and M. Vetterli, To code, or not to code: Lossy
source-channel communication revisited, IEEE Trans. Inf. Theory, May 2003.
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Gaussian Sources over Gaussian MAC

Decoder
Encoder 1

Encoder 2

Correlated Gausssian sources:
(

S1
S2

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
Memoryless Gaussian MAC:

Yj = X1,j +X2,j + Zj , Zj ∼ N (0, 1), 1
m

E[Xm
i (Xm

i )T ] ≤ P

Mean squared-error distortion measure:
Di = E

[
1
m

∑m

j=1 |Si,j − Ŝi,j |
2
]
, i = 1, 2.

Necessary conditions: RS1,S2 (D1, D2) ≤ 1
2 log(1 + 2P (1 + ρ))

Corollary
Uncoded transmission is optimal in the low SNR regime, i.e., if P ≤ ρ

1−ρ2 .

A. Lapidoth and S. Tinguely, Sending a bivariate Gaussian over a Gaussian MAC,
IEEE Transactions on Information Theory, Jun. 2010.
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Gaussian Sources over Weak Interference Channel

Correlated Gausssian sources with correlation coefficient ρ
Memoryless Gaussian weak interference channel (c ≤ 1):

Y1,j = X1,j + cX2,j + Z1,j ,

Y2,j = cX1,j +X2,j + Z2,j ,

with 1
m
E[Xm

i (Xm
i )T ] ≤ P

Corollary
Uncoded transmission is optimal in the low SNR regime, i.e., if cP ≤ ρ

1−ρ2 .

I. E. Aguerri and D. Gunduz, Correlated Gaussian sources over Gaussian weak
interference channels, IEEE Inform. Theory Workshop (ITW), Oct. 2015.
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Remote Estimation

Decoder
Encoder 1

Encoder 2

Memoryless Gaussian MAC:

Yi = X1,j +X2,j + Zi, Zi ∼ N (0, 1), 1
m

E[Xm
i (Xm

i )T ] ≤ P

Uncoded transmission is always optimal!

M. Gastpar, Uncoded transmission is exactly optimal for a simple Gaussian
sensor network, IEEE Trans. Inf. Theory, Nov. 2008.
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Beyond Bandwidth Match

How do we map 2 Gaussian sample into 1 channel use? or, 1 sample to
2 channel uses?
Optimal mappings (encoder and decoder) are either noth linear or
both nonlinear.
Can be optimized numerically.
What about 1 sample and unlimited bandwidth?

E Akyol, KB Viswanatha, K Rose, TA Ramstad, On zero-delay source-channel coding,
IEEE Transactions on Information Theory, Dec. 2012.

E. Koken, E. Tuncel, and D. Gunduz, Energy-distortion exponents in lossy
transmission of Gaussian sources over Gaussian channels, IEEE Trans. Information
Theory, Feb. 2017.
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What About in Practice?

SoftCast: Uncoded image/video transmission

Divide DCT coefficients into blocks
Find empirical variance (“energy”) of each block
Compression: Remove blocks with low energy
Remaining blocks transmitted uncoded
Power allocation according to block energies

S. Jakubczak and D. Katabi, Softcast: One-size-fits-all wireless video, in Proc. ACM
SIGCOMM, New York, NY, Aug. 2010, pp. 449–450.

Deniz Gündüz Joint Source and Channel Coding



SoftCast: Uncoded Video Transmission

S. Jakubczak and D. Katabi, Softcast: One-size-fits-all wireless video, in Proc. ACM
SIGCOMM, New York, NY, Aug. 2010, pp. 449–450.
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SparseCast: Hybrid Digital-Analog Image Transmission

SparseCast: Hybrid digital-analog image transmission
Block-based DCT transform
One vector for each frequency component
Thresholding for compression (remove small components)
Compressive sensing for transmission

Tung and Gunduz, SparseCast: Hybrid Digital-Analog Wireless Image
Transmission Exploiting Frequency Domain Sparsity, IEEE Comm. Letters, 2018.
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Exploit Sparsity for Bandwidth Efficiency

0

0

0

0

0

Yk = Akxk + Zk

N ×N grayscale image
B ×B block DCT transform
B2 vectors (of length N2/B2 each)
Thresholding for compression
Compressive transmission: measurement matrix Ak

dimension chosen according to sparsity of xk
finite set of sparsity levels
variance according to power allocation

Approximate message passing (AMP) receiver
Tung and Gunduz, SparseCast: Hybrid Digital-Analog Wireless Image

Transmission Exploiting Frequency Domain Sparsity, IEEE Comm. Letters, 2018.
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SparseCast: Hybrid Digital-Analog Image Transmission

131K channel symbols transmitted
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Metadata size: SoftCast: 17 Kbits, SoftCast 10− 16 Kbits (depending on
block threshold)

Tung and Gunduz, SparseCast: Hybrid Digital-Analog Wireless Image
Transmission Exploiting Frequency Domain Sparsity, IEEE Comm. Letters, 2018.
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SparseCast: USRP Implementation

75K channel symbols transmitted

Tung and Gunduz, SparseCast: Hybrid Digital-Analog Wireless Image
Transmission Exploiting Frequency Domain Sparsity, IEEE Comm. Letters, 2018.
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Learning to Communicate

Forget about compression, channel coding,
modulation, channel estimation, equalization, etc.
Deep neural networks for code design
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Autoencoder: Dimensionality Reduction with Neural Networks (NNs)

Example of unsupervised learning
Two NNs trained together: Goal is to reconstruct the original input
with highest fidelity
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Deep JSCC Architecture

E. Bourtsoulatze, D. Burth Kurka and D. Gunduz, Deep joint source-channel coding
for wireless image transmission-journal, submitted, IEEE TCCN, Sep. 2018.
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Deep JSCC - PSNR vs. Channel Bandwidth

0 0.1 0.2 0.3 0.4 0.5

k/n

10

15

20

25

30

35

40

45

50

P
S

N
R

 (
d
B

)

AWGN channel

Deep JSCC (SNR=0dB)

Deep JSCC (SNR=10dB)

Deep JSCC (SNR=20dB)

JPEG (SNR=0dB)

JPEG (SNR=10dB)

JPEG (SNR=20dB)

JPEG2000 (SNR=0dB)

JPEG2000 (SNR=10dB)

JPEG2000 (SNR=20dB)

E. Bourtsoulatze, D. Burth Kurka and D. Gunduz, Deep joint source-channel coding
for wireless image transmission-journal, submitted, IEEE TCCN, Sep. 2018.
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Deep JSCC - PSNR vs. Test SNR
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Provides graceful degradation with channel SNR!
More like analog communications than digital.

E. Bourtsoulatze, D. Burth Kurka and D. Gunduz, Deep joint source-channel coding
for wireless image transmission-journal, submitted, IEEE TCCN, Sep. 2018.

Deniz Gündüz Joint Source and Channel Coding



Deep JSCC over a Rayleigh Fading Channel
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No pilot signal or explicit channel estimation is needed!

E. Bourtsoulatze, D. Burth Kurka and D. Gunduz, Deep joint source-channel coding
for wireless image transmission-journal, submitted, IEEE TCCN, Sep. 2018.
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Larger Images

-2 1 4 7 10 13 16 19 22 25

SNR
test

 (dB)

19

21

23

25

27

29

31

33

35

P
S

N
R

 (
d

B
)

AWGN channel (k/n=1/12), JPEG

Deep JSCC (SNR
train

=-2dB)

Deep JSCC (SNR
train

=1dB)

Deep JSCC (SNR
train

=4dB)

Deep JSCC (SNR
train

=7dB)

Deep JSCC (SNR
train

=13dB)

Deep JSCC (SNR
train

=19dB)

1/2 rate LDPC + 4QAM

2/3 rate LDPC + 4QAM

1/2 rate LDPC + 16QAM

2/3 rate LDPC + 16QAM

1/2 rate LDPC + 64QAM

2/3 rate LDPC + 64QAM

Train on ImageNet, test with Kodak dataset (24 images of size 768 x 512)

E. Bourtsoulatze, D. Burth Kurka and D. Gunduz, Deep joint source-channel coding
for wireless image transmission-journal, submitted, IEEE TCCN, Sep. 2018.
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Larger Images

Original Deep JSCC JPEG JPEG2000

N/A
30.9dB 22.68dB

31.92dB 31.65dB 36.40dB

32.90dB 34.36dB 38.46dB

35.34dB 36.45dB 40.5dB
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Larger Images

Original Deep JSCC JPEG JPEG2000

25.07dB 20.63dB 24.11dB

26.86dB 24.78dB 27.5dB

28.45dB 27.14dB 30.15dB

31.46dB 29.81dB 33.03dB
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Quality vs. Compression Rate
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Deep Wireless Successive Refinement

NN
Encoder 2

NN 
Decoder 2Channel

NN
Encoder 1

NN
Decoder 1Channel
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Two-layer Successive Refinement
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Five-layer Successive Refinement
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First Two Layer Comparison
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Hypothesis Testing over a Noisy Channel

Observer
Channel

Detector

Null hypothesis H0 : Uk ∼
k∏
i=1

PU , Alternate hypothesis H1 : Uk ∼
k∏
i=1

QU .

Acceptance region for H0: A(n) ⊆ Yn

Definition
Type-2 error exponent κ is (τ, ε) achievable if there exist k, n, such that
n ≤ τ · k, and

lim inf
k,n→∞

− 1
k

log
(
QY n (A(n))

)
≥ κ

lim sup
k,n→∞

− 1
k

log
(
1− PY n (A(n))

)
≤ ε

κ(τ, ε) , sup{κ′ : κ′ is achievable}
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Hypothesis Testing over a Noisy Channel

Observer
Channel

Detector

Null hypothesis H0 : Uk ∼
k∏
i=1

PU , Alternate hypothesis H1 : Uk ∼
k∏
i=1

QU .

Ec , max
(x,x′)∈X×X

D(PY |X=x||PY |X=x′)

κ(τ, ε) = min (D(PU ||QU ), τEc)

Making decisions locally at the observer, and communicating it to the
detector is optimal.
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Distributed Hypothesis Testing

Observer
Channel

Detector

H0 : (Uk, EK , ZK) ∼
k∏
i=1

PUEZ , H1 : (Uk, EK , ZK) ∼
k∏
i=1

QUEZ .

Problem open for general Q
Let κ(τ) = limε→0 κ(τ, ε)

Testing Against Conditional Independence: QUEZ = PUEPE|Z

κ(τ) = sup
{
I(E;W |Z) : ∃ W s.t. I(U ;W |Z) ≤ τC(PY |X),

(Z,E)− U −W, |W| ≤ |U|+ 1.

}
, τ ≥ 0.

Optimal performance achieved by a separation-based scheme.
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Machine Learning (ML) at the Edge

Significant amount of data will be collected by IoT devices at network
edge
Standard approach: Powerful centralized ML algorithms to make sense
of data
Requires sending data to the cloud

Costy in terms of bandwidth/ energy
May conflict with privacy requirements

Alternative: distributed/ federated learning

Master 
Server
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Distributed Machine Learning

Data set: (u1, y1), . . . , (uN, yN )

F (θ) = 1
N

N∑
n=1

f(θ,un)

Master 
Server

θt+1 = θt − ηt
1
N

N∑
n=1

∇f(θt,un)

Deniz Gündüz Joint Source and Channel Coding



Wireless Edge Learning

Communication is bottleneck in distributed learning
ML literature focuses on reducing the number and size of gradient
informaton transmitted from each worker
Underlying channel ignored
In edge learning, wireless channel is limited in bandwidth and may
suffer from interference

noise

Parameter
server

Worker 1 

Worker 2 

Worker K 
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Digital Distributed Gradient Descent

Workers operate on capacity boundary of underlying MAC
Choose equal-rate point
Allow power allocation across iterations
For s channel uses

Rt =
s

2M
log2

(
1 +

MPt

sσ2

)
,

Each worker has a bit budget to convey its gradient estimate
Gradient quantization

Set all but highest q and lowest q entries of gradient estimate to 0
Find mean values of all positive and all negative entries
Find the one with the larger magnitude, and set the others to zero
Send the larger value, and positions of corresponding entries

Employ error accumulation

F. Sattler et al. Sparse binary compression: Towards distributed deep learning
with minimal communication, arXiv:1805.08768v1 [cs.LG], May 2018.

F. Seide et al. 1-bit stochastic gradientdescent and its application to data-parallel
distributed training of speech DNNs, in INTERSPEECH, Singapore, Sep. 2014.
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Analog Distributed Gradient Descent

A distributed joint source-channel coding problem
Goal: Compute the average of the sources
Simultaneously transmit gradients in an uncoded fashion: over-the-air
computation
Challenge:

Gradient dimension can be very large: VGG Net ∼140 million, ResNet
∼26 million parameters
Introduces significant delay

Proposed scheme:
Apply thresholding to sparsify gradient estimates
CS-based JSCC: Project onto a lower dimensional space (same
projection matrix at all edge devices)

M. Mohammadi Amiri and D. Gunduz, Machine learning at the wireless edge: Distributed
stochastic gradient descent over-the-air, submitted, Jan. 2019.
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Deniz Gündüz Joint Source and Channel Coding



Experiments: Digital vs. Analog Gradient Descent

Distributed MNIST classification (single layer with 10 neurons, ADAM
optimizer)
Parameter vector size d = 28× 28× 10 + 10 = 7850
P1 = 127, P2 = 422

0 10 20 30 40 50
Iteration, t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
c 
ra
cy

A-DSGD, EPA, ̄P̄ ̄P1
A-DSGD, UPA, ̄P̄ ̄P1
D-DSGD, distinct Pt, ̄P̄ ̄P2
D-DSGD, Pt̄ ̄P, ̄P̄ ̄P2
D-DSGD, distinct Pt, ̄P̄ ̄P1
D-DSGD, Pt̄ ̄P, ̄P̄ ̄P1
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Experiments: Number of Devices

d: dimension of parameter vector
s: symbols per iteration
M : number of devices

0 10 20 30 40 50
Iteration count, t

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

A-DSGD, UPA, M=20, s=0.5d
A-DSGD, UPA, M=40, s=0.3d
A-DSGD, UPA, M=20, s=0.3d
D-DSGD, Pt=  P, M=20, s=0.5d
D-DSGD, Pt=  P, M=20, s=0.3d
D-DSGD, Pt=  P, M=40, s=0.3d
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Experiments: Iteration Accuracy

d: dimension of parameter vector
s: symbols per iteration
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Experiments: Fading Channel
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Conclusions

JSCC is a fundamental problem in information theory with many
applications
Becoming essential for modern communication systems with extremely
low latency and low power requirements
Machine learning tools can help us design practical joint
source-channel codes that can beat state-of-the-art
Distributed wireless learning can benefit from JSCC for over-the-air
computation
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