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Capacity of Point-to-Point Communication

X—— Pyx |——Y

» Coding for Discrete-Time Memoryless Channels

» Transition probability: Py|x(y|x) for z € X and y € Y
» Transmit a length-n codeword z € C C A"
» Decode to most likely codeword given received y
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Capacity of Point-to-Point Communication

X—— Pyx |——Y

» Coding for Discrete-Time Memoryless Channels

» Transition probability: Py|x(y|x) for z € X and y € Y
» Transmit a length-n codeword z € C C A"
» Decode to most likely codeword given received y

» Channel Capacity introduced by Shannon in 1948

» Random code of rate R £ L log, |C| (bits per channel use)

» As n — oo, reliable transmission possible if R < C' with

C 2 maxI(X;Y)
p(z)

Capacity Achieving Codes: There and Back Again



The Binary Erasure Channel (BEC)

» C' =1 — e = expected fraction bits not erased

» Denoted BEC(¢) when erasure probability is e 0 \5‘
?
—
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» (' =1 — e = expected fraction bits not erased

» Denoted BEC(¢) when erasure probability is e 0 \5‘
?
—

» Coding with a binary linear code
> Parity-check matrix H € {0,1}™*" with m = (1 — R)n
» Codebook C = {z € {0,1}" | Hz = 0} has 2f" codewords
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The Binary Erasure Channel (BEC)

» C' =1 — e = expected fraction bits not erased

» Denoted BEC(¢) when erasure probability is e 0 \5‘
?
—

» Coding with a binary linear code

v

v

v

v

Parity-check matrix H € {0,1}™*™ with m = (1 — R)n
Codebook C = {z € {0,1}" | Hz = 0} has 27 codewords

Let £ denote the index set of erased positions so that

Le

Hy = [He ch][ ] =0 & Hezg=-Hey,.

dge

Decoding fails iff: Hg singular < cw exists with 1's only in &
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The Binary Erasure Channel (BEC)

» Denoted BEC(¢) when erasure probability is e

» C' =1 — e = expected fraction bits not erased

» Coding with a binary linear code

v

v

v

v

Parity-check matrix H € {0,1}™*™ with m = (1 — R)n
Codebook C = {z € {0,1}" | Hz = 0} has 27 codewords

Let £ denote the index set of erased positions so that

Le

Hy = [He ch][ ] =0 & Hezg=-Hey,.

Jge
Decoding fails iff: Hg singular < cw exists with 1's only in &

One can achieve capacity by drawing H uniformly at random!
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Some Early Milestones in Coding

» 1948: Shannon defines channel capacity and random codes
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v

1955: Elias introduces the erasure channel and convolutional codes;
also shows random parity-check codes achieve capacity on the BEC
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Some Early Milestones in Coding

» 1948: Shannon defines channel capacity and random codes
» 1950: Hamming formalizes linear codes and Hamming distance
> 1954: Reed-Muller codes (Muller gives codes, Reed the decoder)

» 1955: Elias introduces the erasure channel and convolutional codes;
also shows random parity-check codes achieve capacity on the BEC

» 1959: BCH Codes (Hocquenghem'59 and Bose-Ray-Chaudhuri'60)

> 1960: Gallager introduces low-density parity-check (LDPC) codes
and iterative decoding

» 1960: Reed-Solomon codes
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Achieving Capacity in Practice

But, more than 35 years passed before we could:
» Achieve capacity in practice

» Provably achieve capacity with determinstic constructions
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Achieving Capacity in Practice

But, more than 35 years passed before we could:

» Achieve capacity in practice

» Provably achieve capacity with determinstic constructions

Modern Milestones:

> 1993:
> 1995:
> 1997:
» 2001:
2008:

v

Turbo Codes (Berrou, Glavieux, Thitimajshima)
Rediscovery of LDPC codes (MacKay-Neal,Spielman)
Optimized irregular LDPC codes for the BEC (LMSSS)
Optimized irregular LDPC codes for BMS channels (RSU)

Polar codes provable, low-complexity, deterministic (Arikan)
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Achieving Capacity in Practice

But, more than 35 years passed before we could:

» Achieve capacity in practice

» Provably achieve capacity with determinstic constructions

Modern Milestones:

> 1993:
> 1995:
> 1997:
» 2001:
2008:
1999-2011: Understanding LDPC convolutional codes and coupling

v

v

Turbo Codes (Berrou, Glavieux, Thitimajshima)
Rediscovery of LDPC codes (MacKay-Neal,Spielman)
Optimized irregular LDPC codes for the BEC (LMSSS)
Optimized irregular LDPC codes for BMS channels (RSU)

Polar codes provable, low-complexity, deterministic (Arikan)
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» Factor Graph (FG)
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Key Tools That Made the Difference

» Factor Graph (FG)
» Compact description of joint distribution for random variables
» Natural setup for inference problems with partial observations
> Belief-Propagation (BP)
> Message-passing algorithm for inference on a FG
» Probability estimates are passed along edges in the factor graph
> Provides exact marginals if factor graph is a tree
» Density Evolution (DE)
» Tracks distribution of messages passed by belief propagation
> In some cases, allows rigorous analysis of BP-based inference
» EXtrinsic Information Transfer (EXIT) Curves
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Applications of These Tools

» Error-Correcting Codes
» Random code defined by random factor graph
» Low-complexity decoding via belief propagation
» Analysis of belief-propagation decoding via density evolution

» Provides code constructions that provably achieve capacity!

Capacity Achieving Codes: There and Back Again 10 / 65



Applications of These Tools

» Error-Correcting Codes
» Random code defined by random factor graph
» Low-complexity decoding via belief propagation
» Analysis of belief-propagation decoding via density evolution

» Provides code constructions that provably achieve capacity!

» Boolean Satisfiability: K-SAT

» Random instance of K-SAT defined by random factor graph
» Non-rigorous analysis via the cavity method
» Predicted thresholds later proved exact!

Capacity Achieving Codes: There and Back Again



Applications of These Tools

» Error-Correcting Codes
» Random code defined by random factor graph
» Low-complexity decoding via belief propagation
» Analysis of belief-propagation decoding via density evolution

» Provides code constructions that provably achieve capacity!

» Boolean Satisfiability: K-SAT

» Random instance of K-SAT defined by random factor graph
» Non-rigorous analysis via the cavity method
» Predicted thresholds later proved exact!

» Compressed Sensing

» Random measurement matrix defined by random factor graph
> Low-complexity reconstruction via message passing

» Schemes provably achieve the information-theoretic limit!
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Polya's Dictum

If you can’t solve a problem, then it probably contains an
easier problem that you can’t solve: find it.
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Polya's Dictum

If you can’t solve a problem, then it probably contains an
easier problem that you can’t solve: find it.

> The solution of the simpler problem often provides insight that
allows one to crack the harder problem.

» To achieve channel capacity in practice, we now know that a good
“easy” problem would have been:

> “Design a code that achieves capacity on the BEC and
is encodable and decodable in quasi-linear time”

Capacity Achieving Codes: There and Back Again
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Factor Graphs

» A factor graph provides a graphical representation of the local
dependence structure for a set of random variables

» Bipartite graph with variables x1, ..., x, and factors fi,...
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Factor Graphs

» A factor graph provides a graphical representation of the local
dependence structure for a set of random variables

» Bipartite graph with variables x1,...,x, and factors fi,..., fm

» Consider random variables (X1, Xo,...,X,) € X* and Y where:

P($17I2,$3,334) é P(X1 :.Z‘l,Xg =T2,... ,X4=$4|Y = y)
(

$1,$27$3,$4)

> K

fi(x1, 22) fa(w2, 23) f3(x3, 24)
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Factor Graphs

» A factor graph provides a graphical representation of the local
dependence structure for a set of random variables

» Bipartite graph with variables x1,...,x, and factors fi,..., fm

» Consider random variables (X1, Xo,...,X,) € X* and Y where:

P($17I2,$3,334) £ P(X1 :.Z‘l,Xg =T2,... ,X4=$4|Y = y)
o f(z1, 22,73, 74)

£ fi(x1,22) f2 (22, 73) f3 (23, T4)

» Given Y =y, this describes a Markov chain whose factor graph is

OO -6
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Conditional Independence for Factor Graphs

» Let A, B, S C [n] be disjoint subsets of VNs in factor graph G

> If S separates A from B (i.e., there is no path in G from A to
B that avoids S), then we have X, 1l X5 | Xg

P(za,zplzs) = P(zalzs)P(zp|zs)
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Conditional Independence for Factor Graphs

» Let A, B, S C [n] be disjoint subsets of VNs in factor graph G

> If S separates A from B (i.e., there is no path in G from A to
B that avoids S), then we have X, 1l X5 | Xg

P(za,zplzs) = P(zalzs)P(zp|zs)

» Markov chain example: A = {z1,22}, B = {x4}, S = {x3}

@

12

-O-

fa3

-O-
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Conditional Independence for Factor Graphs

» Let A, B, S C [n] be disjoint subsets of VNs in factor graph G

> If S separates A from B (i.e., there is no path in G from A to
B that avoids S), then we have X, 1l X5 | Xg

P(za,zplzs) = P(zalzs)P(zp|zs)

» Markov chain example: A = {z1,22}, B = {x4}, S = {x3}

» Sketch of Proof:

» Fixing Xg=uxg separates the FG into disjoint components
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Conditional Independence for Factor Graphs

» Let A, B, S C [n] be disjoint subsets of VNs in factor graph G

> If S separates A from B (i.e., there is no path in G from A to
B that avoids S), then we have X, 1l X5 | Xg

P(za,xplrs) = P(zalrs)P(zp|rs)
» Markov chain example: A = {z1,22}, B = {x4}, S = {x3}
@ fi2 4@7 f33 f34

» Sketch of Proof:

» Fixing Xg=uxg separates the FG into disjoint components

» Groups of VNs in different components are independent
» X4 1L Xp because A and B are in different components
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Inference via Marginalization

» Marginalizing out all variables except X; gives

P(X) = 21|Y =y) x gi1(21) Z f(z1, 22,23, 24)

(z2,0.,24)EXS

» Thus, the maximum a posteriori decision for X; given Y =y is
%1 = arg max Z f(z1, 20, 3, 24)

T1EX

» For a general function, this requires roughly \2(|4 operations
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Inference via Marginalization

» Marginalizing out all variables except X; gives

P(X) = 21|Y =y) x gi1(21) Z f(z1, 22,23, 24)

(z2,0.,24)EXS

» Thus, the maximum a posteriori decision for X; given Y =y is

T1 = arg ;ngﬁ Z f($1, 372,5637354)
1

» For a general function, this requires roughly \2(|4 operations

» Marginalization is efficient for tree-structured factor graphs

» For the Markov chain, roughly 5 \X|2 operations required

gi(z) = Y filwr,w2) Y falwa,ws) Y falws, )

ToEX r3EX T4EX
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The Importance of Factorization (1)

» Consider a random vector (X1, Xo,..., Xg) € X% where

P(X) =21,..., X = x6]Y =y) < f(x1, 22,23, %4, %5, T6)
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The Importance of Factorization (1)

» Consider a random vector (X1, Xo,..., Xg) € X% where
]P(Xl = T1y--- 7X6 = I6|Y = y) X f($17I2,I3,$4,I5,ZC6)
> Brute force marginal requires | X|” operations for each z; € X"

gl(xl) = Z f(.’El,QZQ,I’g,IL'AL,‘Tg,,SCﬁ)
z§EeXD

» Thus, we need |X|° operations
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The Importance of Factorization (1)

» Consider a random vector (X1, Xo,..., Xg) € X% where

P(X) =21,..., X = x6]Y =y) < f(x1, 22,23, %4, %5, T6)

> Brute force marginal requires | X|” operations for each z; € X"

gl(xl) = Z f(.’El,QZQ,I’g,IL'AL,‘Tg,,SCﬁ)
z§EeXD

» Thus, we need |X|° operations

» If f factors as follows, then the marginalization can be simplified:

f(x17x27x37x47x57x6) = f1<$171'2,x3)f2(x1,$4,xﬁ)f3($4)f4($4,x5)
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The Importance of Factorization (2)

For example, we can write g1 (1) as:

=Y fil@r, 0, w3) fa(@1, a, w6) f3(2a) fa(wa, v5)

6
T
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For example, we can write g1 (1) as:

=Y fil@r, 0, w3) fa(@1, a, w6) f3(2a) fa(wa, v5)

6
T
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The Importance of Factorization (2)

For example, we can write g1 (1) as:

=Y fil@r, 0, w3) fa(@1, a, w6) f3(2a) fa(wa, v5)

6
T

= Zfl (w1, 2, 3) f3(4) fa(4, 75) [Zfz(ﬂfl, T4, 3?6)1

=Y fi(wr, w2, 23) f3(a) [Zﬂ;(m,%)] lZfz(m,M@o*)]
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The Importance of Factorization (2)

For example, we can write g1 (1) as:

=Y fil@r, 0, w3) fa(@1, a, w6) f3(2a) fa(wa, v5)

6
T

ZZfl(CUl,xz,xs)f3($4)f4($4,$5) [Zf2<xl,l'4;$6)1
=Y fi(@1, 22, 33) f3(24) [Zﬂ;(u,%)l lZfz(m,M@o*)]
=Y filwr, 32, 73) [Zf:a(m) [Zle(m,l‘s)} lZfz(u’Ul,Mﬂ«”G)H
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The Importance of Factorization (2)

For example, we can write g1 (1) as:

=Y fil@r, 0, w3) fa(@1, a, w6) f3(2a) fa(wa, v5)

6
T

=Z:f1(:c1,xz’xs)f3<w4)f4(m4,ws) l;fzm,m,xs)]
zz:fl(xl,zz,xs)fg(m) [;ﬂ;(u,%)] [;fz(xl,xwfe)]
:ZSfl(xl,ajg,xg) [ng,(m) [;fz;(:vws)} [;fz(wumws)H

This implementation requires roughly 2 |/"(|3 +5 \X|2 operations
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The Factor Graph and Leaf Removal

T

fi f2

dog s

f3 fa

®

g1(@1) =Y fi(@r, va,23) fa(wa) falwa, 25) Y fol@r, 24, 76)

5 x
x3 6
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The Factor Graph and Leaf Removal

T

fi f3
Bt
[ fa

®

g1(x1) =Y fi(@1, 22, 73) f3(24) [Z f4($47$5)] f3(@1,w4)

4
T
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The Factor Graph and Leaf Removal

T

Sog

f3 fi

gi(@1) =Y fi(a1, 22, 23) [Z fa(wa) fi(2a) 5 (1, 24)

3
T3

Capacity Achieving Codes: There and Back Again



The Factor Graph and Leaf Removal

T

fi 3

ofic

gi(z)=> [Z f1($1,$2,l'3)1 3 (21)

Z2 3

Capacity Achieving Codes: There and Back Again



The Factor Graph and Leaf Removal

T

fi 7

g1(w1) = [Z f{(whxz)} 3 (1)

Capacity Achieving Codes: There and Back Again



g1(x1) = fi'(x1) f3 (x1)
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Constraint Satisfaction and Zero-One Factors

> A non-negative function f: X" — R defines a distribution on X™:

Plz) 2 P(X1=m1,...,X,=12,)

1 A1
Ef(g) = nga(gﬁa)a

> where x,, is the subvector of variables involved in factor a
» and Z £ 3" f(z) is called the partition function

Capacity Achieving Codes: There and Back Again

19 / 65



Constraint Satisfaction and Zero-One Factors

> A non-negative function f: X" — R defines a distribution on X™:

Plz) 2 P(X1=m1,...,X,=12,)

1 A1
Ef(g) = nga(gﬁa)a

> where x,, is the subvector of variables involved in factor a
» and Z £ 3" f(z) is called the partition function

» For Constraint Satisfaction Problems (CSPs)

All factors f,(x,,) take values in {0,1}

The set of valid configurations is {z € X"|f(z) = 1}
Thus, Z equals the number of valid configurations

v

vV v .Yy

P(z) is uniform over the set of valid configurations
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Marginalization via Belief Propagation

» Factor Graph G = (VU F,E)

v

Variable nodes V', Factor nodes F'
Edges: (i,a) e ECV x F
F(i)/V(a) = set of neighbors for node-i/a

Messages: pgza(azl) and [La_”( Z;)

v

v

v
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Marginalization via Belief Propagation

» Factor Graph G = (VU F,E)

Variable nodes V', Factor nodes F'

| 4

> Edges: (i,a) e ECV X F

> F(i)/V(a) = set of neighbors for node-i/a
> Messages: pgza(agl) and [La_”( Z;)

> variable-¢ to factor-a message

~(t
()

y \/‘\ ) X
NG i pfD @y = T @)
/U beF(i\a

()
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Marginalization via Belief Propagation

» Factor Graph G = (VU F,E)

v

v

v

(®)

Variable nodes V', Factor nodes F'
Edges: (i,a) e ECV x F
F(i)/V(a) = set of neighbors for node-i/a

> Messages: p,;",,(z;) and Ma—)z( ‘i)

» factor-a to variable-i message

i ()
(5, i, (s
Mgg)% (j5)

Zfa xV(a H /’Lj

Ty (a)\i JjeV(a)\i
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Marginalization via Belief Propagation

» Factor Graph G = (VU F,E)

Variable nodes V', Factor nodes F'

| 4

> Edges: (i,a) e ECV X F

> F(i)/V(a) = set of neighbors for node-i/a
> Messages: pgza(azl) and [La_”( Z;)

» variable-¢ marginal

()

ﬂéﬁ@(%)) A0 (@)
W () = TT A0 (a)
—>i\ T

(t
'ul(’i")ﬂ(xl) beF (i)
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Marginalization via Belief Propagation: Example

iteration 1: variable to factor g\\ﬁ
(1) _
'u’i%a(’ri) =1
fi
DN e
7 3%
N X

Capacity Achieving Codes: There and Back Again
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Marginalization via Belief Propagation: Example

1

iteration 1: variable to factor

1
it () =1 B

iteration 1: factor to variable

A4 (wa) = 3 falwa, w5) s, (w:)

=" falws, w5)
s
(1)

fiztq(a) = f3(4)
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Marginalization via Belief Propagation: Example

1

iteration 1: factor to variable

A (@a) = D7 falwa, ws) s 4 (2:)

=" falas,z5)

Mz(),l—)>4($4) f3(934)

fi

iteration 2: variable to factor

w2 (@a) = i 4 (xS 4 (2a)

= fa(24) > falxs, s5)
x5

2
5 (6) = 1
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Marginalization via Belief Propagation: Example

1
iteration 2: variable to factor 2c)

2 ~(1 ~(1
1o () = ), 4 (2a) BS54 (24)

= fa(xa) Y falwa, xs)

Ts5

fi

2
Ué—)m (w6) =1

iteration 2: factor to variable

~(2 2 2
A2 @) = Y falwr, 2, w6 s (wa) s (w6)

=Y folwr, wa,w6) fa(wa) Y falaa, a5)
= f3/(x1)
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Marginalization via Belief Propagation: Example

1
iteration 2: variable marginal > <&
Ny o

3 ~(2 ~(2
p (@) = o2 (@)as (a)

= fi'(21) f3 (22)

Same answer as peeling but from
a distributed parallel algorithm
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Introduction

Factor Graphs

Message Passing

Applications of Factor Graphs
Applications of EXIT Curves
Spatially-Coupled Factor Graphs
Universality for Multiuser Scenarios

Abstract Formulation of Threshold Saturation
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Sudoku: A Factor Graph for the Masses

8 3 6
3 6 7
1 6
5|4 119
2 7
9 3 8
2 8 4 7

1 9 7 6

rows are permutations of {1,2,...,9}
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Sudoku: A Factor Graph for the Masses

2 5 1 9
8 2 3 6
3 7
6
514 19
7
9 8
2 8 4 7
1 9 7 6
rows are permutations of {1,2,...,9}

columns are permutations of {1,2,..
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Sudoku: A Factor Graph for the Masses

2 8 4 7
1 9 7 6

rows are permutations of {1,2,...,9}
columns are permutations of {1,2,...,9}
subblocks are permutations of {1,2,...,9}
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Sudoku: A Factor Graph for the Masses

2 5 1 9 x11 |12 |13 |T14 | T15 | T16| 217 |18 |19

8 2 3 6 To1 | T2 | o3 | Toq | Tas | Tag | To7 |Tog |29
3 6 7 31|32 | L33 | L34 |L35|L36|L37(L38|L39

1 6 X471 | a2 | a3 | Taq | Ta5 | Tae | Ta7 | Ta8 | Tag

514 119 T51 |T52 |53 | Ts4 | Ts5 | Ts6 | T57 | T58 | T59
2 7 T61 | T2 |L63 | L6d |L65|L66 | L6T |L68 [L69

9 3 8 71| T72 | T73 | T74 | T75 | 76 | T77 | T78 | T79

2 8 4 7 Tg1 | Tg2 | T3 | T84 |85 |Tge | Ty7 | Teg | T89
1 9 7 6 T91|T92|T93 | T4 | T95 |T96 | T97 | T98 | T99

rows are permutations of {1,2,...,9} implied factor graph has

columns are permutations of {1,2,...,9} 81 variable and 27 factor nodes
subblocks are permutations of {1,2,...,9}

9 9 9
f@) =] fo@i) | { [ fo@ai) | | T] foCma) | ] Uwis = vis)
i=1 j=1 k=1 (i,5)€0
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Solving Sudoku with a Factor Graph

» Consider any constraint satisfaction problem with observed entries
One can write f(z) as the product of indicator functions
Some factors force z to be valid (i.e., satisfy constraints)
Other factors force x to be compatible with observed values

vV v vy

Summing over x counts the # of valid compatible sequences
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Solving Sudoku with a Factor Graph

» Consider any constraint satisfaction problem with observed entries
One can write f(z) as the product of indicator functions
Some factors force z to be valid (i.e., satisfy constraints)
Other factors force x to be compatible with observed values

vV v vy

Summing over x counts the # of valid compatible sequences

> Low-complexity peeling solution

> Set elements of z one at a time
» Each step looks for i € [n] and &’ € X such that:

» For currently set variables, f(z) =0 for all z; € X'\ 2/

» Sudoku's unique solution implies that x; = &’ correct

» Fix z; = 2’ and repeat until all values fixed
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Boolean Satisfiability: K-SAT

» One instance of 3-SAT is given, for example, by

fl@)=@T1VEsVar)A(x1 VT2V as) A (xa VIV ) .

> In the FG, clause a € [m] is enforced by the function f,
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Boolean Satisfiability: K-SAT

» One instance of 3-SAT is given, for example, by
fl@)=@T1VEsVar)A(x1 VT2V as) A (xa VIV ) .

> In the FG, clause a € [m] is enforced by the function f,

» Marginalization allows uniform sampling from valid set

» Fori=1,2,...,n, fix z; for j <4 and compute marginal
1
gizi) = — Y @) =PXi=wi| Xy =a1,..., X1 =3 1)
TiglsesTn

» Then, sample z; ~ g;(-) and repeat
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Boolean Satisfiability: K-SAT

» One instance of 3-SAT is given, for example, by
fl@)=@T1VEsVar)A(x1 VT2V as) A (xa VIV ) .

> In the FG, clause a € [m] is enforced by the function f,

» Marginalization allows uniform sampling from valid set

» Fori=1,2,...,n, fix z; for j <4 and compute marginal
1
gizi) = — Y @) =PXi=wi| Xy =a1,..., X1 =3 1)
TiglsesTn

» Then, sample z; ~ g;(-) and repeat

» This algorithm has low complexity if factor graph forms a tree

> If not a tree, use approximate marginal from belief propagation
> This is related to BP-guided decimation [MMOQ9]
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Low-Density Parity-Check (LDPC) Codes

MAAAARAAAR, ™

permutation
parity
IR

» Linear codes defined by xH? =0 for all cw. 2 € C C {0,1}"

» H is an m X n sparse parity-check matrix for the code
» Code bits and parity checks associated with cols/rows of H
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Low-Density Parity-Check (LDPC) Codes

MAAAARAAAR, ™

permutation
parity
IR

» Linear codes defined by xH? =0 for all cw. 2 € C C {0,1}"

» H is an m X n sparse parity-check matrix for the code
» Code bits and parity checks associated with cols/rows of H
» Factor graph: H is the biadjacency matrix for variable/factor nodes
» Ensemble defined by configuration model for random graphs
» Checks define factors: foyen(24) =1(z1 @ - © 24 = 0)
> Let z,, be the subvector of variables in the a-th check and

f(xlv ey xn) = (H feven(xaa)> (H PY|X(yz|$z)>
a=1 i=1

Capacity Achieving Codes: There and Back Again

27 / 65



A Little History

Robert Gallager

introduced LDPC codes in 1962 paper

1962 IRE TRANSACTIONS ON INFORMATION THEORY 21

Low-Density Parity-Check Codes”

R. G. GALLAGER{

Summary—A low-density parity-check code is a code specified
by a parity-check matrix with the following properties: each column
contains a small fixed numberj > 3 of I's and each row contains
a small fixed number & > j of Is. The typical minimum distance of
these codes increases linearly with block length for a fixed rate and
fixed j. When used with mazimum likelihood decoding on a suffi-
tly quiet binary-input symmetric chamnel, the typical prob-
ability of decoding error decreases exponentially with block length
for a fixed rate and fixed j.
A simple but nonoptimum _decoding scheme operating directly
from the channel a posteriori probabilities is described. Both the

defined general belief-propagation in 1986 paper

equations. We call the set of digits contained in o parity-
check equation o parity-check sct. For example, the
first parity-check set in Fig. 1 is the set of digits (1, 2, 3, 5).

The use of parity-check codes makes coding (as dis-
tinguished from decoding) relatively simple to implement.
Also, as Tlias [3] has shown, if o typical parity-check
code of long block length is used on a binary symmetric
channel, and if the code rate is between critical rate and
channel capacity, then the probability of decoding error

Fusion, Propagation, and Structuring in

Belief Networks*

Judea Pearl

Cognitive Systems Laboratory, Computer Science Department,
University of California, Los Angeles. CA 90024, U.S.A.

Recommended by Patrick Hayes

ABSTRACT

Belief networks are directed acyclic graphs in which the nodes represent propositions (or variables),
the arcs signify direct dependencies between the linked propositions, and the strengihs of these
dependencies are quaniified by conditional probabilites. A network of this sort can be used to
represent the generic knowledge of a domain expert, and it turns into a computational architecture if
the links are used not merely for storing facual knowledge but also for directing and activating the
data flow in the computaiions which manipulate this knowledge.
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Simple Message-Passing Decoding for the BEC

» Constraint nodes define the valid patterns

» Circles represent a single value shared by factors

» Squares assert attached variables sum to 0 mod 2

> lterative decoding on the binary erasure channel (BEC)

> Messages passed in phases: bit-to-check and check-to-bit
» Each output message depends on other input messages
» Each message is either the correct value or an erasure
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Simple Message-Passing Decoding for the BEC

» Constraint nodes define the valid patterns
» Circles represent a single value shared by factors

» Squares assert attached variables sum to 0 mod 2

> lterative decoding on the binary erasure channel (BEC)

» Messages passed in phases: bit-to-check and check-to-bit
» Each output message depends on other input messages
> Each message is either the correct value or an erasure

» Message passing rules for the BEC

» Bits pass an erasure only if all other inputs are erased
» Checks pass the correct value only if all other inputs are correct

? 1
? 1
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Simple Message-Passing Decoding for the BEC

» Constraint nodes define the valid patterns

» Circles represent a single value shared by factors

» |Squares assert attached variables sum to 0 mod 2

> lterative decoding on the binary erasure channel (BEC)

» Messages passed in phases: bit-to-check and check-to-bit
» Each output message depends on other input messages
» Each message is either the correct value or an erasure

» Message passing rules for the BEC

» Bits pass an erasure only if all other inputs are erased
» Checks pass the correct value only if all other inputs are correct

1 1
? 1
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Simple Message-Passing Decoding for the BEC

» Constraint nodes define the valid patterns

» Circles represent a single value shared by factors

» |Squares assert attached variables sum to 0 mod 2

> lterative decoding on the binary erasure channel (BEC)

» Messages passed in phases: bit-to-check and check-to-bit
» Each output message depends on other input messages
» Each message is either the correct value or an erasure

» Message passing rules for the BEC

» Bits pass an erasure only if all other inputs are erased
» Checks pass the correct value only if all other inputs are correct

1 1
? ?
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Computation Graph and Density Evolution

T3 =cys
O
Yo = 1—(1—x9)*
] [] [ ] 2
T = &Yy
@, @, @, @, @) @) @), @, @, E
Yy = 1*(1*{E1)3
[] [] [] [] [] [ ] (] [] (] [] (] [] (] [] (] [] (] []
Ty =€

» Computation graph for a (3,4)-regular LDPC code
» lllustrates decoding from the perspective of a single bit-node
» For long random LDPC codes, the graph is typically a tree

» Allows density evolution to track message erasure probability
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Computation Graph and Density Evolution

T3 =cys
O
Yo = 1—(1—x9)*
] [] [ ] 2
T = &Yy
@, @, @, @, @) @) @), @, @, E
Yy = 1*(1*{E1)3
[] [] [] [] [] [ ] (] [] (] [] (] [] (] [] (] [] (] []
Ty =€

» Computation graph for a (3,4)-regular LDPC code
» lllustrates decoding from the perspective of a single bit-node
» For long random LDPC codes, the graph is typically a tree
» Allows density evolution to track message erasure probability

» If z/y are erasure prob. of bit/check output messages, then
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Computation Graph and Density Evolution

T3 :syg
O
Yo = 1—(1—xp)*
] [] [ ] 2
T = &Yy
@, @, @, @, @) @) @), @, @, E
Yy = 1*(1*{E1)3
[] [] [] [] [] [ ] (] [] (] [] (] [] (] [] (] [] (] []
x1 = 0.600

» Computation graph for a (3,4)-regular LDPC code
» lllustrates decoding from the perspective of a single bit-node
» For long random LDPC codes, the graph is typically a tree
» Allows density evolution to track message erasure probability

» If z/y are erasure prob. of bit/check output messages, then
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Computation Graph and Density Evolution

Ty = syg
O
Yo = 1—(1—xp)*
] [] [ ] 2
T = &Yy
@, @, @, @, @) @) @), @, @, Y = 0.936
[] [] [] [] [] [ ] (] [] (] [] (] [] (] [] (] [] (] []
x1 = 0.600

» Computation graph for a (3,4)-regular LDPC code
» lllustrates decoding from the perspective of a single bit-node
» For long random LDPC codes, the graph is typically a tree
» Allows density evolution to track message erasure probability

» If z/y are erasure prob. of bit/check output messages, then
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Computation Graph and Density Evolution

T3 =cys
O
Yo = 1—(1—xp)*
- T - z9 = 0.526
@) Q @) @) @, @, @, @) @) Y = 0.936
[] [] [] [] [] [] [] L] [] L] [] L] [] L] [] L] (] L]
x, = 0.600

» Computation graph for a (3,4)-regular LDPC code
» lllustrates decoding from the perspective of a single bit-node
» For long random LDPC codes, the graph is typically a tree
» Allows density evolution to track message erasure probability

» If z/y are erasure prob. of bit/check output messages, then
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Computation Graph and Density Evolution

T3 =cys
o s = 0.894
" " " 75 = 0.526
@) Q @) @) @, @, @, @) @) Y = 0.936
[] [] [] [] [] [] [] L] [] L] [] L] [] L] [] L] (] L]
21 = 0.600

» Computation graph for a (3,4)-regular LDPC code
» lllustrates decoding from the perspective of a single bit-node
» For long random LDPC codes, the graph is typically a tree
» Allows density evolution to track message erasure probability

» If z/y are erasure prob. of bit/check output messages, then
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Computation Graph and Density Evolution

i3 = 0.429

o s = 0.894

- T - z9 = 0.526

@) Q @) @) @, @, @, @) @) Y = 0.936
[] [] [] [] [] [] [] L] [] L] [] L] [] L] [] L] (] L]

x, = 0.600

» Computation graph for a (3,4)-regular LDPC code
» lllustrates decoding from the perspective of a single bit-node
» For long random LDPC codes, the graph is typically a tree
» Allows density evolution to track message erasure probability

» If z/y are erasure prob. of bit/check output messages, then
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Density Evolution (DE) for LDPC Codes

(3,4) LDPC Code with ¢ = 0.6

06 ‘ Density evolution for a
051 1 (3,4)-regular LDPC code:
2
04| 1 oz =e(1—(1—20)?)
203} | Decoding Thresholds:
0.2F | B~ 0.647
0.1F . €MAP ~ (0.746
St = 0.750
0 | | | |

0 01 02 03 04 05 06
Ly

» Binary erasure channel (BEC) with erasure prob. ¢
» DE tracks bit-to-check msg erasure rate xz, after £ iterations
» Defines noise threshold eB¥ for the large system limit

» Easily computed numerically for given code ensemble

Capacity Achieving Codes: There and Back Again

31 /65



EXtrinsic Information Transfer (EXIT) Curves

> Introduced by ten Brink in 1999 to understand iterative decoding
» For the BEC, the MAP EXIT curve is

PMAP (o) & % i H(X;|Y ;(e))
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EXtrinsic Information Transfer (EXIT) Curves

> Introduced by ten Brink in 1999 to understand iterative decoding
» For the BEC, the MAP EXIT curve is

PMAP (o) & % i H(X;|Y ;(e))

» EXIT Area Theorem [ABKO04]

HOIY(E) = [ 1 g)as
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EXtrinsic Information Transfer (EXIT) Curves

> Introduced by ten Brink in 1999 to understand iterative decoding
» For the BEC, the MAP EXIT curve is

PMAP (o) & % i H(X;|Y ;(e))

» EXIT Area Theorem [ABKO04]

HOIY(E) = [ 1 g)as

» BP EXIT curve

n

A (E) & 3 H (K0P (Vs (4)

i=1

» where ®BP(Z7) is the BP estimate of X; given Z
» Data processing inequality: hBF(g) > AMAP (¢)
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EXtrinsic Information Transfer (EXIT) Curves

hBP (E)

1

0.6 |-

04 |-

0.2 |-

0 | |
0.5 06 07 0
3

8 09 1

Capacity Achieving

> (3,4)-regular LDPC code

» Codeword (X1,...,X,)
» Received (Y7,...,Y},)
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EXtrinsic Information Transfer (EXIT) Curves

hBP (6)

1

0.6 |-

04 |-

0.2 |-

> (3,4)-regular LDPC code

» Codeword (X1,...,X,)
> Received (Y7,...,Y,)

» BP EXIT curve via DE
» This code: hBP(e) = (700 (e))?
» 0 below BP threshold 0.647

0 — |
05 06 07 0
E

8 09 1
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EXtrinsic Information Transfer (EXIT) Curves

1 » (3,4)-regular LDPC code
» Codeword (X1,...,X,)
> Received (Y7,...,Y,)
0.8 |-
» BP EXIT curve via DE
» This code: hBP(e) = (700 (e))?
» 0 below BP threshold 0.647

hBP (6)

Pl » MAP EXIT curve is extrinsic en-
041 tropy H(X;|Y ;) vs. channel ¢
P » 0 below MAP threshold 0.746

P > Area under curve equals rate R
0z SN » Upper bounded by BP EXIT

0 | L
05 06 07 08 09 1
3
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EXtrinsic Information Transfer (EXIT) Curves

1 » (3,4)-regular LDPC code

» Codeword (X1,...,X,)
> Received (Y7,...,Y,)

» BP EXIT curve via DE
» This code: hBP(e) = (700 (e))?

0.6 - » 0 below BP threshold 0.647

Pl » MAP EXIT curve is extrinsic en-
041 tropy H(X;|Y..;) vs. channel ¢
Pl » 0 below MAP threshold 0.746

hBP (6)

Dol > Area under curve equals rate R
0z o » Upper bounded by BP EXIT

» MAP threshold upper bound gMAP

0 | . | b .
0.5 06 07 0.8 09 1 > ¢ s.t. area under BP EXIT is R
13

Capacity Achieving Codes: There and Back Again

33 / 65



Introduction

Factor Graphs

Message Passing

Applications of Factor Graphs
Applications of EXIT Curves
Spatially-Coupled Factor Graphs
Universality for Multiuser Scenarios

Abstract Formulation of Threshold Saturation
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Properties of the MAP EXIT Curve

» For linear codes, the recovery of X; from Y =y

» is independent of the transmitted codeword X
» only depends on erasure indicator z; = 121 (y;)
> is determined by whether H(X;|Z = z) is 0 or 1
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Properties of the MAP EXIT Curve

» For linear codes, the recovery of X; from Y =y

» is independent of the transmitted codeword X
» only depends on erasure indicator z; = 121 (y;)
> is determined by whether H(X;|Z = z) is 0 or 1

» The MAP bit-erasure rate Py(e) satisfies

Py(e) = B(Y; =) H(X|Y.Y; =7) = eh™A7(¢)
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Properties of the MAP EXIT Curve

» For linear codes, the recovery of X; from Y =y

» is independent of the transmitted codeword X
» only depends on erasure indicator z; = 121 (y;)
> is determined by whether H(X;|Z = z) is 0 or 1

» The MAP bit-erasure rate Py(e) satisfies

Py(e) = P(Y; =) H(X,|Y,Y; =7) = ehMAP (¢)

> A sequence of rate-R codes achieves capacity iff
> Py(e) >0foralle <1—-R
» WMAP(e) 5 0foralle <1—R

» hMAP () transitions sharply from 0 to 1
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The MAP EXIT Curve of a Capacity-Achieving Code

e

N |

ot
[

0.5

MAP EXIT Function

0.25 -

0 | |
0 0.25 0.5 0.75 1

Erasure Probability

» For § >0, transition width is e-range over which 6§hMAP(5) <1-—
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The MAP EXIT Curve of a Capacity-Achieving Code

e

N |

ot
[

0.5

MAP EXIT Function

0.25 -

O | |
0 0.25 0.5 0.75 1
Erasure Probability
» For § >0, transition width is e-range over which § <AMAP (g) <1 -6

> Area Theorem implies sharp transition iff capacity achieving
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The MAP EXIT Curve of a Capacity-Achieving Code

e

N |

ot
[

0.5

MAP EXIT Function

0.25 -

I
0 0.25 0.5 0.75 1
Erasure Probability

» For § >0, transition width is e-range over which § <AMAP (g) <1 -6

> Area Theorem implies sharp transition iff capacity achieving
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The MAP EXIT Curve of a Capacity-Achieving Code

1 x
5 0.75 |- =
I8
L
E 0.5 —
X
Ll
<
. _ 53
S 025 n=2"\
—n=2°
—n=27
0 | I
0 0.25 0.5 0.75 1

Erasure Probability
» For § >0, transition width is e-range over which § <AMAP (g) <1 -6

> Area Theorem implies sharp transition iff capacity achieving
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The MAP EXIT Curve of a Capacity-Achieving Code

1 T
5 0.75 =
g
Z
E 0.5 .
% —n=2
—_— _ o5
S 025 n=2"\
—n =27
—n=2°
0 | I
0 0.25 0.5 0.75 1

Erasure Probability
» For § >0, transition width is e-range over which § <AMAP (g) <1 -6

> Area Theorem implies sharp transition iff capacity achieving
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» Consider any monotone boolean function f: {0,1}"~! — {0,1}
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EXIT Curves and Sharp Transitions

» Consider any monotone boolean function f: {0,1}"~! — {0,1}

» Define its symmetry group G to be
G = {7 €Su 1| f(n(2) = fl2)Vz € {0,111}
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EXIT Curves and Sharp Transitions

» Consider any monotone boolean function f: {0,1}"~! — {0,1}

» Define its symmetry group G to be
G={meS1|f(n(2) = f(z)V2 € {0,1}" 7"}
> Let Z; € {0,1} be i.i.d. with P(Z; = 1) = ¢ and define

h(&‘) £ E [f(Zla AR Zn—l)]
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EXIT Curves and Sharp Transitions

» Consider any monotone boolean function f: {0,1}"~! — {0,1}

> Define its symmetry group G to be
G={meSu1|f(n(2))=fl2)Vz € {0,1}" "}
> Let Z; € {0,1} be i.i.d. with P(Z; = 1) = ¢ and define
he) £E[f(Z1,..., Zn1)]
» If G is transitive, then h(e) has transition width O (Tln)*

Vi,je{1,2,...,n—1},3m € G s.t. (i) = j

* Friedgut-Kalai'96: “Every monotone graph property has a sharp threshold”
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EXIT Curves and Sharp Transitions

» Consider any monotone boolean function f: {0,1}"~! — {0,1}

> Define its symmetry group G to be
G={meSu1|f(n(2))=fl2)Vz € {0,1}" "}
> Let Z; € {0,1} be i.i.d. with P(Z; = 1) = ¢ and define
he) £E[f(Z1,..., Zn1)]
» If G is transitive, then h(e) has transition width O (Tln)*

Vi,je{1,2,...,n—1},3m € G s.t. (i) = j

» When do EXIT curves have a sharp transition? [KKMPSU15]

> If the code’s permutation group is doubly transitive!

» For example, Reed-Muller and prim. narrow-sense BCH codes

* Friedgut-Kalai'96: “Every monotone graph property has a sharp threshold”
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Summary and Open Problems

> Gallager's 1960 thesis already contains most of the tools necessary
to achieve capacity in practice

» But, he focuses mainly on the BSC

» Had he attacked the BEC, practical capacity-achieving codes
might have been introduced years earlier
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Summary and Open Problems

> Gallager's 1960 thesis already contains most of the tools necessary
to achieve capacity in practice

» But, he focuses mainly on the BSC

» Had he attacked the BEC, practical capacity-achieving codes
might have been introduced years earlier

» The first deterministic sequence of capacity-achieving binary codes
for the BEC (under MAP decoding) was defined in 1954!

» Sequences of Reed-Muller codes achieve capacity on the BEC
» But, we didn't know this until 2015!
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Summary and Open Problems

> Gallager's 1960 thesis already contains most of the tools necessary
to achieve capacity in practice
» But, he focuses mainly on the BSC

» Had he attacked the BEC, practical capacity-achieving codes
might have been introduced years earlier

» The first deterministic sequence of capacity-achieving binary codes
for the BEC (under MAP decoding) was defined in 1954!
» Sequences of Reed-Muller codes achieve capacity on the BEC
» But, we didn't know this until 2015!

» Open problems

> Generalize the Reed-Muller result to have weaker conditions
and/or apply to more general channels/problems

» Find a purely information-theoretic proof of the Reed-Muller
result for the BEC
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Applications of Factor Graphs
Applications of EXIT Curves
Spatially-Coupled Factor Graphs
Universality for Multiuser Scenarios

Abstract Formulation of Threshold Saturation
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What is Spatial Coupling?

654
7139
8|12
20 [5] |1 |9 113]5] |4 8
8 2| |3 6 2Tolal3 7
3 6 4 sl7]6]1 9
1 6 7
54 1]9 5 a3
2 7 2 3 8
9 3 8 7 N
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9| |2
31
47

Capacity Achieving Codes: There and Back Again 40 / 65



What is Spatial Coupling?

6|54
71319
8|12
2 5 1 9 1[3]5 4 8
8 2 3 6 209 3 7
3 6 7 8l7/6]1 9
1 6 2
5|4 119 5 6|3
2 7 2 3 8
9 3 8 4 38
2 8 4 7 6 71alo
1 9 7 6 1 ale 2
9 2
31
» Spatially-Coupled Factor Graphs 417

» Variable nodes have a natural global orientation

» Boundaries help variables to be recovered in an ordered fashion
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Spatially-Coupled LDPC Codes: (I,r, L, w) Ensemble

T 0 1 2 - L
OO
(I

0

V-V
0 O
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Spatially-Coupled LDPC Codes: (I,r, L, w) Ensemble
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Spatially-Coupled LDPC Codes: (I,r, L, w) Ensemble

—-L-2 —-L-1 —L L L+1 L+2
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Spatially-Coupled LDPC Codes: (I,r, L, w) Ensemble

> Historical Notes
» LDPC convolutional codes introduced by FZ in 1999
» Shown to have near optimal noise thresholds by LSZC in 2005

» (I,r, L,w) ensemble proven to achieve capacity by KRU in 2011
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The LDPCC Gang

5274 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 10, OCTOBER 2010

Iterative Decoding Threshold Analysis
for LDPC Convolutional Codes

Michael Lentmaier, Member, IEEE, Arvind Sridharan, Member, [EEE, Daniel J. Costello, Jr., Life Fellow, IEEE,
and Kamil Sh. Zigangirov, Fellow, IEEE

g -
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The Spatial Coupling KRU

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 2, FEBRUARY 2011 803

Threshold Saturation via Spatial Coupling: Why
Convolutional LDPC Ensembles Perform
So Well over the BEC

Shrinivas Kudekar, Member, IEEE, Thomas J. Richardson, Fellow, IEEE. and Riidiger L. Urbanke
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Density Evolution for the (I, r, L,w)-SC LDPC Ensemble

(3,4,16,3)-SC Ensemble with ¢ = 0.70

Message Erasure Probability

—15 —10 -5 0 5 10 15
Spatial Position

-1

P) 1 1 ‘ r— ;
J;E ) - 2 Z el (1 —(1- mgjjfk) 1) 1z prw-1(i—Fk)
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Density Evolution for the (I, r, L,w)-SC LDPC Ensemble

Message Erasure Probability

(3,4,16,3)-SC Ensemble with ¢ = 0.70

o

Iteration 1
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0 5 10 15

Spatial Position

(1- 50, )
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Density Evolution for the (I, r, L,w)-SC LDPC Ensemble

Message Erasure Probability

(3,4,16,3)-SC Ensemble with ¢ = 0.70

o

Iteration 2

-10 -5

0 5 10 15

Spatial Position

(1- 50, )
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Density Evolution for the (I, r, L,w)-SC LDPC Ensemble

(3,4,16,3)-SC Ensemble with ¢ = 0.70

070} Iteration 3

Message Erasure Probability

—15 —10 -5 0 5 10 15
Spatial Position

-1

P) 1 1 ‘ r— ;
J;E ) - 2 Z el (1 —(1- mgjjfk) 1) 1z prw-1(i—Fk)
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Density Evolution for the (I, r, L,w)-SC LDPC Ensemble

(3,4,16,3)-SC Ensemble with ¢ = 0.70

0.70| Iteration 4

Message Erasure Probability

—15 —10 -5 0 5 10 15
Spatial Position

-1

P) 1 1 ‘ r— ;
J;E ) - 2 Z el (1 —(1- mgjjfk) 1) 1z prw-1(i—Fk)

Capacity Achieving Codes: There and Back Again



Density Evolution for the (I, r, L,w)-SC LDPC Ensemble

(3,4,16,3)-SC Ensemble with ¢ = 0.70

070} Iteration 10

Message Erasure Probability

—15 —10 -5 0 5 10 15
Spatial Position

-1

P) 1 1 ‘ r— ;
J;E ) - 2 Z el (1 —(1- mgjjfk) 1) 1z prw-1(i—Fk)
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Density Evolution for the (I, r, L,w)-SC LDPC Ensemble

(3,4,16,3)-SC Ensemble with ¢ = 0.70

0.70| Iteration 50

Message Erasure Probability

—15 —10 -5 0 5 10 15
Spatial Position

-1

P) 1 1 ‘ r— ;
J;E ) - 2 Z el (1 —(1- mgjjfk) 1) 1z prw-1(i—Fk)
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Density Evolution for the (I, r, L,w)-SC LDPC Ensemble

Message Erasure Probability

0.75 —

0.70 -
0.65
0.60 |-
0.55
0.50 -
0.45}
0.40 -
0.35}
0.30
0.25|
0.20 -
0.15}
0.10

(3,4,16,3)-SC Ensemble with ¢ = 0.70

Iteration 100

et

—10 -5

0 5 10 15

Spatial Position

(1 - (1- mz('?jfky_l)
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Density Evolution for the (I, r, L,w)-SC LDPC Ensemble

(3,4,16,3)-SC Ensemble with ¢ = 0.70

070} Iteration 150

Message Erasure Probability

b & 5 5 & 5 5
—15 —10 -5 0 5 10 15

Spatial Position

-1

P) 1 1 ‘ r— ;
J;E ) - 2 Z el (1 —(1- mgjjfk) 1) 1z prw-1(i—Fk)
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Properties of Threshold Saturation

‘ cMAP ‘

l

3| 6 | 0.4294 | 0.4882
4 1 8 | 0.3834 | 0.4977
51 10 | 0.3416 | 0.4995
6
7

12 | 0.3075 | 0.4999
14 | 0.2798 | 0.5000

» Spatial coupling achieves the MAP threshold as w — oo

> BP threshold typically decreases after [ = 3
» MAP threshold is increasing in [, r for fixed rate

> Benefits and Drawbacks
» For fixed L, minimum distance grows linearly with block length
> Rate loss of O(w/L) is a big obstacle in practice
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Threshold Saturation via Spatial Coupling

» General Phenomenon (observed by Kudekar, Richardson, Urbanke)

» BP threshold of the spatially-coupled system converges to the
MAP threshold of the uncoupled system

» Can be proven rigorously in many cases!
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Threshold Saturation via Spatial Coupling

» General Phenomenon (observed by Kudekar, Richardson, Urbanke)

» BP threshold of the spatially-coupled system converges to the
MAP threshold of the uncoupled system

» Can be proven rigorously in many cases!

» Connection to statistical physics

» Factor graph defines system of coupled particles

» Valid sequences are ordered crystalline structures
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http://www.youtube.com/watch?v=Xe8vJrIvDQM

Threshold Saturation via Spatial Coupling

» General Phenomenon (observed by Kudekar, Richardson, Urbanke)

» BP threshold of the spatially-coupled system converges to the
MAP threshold of the uncoupled system

» Can be proven rigorously in many cases!

» Connection to statistical physics

» Factor graph defines system of coupled particles

» Valid sequences are ordered crystalline structures

» Between BP and MAP threshold, system acts as supercooled liquid

» Correct answer (crystalline state) has minimum energy
» Crystallization (i.e., decoding) does not occur without a seed

» Ex.: ice melts at 0 °C but freezing w/o a seed requires —48.3°C

http://www.youtube.com/watch?v=Xe8vJrivDQM
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Why is Spatial Coupling Interesting?

» Breakthroughs: first practical constructions of

>
>
>
>
»

universal codes for binary-input memoryless channels [KRU12]
information-theoretically optimal compressive sensing [DJM11]
universal codes for Slepian-Wolf and MAC problems [YJNP11]
codes — capacity with iterative hard-decision decoding [JNP12]
codes — rate-distortion limit with iterative decoding [AMUV12]
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Why is Spatial Coupling Interesting?

» Breakthroughs: first practical constructions of

» universal codes for binary-input memoryless channels [KRU12]
» information-theoretically optimal compressive sensing [DJM11]
» universal codes for Slepian-Wolf and MAC problems [YJNP11]
» codes — capacity with iterative hard-decision decoding [JNP12]
> codes — rate-distortion limit with iterative decoding [AMUV12]

» It allows rigorous proof in many cases

» Original proofs [KRU11/12] quite specific to LDPC codes
» Our proof for increasing scalar/vector recursions [YJNP12/13]
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Why is Spatial Coupling Interesting?

» Breakthroughs: first practical constructions of

» universal codes for binary-input memoryless channels [KRU12]
» information-theoretically optimal compressive sensing [DJM11]
» universal codes for Slepian-Wolf and MAC problems [YJNP11]
» codes — capacity with iterative hard-decision decoding [JNP12]
> codes — rate-distortion limit with iterative decoding [AMUV12]

» It allows rigorous proof in many cases

» Original proofs [KRU11/12] quite specific to LDPC codes
» Our proof for increasing scalar/vector recursions [YJNP12/13]

» Spatial coupling as a proof technique [GMU13]

» For a large random factor graph, construct a coupled version
» Use DE to analyze BP decoding of coupled system
» Compare uncoupled MAP with coupled BP via interpolation

Capacity Achieving Codes: There and Back Again



Introduction

Factor Graphs

Message Passing

Applications of Factor Graphs
Applications of EXIT Curves
Spatially-Coupled Factor Graphs
Universality for Multiuser Scenarios

Abstract Formulation of Threshold Saturation
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Universality over Unknown Parameters

» The Achievable Channel Parameter Region (ACPR)

> For a sequence of coding schemes involving one or more
parameters, the parameter region where decoding succeeds in
the limit

> In contrast, a capacity region is a rate region for fixed channels

2.2

1.6 -

(6%]

141

]

1+ MAC-ACPR boundary R
for rate 1/2

0.8 | | | | | |
0.8 1 1.2 1.4 1.6 1.8 2 2.2

aq

Capacity Achieving Codes: There and Back Again

49 / 65



Universality over Unknown Parameters

» The Achievable Channel Parameter Region (ACPR)

> For a sequence of coding schemes involving one or more
parameters, the parameter region where decoding succeeds in

the limit
> In contrast, a capacity region is a rate region for fixed channels

» Properties
» For fixed encoders, the ACPR depends on the decoders

» For example, one has BP-ACPR C MAP-ACPR
» Often, 3 unique maximal ACPR given by information theory
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Universality over Unknown Parameters

» The Achievable Channel Parameter Region (ACPR)

> For a sequence of coding schemes involving one or more
parameters, the parameter region where decoding succeeds in
the limit

> In contrast, a capacity region is a rate region for fixed channels

» Properties
» For fixed encoders, the ACPR depends on the decoders
» For example, one has BP-ACPR C MAP-ACPR

» Often, 3 unique maximal ACPR given by information theory

» Universality

» A sequence of encoding/decoding schemes is called universal if:

its ACPR equals the optimal ACPR
» Channel parameters are assumed unknown at the transmitter

> At the receiver, the channel parameters are easily estimated
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2-User Binary-Input Gaussian Multiple Access Channel

Z ~N(0,1)
hy
X, l

X
2 I

v

Fixed noise variance

v

Real channel gains hy and hy not known at transmitter
Each code has rate R

v

v

MAC-ACPR denotes the information-theoretic optimal region
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A Little History: SC for Multiple-Access (MAC) Channels

» KK consider a binary-adder erasure channel (ISIT 2011)
» SC exhibits threshold saturation for the joint decoder

» YNPN consider the Gaussian MAC (ISIT/Allerton 2011)
» SC exhibits threshold saturation for the joint decoder

» For channel gains hy, ho unknown at transmitter,
SC provides universality

» Others consider CDMA systems without coding

» TTK show SC improves BP demod of standard CDMA
» ST prove saturation for a SC protograph-style CDMA
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Spatially-Coupled Factor Graph for Joint Decoder
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DE Performance of the Joint Decoder

Qg — |h,2‘2

0.9

0'80.8 019

BP-ACPR, LDPC(3,6)

E/IAC- CPR
oundary for rate
1/2

1

I I I I I

11 12 13 14 15 1.6 17 18 19
_ 2

Q| = ‘hl
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DE Performance of the Joint Decoder

Qg — |h,2‘2
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DE Performance of the Joint Decoder

Lof BP-ACPR, LDPC(4,8)

|hal?®

Qg —
=

BP-ACPR,
121°5C(4,8,64,5)

11p

1) AC-ACPR ]
oundary for rate

0.9 1/2 |

| | | |
0'80.8 0.9 1 1.1 1.2 13 14 15 16 17 18 19 2 21 22
Q| = }L1|2
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Introduction

Factor Graphs

Message Passing

Applications of Factor Graphs
Applications of EXIT Curves
Spatially-Coupled Factor Graphs
Universality for Multiuser Scenarios

Abstract Formulation of Threshold Saturation
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Single Monotone Recursion

1

0.8

— 0.6
S

= 04| |

» Smooth increasing f: [0,1]— [0, 1]

T
|

T
|

0.2
0

T
|

| | | |
0 0.2 04 06 0.8
x

—_
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Single Monotone Recursion

» Smooth increasing f: [0,1]— [0, 1] !
0.8 -
» Discrete-time recursion 06
(e+1) _ ¢(..(0) e
o G = 04|
0.2
0
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Single Monotone Recursion

» Smooth increasing f: [0,1]—[0,1] ! 7 T ]
0.8 - 5
» Discrete-time recursion 06
(e+1) _ ¢(..(0) e
o G = 04| |
» “Potential energy” Us(z) 0.2 i
z 72 0 | | | |
Us(x) =/ (= f(2)dz = 5 = F(2) 0 02 04 06 08 1
0 x
1 T T T T
0.8
E 06 .
o
w 0.4 =
a
0.2 =

0 | | ] |
0 02 04 06 08 1

xT
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Single Monotone Recursion

» Smooth increasing f: [0,1]—[0,1] ! 7 T ]
0.8 - =
> Discrete-time recursion 06
(1) _ p(.(0) Ol
o G = 04| |
» “Potential energy” Us(z) 0.2 i
z 72 0 | | | |
Us(w)=/ (= f(2)dz = 5 = F(2) 0 02 04 06 08 1
0
x
» Continuous (small step) dynamics 1 T T T T
d 0.8 -
Za(t) = flz(t))—xz(t) = —VU(z(t)) —~
G0 = F) o) = ~VU6w) 5 | |
=y
o 0.4 :
[N}
0.2 =

0 | | ] |
0 02 04 06 08 1

xT
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Single Monotone Recursion

» Smooth increasing f: [0,1]—[0, 1] 1 T T 1
0.8 - =
> Discrete-time recursion 06
(1) _ p(.(0) B
o G = 04 |
» “Potential energy” Us(z) 0.2 i
z 72 0 | | | |
Us(z) =/ (= f(2)dz = 5 = F(2) 0 02 04 06 08 1
0
x
» Continuous (small step) dynamics 1 T T T T
d 0.8 -
Za(t) = flz(t))—xz(t) = —VU(z(t)) —~
G0 = F) o) = ~VU6w) 5 | |
» Lyapunov stability E 0.4 |
[N}
d 2 L |
U (#®) = = (2() = fa(®)) 02
0 | | | |
0 02 04 06 08 1
X
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Single Monotone Recursion

» Smooth increasing f: [0,1]—[0,1] ! 7 T ]
0.8 - =
> Discrete-time recursion 06
(1) _ p(.(0) =
o G = 04 |
» “Potential energy” Us(x) 0.2} .
z 72 0 | | | |
Us(z) =/ (= f(2)dz = 5 = F(2) 0 02 04 06 08 1
0
x
» Continuous (small step) dynamics 1 T T T T
d 0.8 -
Za(t) = flz(t))—xz(t) = —VU(z(t)) —~
G0 = F) o) = ~VU6w) 5 | |
» Lyapunov stability E 0.4 |
[N}
d 2 L |
U (#®) = = (2() = fa(®)) 02
0 | | | |
Both | 0 iff no fixed points in (0, 1] 0 02 04 06 08 1
X
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Coupled Monotone Recursion (1)

» Coupled recursion z(“+1) = Tz with z(® = (xée),a:(f), . ) and
Tz & AT f(Az),
where [f(2)]; = f(x;) and A averages w adjacent values

1 11 -~ 1 0
A=—10 1 I |
w . .. . . .

> i.e., avg right w positions, apply f, then avg left w positions
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Coupled Monotone Recursion (1)

» Coupled recursion z(“+1) = Tz with z(® = (xge),a:(f), . ) and
Tz & AT f(Az),

where [f(2)]; = f(x;) and A averages w adjacent values

1 11 -~ 1 0
A=—10 1 I |
w . ..- ..- . .

> i.e., avg right w positions, apply f, then avg left w positions

» Coupled potential: U.(z) = QZ:U — ZF<wa1+J>

> Satisfies VUc(z) =z — AT f(Az)
» Danger: there be dragens infinities
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Coupled Monotone Recursion (2)

» Properties of 1" (note: z <Xy < x; < y; for all 7)
» T is monotone: z =X y implies Tz < Ty
» T preserves spatial order: 2,11 > x; implies [Tz];11 > [Tx];
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Coupled Monotone Recursion (2)

» Properties of 1" (note: z <Xy < x; < y; for all 7)
» T is monotone: z =X y implies Tz < Ty

» T preserves spatial order: 2,11 > x; implies [Tz];11 > [Tx];

» For z(®) =1, iterates xl@) are decreasing in £ and increasing in ¢
» Spatial limit exists: :cgi) = lim; o :ch(-z)

> lteration limit exists: .TZ(OO) = limy— 00 xge)
» Iteration limit satisfies fixed point: z(°°) = T'z(>°)

> Double limit satisfies fixed point: 2 = f(2{2)
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Intuition Behind Threshold Saturation

» Between the BP and MAP threshold

» decoding trajectory looks like a right-moving wave
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» Between the BP and MAP threshold

» decoding trajectory looks like a right-moving wave

» we know recursion converges pointwise to a limit
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Intuition Behind Threshold Saturation

» Between the BP and MAP threshold

» decoding trajectory looks like a right-moving wave
» we know recursion converges pointwise to a limit

» if limit not 0, then compute energy change due to right shift
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Intuition Behind Threshold Saturation

» Between the BP and MAP threshold

» decoding trajectory looks like a right-moving wave
» we know recursion converges pointwise to a limit

» if limit not 0, then compute energy change due to right shift

» Right-shift S satisfies [Sz]; = x;—1 with z_; =0
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Intuition Behind Threshold Saturation

» Between the BP and MAP threshold

» decoding trajectory looks like a right-moving wave
» we know recursion converges pointwise to a limit

» if limit not 0, then compute energy change due to right shift
» Right-shift S satisfies [Sz]; = x;—1 with z_; =0

> Relative potential: V,(t) = Uc((1 — t)z + tSz) — Uc(z)
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Intuition Behind Threshold Saturation

» Between the BP and MAP threshold

» decoding trajectory looks like a right-moving wave
» we know recursion converges pointwise to a limit

» if limit not 0, then compute energy change due to right shift
» Right-shift S satisfies [Sz]; = x;—1 with z_; =0

> Relative potential: V,(t) = Uc((1 — t)z + tSz) — Uc(z)
> If z;41 > a; for all i, then V,(¢) well-defined for ¢ € [0, 1]
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Intuition Behind Threshold Saturation

» Between the BP and MAP threshold

» decoding trajectory looks like a right-moving wave
» we know recursion converges pointwise to a limit

» if limit not 0, then compute energy change due to right shift
» Right-shift S satisfies [Sz]; = x;—1 with z_; =0

> Relative potential: V,(t) = Uc((1 — t)z + tSz) — Uc(z)
> If z;41 > a; for all i, then V,(¢) well-defined for ¢ € [0, 1]

» For t =1, one gets a telescoping sum that shows

Vg(l) < —Us(zoo)
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Threshold Saturation

Theorem
If f(0)=0 and f’(0)<1 (0 is stable f.p.) with Us(z) >0 for z€(0,1],
then Jwy < oo such that x(;g") =0 for all w > wy.
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then Jwy < oo such that 22 = 0 for all w > wy.

» Define relative potential (with z;(t) £ z; +t(z;—1 —

z:O

N =

» Sketch of Proof:

Capacity Achievi

73 |

=0

ng Codes

w—1

=D

Jj=0

There and Back

Again

;)

59 / 65



Threshold Saturation

Theorem
If f(0)=0 and f’(0)<1 (0 is stable f.p.) with Us(z) >0 for z€(0,1],

then Jwy < oo such that x(;g") =0 for all w > wy.

» Define relative potential (with z;(t) £ z; + t(z;—1 — 7))

1 [eS) o0 1wfl 1wfl
é§; )_g F E;xi(t) - F E;:p

» Sketch of Proof:
» For (9 =1, let z = 2(°) be limiting fixed-point of recursion
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Threshold Saturation

Theorem
If f(0)=0 and f’(0)<1 (0 is stable f.p.) with Us(z) >0 for z€(0,1],

then Jwy < oo such that x(;g") =0 for all w > wy.

» Define relative potential (with z;(t) £ z; + t(z;—1 — 7))

1 [eS) o0 1wfl 1wfl
é§; )_; F E;xi(t) - F E;:p

» Sketch of Proof:
» For (9 =1, let z = 2(°) be limiting fixed-point of recursion
» If 2o, = 0, then we're done. Suppose z5, > 0
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Threshold Saturation

Theorem
If f(0)=0 and f’(0)<1 (0 is stable f.p.) with Us(z) >0 for z€(0,1],

then Jwy < oo such that x(;g") =0 for all w > wy.

» Define relative potential (with z;(t) £ z; + t(z;—1 — 7))

1 [eS) o0 1wfl 1wfl
é§; )_; F E;xi(t) - F E;:p

» Sketch of Proof:
» For (9 =1, let z = 2(°) be limiting fixed-point of recursion
» If 2o, = 0, then we're done. Suppose z5, > 0
> Then, zoo = f(200) > smallest non-zero f.p. > 0 (ind. of w)
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Threshold Saturation

Theorem
If f(0)=0 and f’(0)<1 (0 is stable f.p.) with Us(z) >0 for z€(0,1],

then Jwy < oo such that x(;g") =0 for all w > wy.

» Define relative potential (with z;(t) £ z; + t(z;—1 — 7))

1 [eS) o0 1wfl 1wfl
é§; )_; F E;xi(t) - F E;:p

» Sketch of Proof:

» For (9 =1, let z = 2(°) be limiting fixed-point of recursion
If zoo = 0, then we're done. Suppose zo, > 0
Then, zoo = f(200) > smallest non-zero f.p. > 0 (ind. of w)
Thus, U(zx) > 0 by hypothesis
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Threshold Saturation

Theorem
If f(0)=0 and f’(0)<1 (0 is stable f.p.) with Us(z) >0 for z€(0,1],

then Jwy < oo such that x(;g") =0 for all w > wy.

» Define relative potential (with z;(t) £ z; + t(z;—1 — 7))

1 [eS) o0 1wfl 1wfl
é§; )_; F E;xi(t) - F E;:p

» Sketch of Proof:

» For (9 =1, let z = 2(°) be limiting fixed-point of recursion
If zoo = 0, then we're done. Suppose zo, > 0
Then, zoo = f(200) > smallest non-zero f.p. > 0 (ind. of w)
Thus, U(zx) > 0 by hypothesis
Telescoping sum for V' shows V(1) < —U(z5) <0
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Threshold Saturation

Theorem
If f(0)=0 and f’(0)<1 (0 is stable f.p.) with Us(z) >0 for z€(0,1],

then Jwy < oo such that x(;g") =0 for all w > wy.

» Define relative potential (with z;(t) £ z; + t(z;—1 — 7))

1 [eS) o0 1wfl 1wfl
é§; )_; F E;xi(t) - F E;:p

» Sketch of Proof:

» For (9 =1, let z = 2(°) be limiting fixed-point of recursion
If zoo = 0, then we're done. Suppose zo, > 0
Then, zoo = f(200) > smallest non-zero f.p. > 0 (ind. of w)
Thus, U(zx) > 0 by hypothesis
Telescoping sum for V' shows V(1) < —U(z5) <0
Taylor series for V' shows |V, (1)| < K- (1 + sup,c(o 4 [f'(2)])
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Threshold Saturation

Theorem
If f(0)=0 and f’(0)<1 (0 is stable f.p.) with Us(z) >0 for z€(0,1],

then Jwy < oo such that x(;g") =0 for all w > wy.

» Define relative potential (with z;(t) £ z; + t(z;—1 — 7))

1 [eS) o0 1wfl 1wfl
é§; )_; F E;xi(t) - F E;;;x

» Sketch of Proof:

» For (9 =1, let z = 2(°) be limiting fixed-point of recursion
If 200 = 0, then we're done. Suppose zo, > 0
Then, zoo = f(200) > smallest non-zero f.p. > 0 (ind. of w)
Thus, U(zx) > 0 by hypothesis
Telescoping sum for V' shows V(1) < —U(zs0) < 0
Taylor series for V' shows |V, (1)| < K- (1 + sup,c(o 4 [f'(2)])
Thus, we get a contradiction for sufficiently large w
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History of Threshold Saturation Proofs

v

the BEC in 2010 [KRU11]

» Established many properties and tools used by later approaches

the Curie-Weiss model of physics in 2010 [HMU12]

CDMA using a GA in 2011 [TTK12]

CDMA with outer code via GA in 2011 [Trul2]
compressive sensing using a GA in 2011 [DJM13]

regular codes on BMS channels in 2012 [KRU13]
increasing scalar and vector recursions in 2012 [YJNP14]
irregular LDPC codes on BMS channels in 2012 [KYMP14]
non-decreasing scalar recursions in 2012 [KRU15]
non-binary LDPC codes on the BEC in 2014 [AG16]

and more since 2014...
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Summary and Open Problems

» Factor Graphs

> Useful tool for modeling dependent random variables
» Low-complexity algorithms for approximate inference

> Density evolution can be used to analyze performance

» Spatial Coupling
» Powerful technique for designing and understanding FGs.
» Related to the statistical physics of supercooled liquids
» Simple proof of threshold saturation for scalar recursions

> Interesting Open Problems

» Code constructions that reduce the rate-loss due to termination
» Compute the scaling exponent for SC codes

» Finding new problems where SC provides benefits

Capacity Achieving Codes: There and Back Again
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Thanks for your attention
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