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Illustrating the principle of total internal reflection.
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Source: Nicolas Rapp, Fortune Magazine, July 23, 2012
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Source: www.telegeography.com 6



euNetworks Optical Fiber Network Map

Source: www.eunetworks.de
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Fiber-Optic Communication Systems

TX

Hybrid
Amplifier

Forward
pump

span 1 span 2 span N

SSMF Hybrid
Amplifier

Forward
pump

Backward
pump

ROADM SSMF Hybrid
Amplifier

Forward
pump

Backward
pump

ROADM SSMF Hybrid
Amplifier

Backward
pump

RX

Physics: Enabling Technologies

1 Low-loss (∼ 0.2 dB/km) optical
fiber, huge bandwidth (∼54 THz
bandwidth)

2 Optical amplifiers

3 Laser transmitters and
Mach-Zehnder modulators
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Fiber-Optic Communication Systems: Challenges

Reliability

Pe < 10−15

Speed

100 Gb/s per-channel data rates (or even more)

Non-Linearity

The fiber-optic channel is non-linear in the input power!
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The Kerr Effect

Kerr electro-optic effect (DC Kerr
effect)

An effect discovered by John Kerr in
1875

It produces a change of refractive index
in the direction parallel to the
externally applied electric field

The change of index is proportional to
the square of the magnitude of the
external field
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The Kerr Effect in Optical Fibers

Optical Kerr Effect (or AC Kerr effect)

No externally applied electric field is necessary

The signal light itself produces the electric field that changes
the index of refraction of the material (fused silica)

The change in index in turn changes the signal field

The change in index of refraction is proportional to the square
of the field magnitude

P

f

WDM
channel

channel
of interest

optical
fiber

changes index
of refraction

generates
distortion

A signal in a certain frequency band can distort the signal in a
different frequency band without spectral overlap
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Nonlinear Effects in Fibers

intra-channel

signal↔noise

NL
phase noise

SPM-induced
NL phase noise

parametric
amplification

modulation
instability

signal↔signal

self-phase
modulation

isolated pulse
SPM

IXPM IFWM

inter-channel

signal↔noise

NL phase noise

XPM-induced
NL phase noise

signal↔signal

WDM nonlinearities

XPM FWM

Key

NL = nonlinear; SPM = self-phase modulation; (I)XPM = (intra-channel)
cross-phase modulation; (I)FWM = (intra-channel) four-wave mixing; WDM =
wavelength-division multiplexing

Courtesy of R. J. Essiambre
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Maxwell’s Equations

Maxwell’s Equations

Gauss’s Law: ∇ ·D = ρ
Gauss’s Law for Magnetism: ∇ · B = 0

Maxwell-Faraday Equation: ∇× E =−∂B

∂t

Ampère’s Law: ∇×H = J +
∂D

∂t
with D = ε0E + P and B = µ0(H + M).

Tangential (t) and normal (n) components subject,
at a material boundary, to:

Et1 = Et2 ; Ht1 = Ht2 ; Dn1 − Dn2 = ρS ; Bn1 = Bn2 .

ε1

ε2

E 2

Et2

En2

E 1

Et1

En1

ε0 ≈ 1
36π

10−9 As/Vm:
free space dielectric
permittivity

µ0 = 4π × 10−7 Vs/Am:
free space magnetic
permeability

E: electric field (V/m)

H: magnetic field (A/m)

D: electric displacement
(As/m2)

B: magnetic induction
(Vs/m2)

J: current density (A/m2)

P: material polarization
(As/m2)

M: material
magnetization (A/m)

ρ: charge density
(As/m3)

ε0µ0 = 1
c2 , where

c ≈ 3 × 108 m/s: free
space speed of light
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Maxwell’s Equations in Air and Glass

Approximation 1: ρ = 0; there are no free charges.

Approximation 2: J = 0; there are no currents.

Approximation 3: M = 0; there is no magnetization.

Maxwell’s Equations after Approximations 1–3

∇ ·D = 0

∇ · B = 0

∇× E = −∂B

∂t

∇×H =
∂D

∂t

with D = ε0E + P and B = µ0H.
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Material Polarization

Material polarization in a general medium is often written as

P = ε0(X (1)(E) + X (2)(E,E) + X (3)(E,E,E) + · · · )
where X (i) are linear (i = 1) and nonlinear (i > 1) electric
susceptibility tensors (multilinear maps).
We will assume that in glass fiber:

Approximation 4:

The material polarization P parallels the electric
field E (glass is a homogeneous medium).

Approximation 5:

Changes in P follow changes in E instantaneously
(i.e., quicker than any relevant time scale involved).

Assuming material homogeneity (Approximation 4), X (i) is a
constant, and we write

X (i)(E,E, . . . ,E) = χ(i)‖E‖i E

‖E‖ = χ(i)‖E‖i−1E.
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Kerr Nonlinearity

Glass, like many materials, has an “inversion symmetry” (it’s
mirror image has the same structure as itself) ⇒ all even-order
nonlinear susceptibilities are zero: χ(2) = χ(4) = · · · = 0.

Approximation 6:

Higher-order susceptibilities beyond χ(3) are negligible.

This gives
P = ε0(χ(1) + χ(3)‖E‖2)E

and, therefore,

D = ε0E + P = ε0(1 + χ(1) + χ(3)‖E‖2)E.

This is the Kerr nonlinearity!
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Towards the Nonlinear Schrödinger Equation

By considering ∇×∇× E, one can derive a nonlinear wave
equation.
Then, after introducing

a complex-envelope representation for a propagating electric
field in the z direction;

a co-propagating reference frame;

wavelength-dependence of the index of refraction (dispersion)
(up to second order);

fiber loss;

one obtains a partial differential equation for the envelope Q(t, z)
in the absence of noise:

∂

∂z
Q(t, z) +

jβ2

2

∂2

∂t2
Q(t, z)− jγ|Q(t, z)|2Q(t, z) +

α

2
Q(t, z) = 0.
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System Model

coherent fiber-optic communication system

standard-single-mode fiber

ideal distributed Raman amplification

But, could also consider

systems with inline dispersion-compensating fiber

lumped amplification

TX AMP · · · AMP RX

Q(t, 0) Q(t,L)

SSMF︸ ︷︷ ︸
N spans

18



Generalized Nonlinear Schrödinger Equation

Q(t, z) is the complex baseband representation of the signal
(the full field, representing co-propagating DWDM signals)

Transmitter sends Q(t, 0)

Receiver gets Q(t,L), where L is the total system length

Evolution of Q(t, z)

The generalized non-linear Schrödinger (GNLS) equation expresses
the evolution of Q(t, z):

∂Q(t, z)

∂z
+

jβ2

2

∂2Q(t, z)

∂t2︸ ︷︷ ︸
dispersion

− jγ|Q(t, z)|2Q(t, z)
︸ ︷︷ ︸

nonlinearity

= n(t, z)
︸ ︷︷ ︸
noise

No loss term (since ideal distributed Raman amplification is
assumed).
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System Parameters

n(t, z) is a circularly symmetric complex Gaussian noise process
with autocorrelation

E
[
n(t, z)n?(t ′, z ′)

]
= αhνsKT δ(t − t ′, z − z ′),

where h is Planck’s constant, νs is the optical frequency, and KT is
the phonon occupancy factor.

Second-order dispersion β2 -21.668 ps2/km
Loss α 4.605× 10−5 m−1

Nonlinear coefficient γ 1.27 W−1km−1

Center carrier frequency νs 193.41 THz
Phonon occupancy factor KT 1.13
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Solving the GNLS Equation

Throughout propagation over an optical fiber, stochastic effects
(noise), linear effects (dispersion) and nonlinear effects (Kerr
nonlinearity) interact.

nonlinearitynoise

dispersion

Even in the absence of noise, solving the GNLS equation requires
numerical techniques.

21



Split-Step Fourier Method

h

divide fiber length into short segments

consider each segment as the concatenation of (separable)
nonlinear and linear transforms

for distributed amplification, an additive noise is added after
the linear step.

Q(t, z0) −→ Q(t, z0 + h) step size h

22



Nonlinear Step

In the absence of linear effects, the GNLS equation has the form

∂Q(t, z)

∂z
= jγ|Q(t, z)|2Q(t, z),

with solution

Q(t, z0 + h) = Q(t, z0) exp(jγ|Q(t, z0)|2h).

Nonlinear Step . . .

. . . is best taken in the time domain.
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Linear Step

Now use the previous solution as input to the linear step, i.e., let

Q̂(t, z0) = Q(t, z0) exp(jγ|Q(t, z0)|2h)

be the input to the linear step. The linear form of the GNLS
equation is

∂Q(t, z)

∂z
= − jβ2

2

∂2Q(t, z)

∂t2
.

Defining

Q(t, z) =
1

2π

∫ ∞

−∞
Q̃(ω, z) exp(jωt)dω, i.e., Q(t, z)

F←→ Q̃(ω, z),

it can be shown that

Q̃(ω, z0 + h) = Q̃(ω, z0) exp

(
j
β2

2
ω2h

)
.

Linear Step . . .

. . . is best taken in the frequency domain.
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Split-Step Propagator

Putting this together, we have

Q(t, z0 + h) =

F−1




F





Q(t, z0) exp(jγ|Q(t, z0)|2h)︸ ︷︷ ︸
nonlinear step





exp

(
j
β2

2
ω2h

)




︸ ︷︷ ︸
linear step

where F is the Fourier transform operator.
In practice:

1 extensive use is made of the FFT

2 step size can be adapted

3 linear and nonlinear steps can be “offset” by a half-step
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Local-error method

Given the signal q(t, z), compute the signal at z + 2h in two ways:
a “coarse” solution qc using the symmetric split-step scheme once
with a step-size 2h, and a “fine” solution qf using the symmetric
split-step scheme twice with step-size h.

Since the error in a single step of the symmetric scheme is O(h3),
these solutions are related to the actual solution qa as

qc = qa + κ(2h)3 +O(h4),

qf = qa + 2κh3 +O(h4).

Using a linear combination of the coarse and fine solutions, you
can get an approximate solution at z + 2h for which the leading
error term is O(h4)

q(t, z + 2h) =
4

3
qf −

1

3
qc = qa +O(h4)
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Local-error method: adaptive step sizes

Define a relative local error

δ =
||qf − qc ||
||qf ||

The step-size is adaptively chosen to keep the relative local error
within a specified tolerance range (tol/2, tol)

If δ < tol/2, then h = 21/3h,

else if δ ∈ (tol/2, tol), h = h,

else if δ ∈ (tol , 2tol), h = h/21/3,

else if δ > 2tol , discard solution and h = h/2.

See: Sinkin, Holzlohner, Zweck, Menyuk, J. Lightwave Tech., 2003.
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Launching a Pulse
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Launching a Pulse
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An Upper Bound on Spectral Efficiency of Fiber
Channels

(Joint work with Mansoor Yousefi and Gerhard Kramer)
Basic idea:

take the split-step method as a channel model

observe that each noiseless step is both energy and entropy
preserving

total power accumulated gives an upper bound on entropy of
output

entropy power inequality gives a lower bound on the entropy
of a noise ball

29



Maximum Entropy

Let X ∈ CL have correlation matrix RX = E [XXH ]. Then

h(X) ≤ log [(πe)L det RX ],

with equality if and only if X is Gaussian and circularly symmetric.
If E [XHX] = LP (per-sample energy P), then

h(X) ≤ L log(πeP)

with equality if and only if X is iid circularly symmetric Gaussian.
For any complex square matrix M, we have

h(MX) = h(X) + 2 log | det M|.

In particular, if M has unit determinant (e.g., if M is unitary), then
h(MX) = h(X).
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Entropy Power Inequality

For X ∈ CL, define the “entropy power” V (X) so that

h(X) = L log(πeV (X)).

Entropy Power Inequality

For independent X and Y we have

V (X + Y) ≥ V (X) + V (Y).

Conditional version: for conditionally independent X and Y we
have

h(X | U) = L log(πeV (X | U)), and

= V (X + Y | U) ≥ V (X | U) + V (Y | U)
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Fiber-Channel via Split-Step

Split-step channel model: divide fiber into small steps.

F DL F−1 DN +
A(zk) B(zk) A(zk+1)

Noise

Ideal Raman amplification: removes loss but adds noise

F = Fourier transform

DL = diagonal matrix with fixed entries of unit magnitude
(all-pass filter)

DN = diagonal matrix with unit amplitude entries; the
(`, `)th-entry phase shift is proportional to the
magnitude-squared of the `th entry of B(zk).
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Main Observations

F DL F−1 DN +
A(zk) B(zk) A(zk+1)

Noise

The linear step conserves energy and entropy.

B(zk) = F−1DLF︸ ︷︷ ︸
unitary

A(zk)

The nonlinear step also conserves energy and entropy.

Sketch: Let (r , θ), r ≥ 0, θ ∈ [0, 2π), be random variables, and let
X = re jθ; then h(X ) = h(r , θ) + E [log(r)].
Now, if Y = re jθ+g(r) for some function g(·), then

h(Y ) = h(r , θ+g(r))+E [log(r)] = h(r)+h(θ+g(r) | r)+E [log(r)] =

h(r) + h(θ | r) + E [log(r)] = h(X ).
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Total Energy after K steps

F DL F−1 DN +
A(zk) B(zk) A(zk+1)

Noise

Channel Output Energy = Launch Energy + Noise Energy

= LP + LKN

Thus:
h(A(zK )) ≤ L · log(πe(P + KN))
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Equivocation Growth

F DL F−1 DN +
A(zk) B(zk) A(zk+1)

Noise

By the EPI:

V (A(zk+1) | A(z0)) ≥ V (A(zk)) + N,

thus
V (A(zK ) | A(z0)) ≥ KN

or
h(A(zK ) | A(z0)) ≥ L log(πeKN).
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Result

F DL F−1 DN +
A(zk) B(zk) A(zk+1)

Noise

Thus we get:

I (A(z0); A(zK )) = h(A(zK ))− h(A(zK ) | A(z0))

≤ L log(πe(P + KN))− L log(πeKN)

= L log

(
1 +

P

KN

)

= L log(1 + SNR)

and finally, per sample,

1

L
I (A(z0); A(zK )) ≤ log(1 + SNR).
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Discusssion

Let B = 1/(∆t) be the “bandwidth” of the simulation

Then L = T/(∆t) = TB is the time-bandwidth product

The spectral efficiency is thus bounded by

η ≤ log(1 + SNR) [bit/s/Hz ]

Why normalize by the simulation bandwidth B? The “real”
bandwidth W can be smaller. (Answer: B can be chosen as
the smallest bandwidth for which simulations give accurate
results.)

What about capacity? (Answer: any real fiber has a maximal
bandwidth Bmax; a capacity upper bound follows by
multiplying Bmax by log(1 + SNR).)
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Discussion (cont’d)

What about MIMO fiber? (Answer: if energy and entropy are
preserved by the linear and non-linear steps, and the noise is
AWGN, then the above bound remains valid per mode.)

What about lower bounds? (Answer: open research!
Bounding bandwidth expansion is important.)
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Optical Fiber Capacity Bounds

lower bounds

Transmit power

C
[b

it
/s

ym
b

ol
]

upper bound power
bound

Upper bound:

1 G. Kramer, M. I. Yousefi, and F. R. Kschischang, “Upper Bound on
the Capacity of a Cascade of Nonlinear and Noisy Channels,” Proc.
IEEE Info. Theory Workshop, Jerusalem, Israel, Apr. 2015.

2 M. I. Yousefi, G. Kramer, and F. R. Kschischang, “Upper Bound on
the Capacity of the Nonlinear Schrödinger Channel,” Proc. 14th
Canadian Workshop on Info. Theory, St. John’s, NL, Jul. 2015.
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Current Approaches

1 Digital Backpropagation

q(t,L1) = KNLS(q(t, 0)) q(t,L2) = K−1
NLS(q(t,L1))

q(t, 0) q(t,L)

2 Wavelength-division multiplexing (WDM)

input
output
noise

︸ ︷︷ ︸
COI

︸ ︷︷ ︸
out of band f

W guard band
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Digital Backpropagation

Digital backpropagation = split-step Fourier method, using a
negative step-size h, performed at the receiver

Full compensation (involving multiple WDM channels)
generally impossible, even in absence of noise (due to
wavelength routing)

Noise is neglected (cf. zero-forcing equalizer)

Single-channel backpropagation typically performed, after
extraction of desired channel using a filter
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Current Achievable Rates

pulse shapes
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Capacity Estimation

See: R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, B.
Goebel, “Capacity limits of optical fiber networks,” J. Lightw.
Technol., vol. 28, pp. 662–701, Sept./Oct. 2010.

System Model

TX CHANNEL LPF
(

1
2Ts

)
DSP

Q(t, 0) Q(t,L) t = kTs
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Achievable Rates from Memoryless Capacity
Estimate

10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9

10

SNR (dB)

S
p
e
c
t
r
a
l
 
E
f
f
i
c
i
e
n
c
y
 
(
b
i
t
s
/
s
/
H
z
)

 

 

L=2000 km, Eq. only 
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L=500 km, BP
Shannon Limit (AWGN)

B. P. Smith and F. R. Kschischang, J. Lightwave Techn.,

vol. 30, pp. 2047–2053, 2012.

(BP adds
0.55 to 0.75
bits/s/Hz
relative to
EQ)
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Schematic Achievable Rate Curve
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Summary

Pulse propagation in optical fibers is well-modeled by the
stochastic nonlinear Schrödinger equation:

∂Q(t, z)

∂z
+

jβ2

2

∂2Q(t, z)

∂t2︸ ︷︷ ︸
dispersion

− jγ|Q(t, z)|2Q(t, z)
︸ ︷︷ ︸

nonlinearity

= n(t, z)
︸ ︷︷ ︸
noise

z is distance along the fiber; TX at z = 0,
RX at z = L
t is retarded time, i.e., t = τ − β1z where
τ is ordinary time and β1 is a constant

Q(t, z) is the complex envelope of the
propagating signal

β2 is the chromatic dispersion coefficient

γ is the nonlinearity parameter

V (t, z) is space-time white Gaussian noise

nonlinearitynoise

dispersion
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Staircase Codes

This part of the talk is about . . .

FEC for the binary symmetric channel (BSC)

After optical (and/or) electrical compensation, suitable as
forward-error-correction (FEC) for 100Gb/s PD-QPSK
systems without soft information

Outline

1 Existing solutions (G.975, G.975.1)

2 Implementation considerations

3 Staircase codes

4 Ensemble analysis

5 Conclusions
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Measures

Net Coding Gain

Given a particular BER, we can obtain the corresponding Q via

Q =
√

2erfc−1 (2 · BER) .

The coding gain (CG) of an error-correcting code is defined as

CG (in dB) = 20 log10(Qout/Qin),

and the Net Coding Gain (NCG) is

NCG (in dB) = CG + 10 log10(R),

where R is the rate of the code.

Overhead

Overhead = # redundant symbols
# information symbols = n−k

k = 1−R
R

48



Existing Solutions
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ITU-T G.975 (1996)

Reed-Solomon (255,239) Code

Coding Symbols are
bytes

Depth-16 interleaving
corrects (some) bursts up
to 1024 bits

Coding Gain = 6.1 dB

Net Coding Gain = 5.8
dB

Overhead = 16/239 =
6.69%
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Constraint: Rate and framing structure fixed for future generations
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ITU-T G.975.1 (2004)

Concatenated Codes

Product-like codes with algebraic component codes

C C

Π

Information Symbols

ka
na

kb

nb

Column Parity

Row Parity

Parity on Parity
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ITU-T G.975.1 (2004)

Code NCG Notes
I.2 8.88 dB @ 10−15 Outer RS, Inner CSOC
I.3 8.99 dB @ 10−15 Outer BCH (t = 3), Inner BCH (t = 10)
I.4 8.67 dB @ 10−15 Outer RS, Inner BCH (t = 8)
I.5 8.5 dB @ 10−15 Outer RS, Inner Product (t = 1)
I.6 8.02 dB @ 10−15 LDPC
I.7 8.09 dB @ 10−15 Outer BCH (t = 4), Inner BCH (t = 11)
I.8 8.00 dB @ 10−15 RS(2720,2550)
I.9 8.63 dB @ 7 · 10−14 ∼Product BCH (t = 3), Erasure Dec?

52



Objectives

Increased Net Coding Gain

NCG ⇒ Shannon Limit of BSC (9.97 dB at 10−15)

Error Floor

Error floor � 10−15

Lower error floor ⇒ ‘Insurance’ in presence of correlated errors

Block Length

n ≈ 2 · 106 or less

Low Implementation Complexity

Dataflow considerations at 100Gb/s
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Implementation Considerations
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Hardware Considerations: Product vs. LDPC

Product Code

C C

Π
Algebraic component codes

Syndrome-based decoding

LDPC Code

Π SPC component codes

Belief propagation decoding
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Syndrome-based Decoding of Product Codes

Decoding an (n, k) component codeword

n received symbols ⇒ n − k symbol syndrome

R = 239/255, n ≈ 1000, n − k ≈ 32

For high-rate codes, syndromes provide compression

∼ 3 decodings/component

≤ 96 bits/decoding

∼ 2
1000 components/symbol

⇒ 0.768 bits/symbol

Algebraic
DecoderSyndrome

Error Locators Update
Syndromes

Total Dataflow

At 100Gb/s, 76.8 Gb/s internal dataflow
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LDPC Belief Propagation Decoding

∼ 15 iterations

2 messages/iteration·edge

∼ 5 bits/message

∼ 3 edges/symbol

⇒ 450 bits/symbol

Π

Total Dataflow

At 100Gb/s, 45Tb/s internal dataflow!
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Dataflow Comparison

76.8 Gb/s � 45 Tb/s

2–3 orders of magnitude (huge implementation challenge for soft
message-passing LDPC decoders).
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Our Solution
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Coding with Algebraic Component Codes

C1 C2 C3 Cl

Π

Graph Optimization

Degrees of Freedom

Mixture of component codes (e.g., Hamming, BCH)

Multi-edge-type structures
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Staircase Codes: Construction

Consider a sequence of m-by-m matrices Bi

B−1 B0 B1 B2

m

m

and a linear, systematic, (n = 2m, k = 2m − r) component code C

2m− r r

ParityInformation

Encoding Rule

∀i ≥ 0, all rows of
[
BT
i−1Bi

]
are codewords in C
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Staircase Codes: Construction

B−1

BT
0 B1

BT
2 B3

62



Staircase Codes: Construction

B−1

BT
0 B1

BT
2 B3
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Staircase Codes: Construction

B−1

BT
0 B1

BT
2 B3
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Staircase Codes: Construction

B−1

BT
0 B1

BT
2 B3
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Staircase Codes: Construction

B−1

BT
0 B1

BT
2 B3
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Staircase Codes: Construction

B−1

BT
0

BT
2 B3

B1

62



Staircase Codes: Construction

B−1

BT
0

BT
2 B3

B1
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Staircase Codes: Properties

Hybridization of recursive convolution coding and block
coding

Recurrent Codes of Wyner-Ash (1963)

Bi

Algebraic
Encoder

Delay

Bi−1

Infoi

Rate : R = 1− r/m

Variable-latency (sliding-window) decoder

Bi Bi+1 Bi+2 Bi+3Bi−1 Bi+4
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Staircase Codes are a type of Braided Block Code

P

P

I

Felström, Truhachev, Lentmaier, Zigangirov, “Braided Block
Codes,” IEEE Trans. on Info. Theory, 2009.

64



Staircase Codes are a type of Braided Block Code

I P

P

P

I

P

Felström, Truhachev, Lentmaier, Zigangirov, “Braided Block
Codes,” IEEE Trans. on Info. Theory, 2009.
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Staircase Codes are a type of Braided Block Code

I P

P

P

I

P I

P

P

Felström, Truhachev, Lentmaier, Zigangirov, “Braided Block
Codes,” IEEE Trans. on Info. Theory, 2009.
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Staircase Codes: Properties

BT
i Bi+1

BT
i+2 Bi+3

The multiplicity of (minimal) stalls of size (t + 1)× (t + 1) is

K =

(
m

t + 1

)
·
t+1∑

j=1

(
m

j

)(
m

t + 1− j

)
,

and the corresponding contribution to the error floor, for
transmission over a binary symmetric channel with crossover
probability p, is

BERfloor = K · (t + 1)2

m2
· p(t+1)2

.
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General Stall Patterns

BT
i Bi+1

BT
i+2 Bi+3

(5,5)-stall

K L Contribution

4 4 3.55× 10−21

4 5 7.81× 10−28

5 5 2.54× 10−22

5 6 2.21× 10−28

6 6 1.40× 10−23

6 7 1.49× 10−29

7 7 8.53× 10−25

7 8 1.83× 10−32

Contribution of (K , L)-stalls,
p = 4.8× 10−3.
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Graphical Representation

most reliable least reliable

Π Π Π

C C

Π
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FPGA-based Simulation Results

Code Parameters

m = 510, r = 32, triple-error-correcting BCH component code
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Capacity Estimation

See: R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, B.
Goebel, “Capacity limits of optical fiber networks,” J. Lightw.
Technol., vol. 28, pp. 662–701, Sept./Oct. 2010.

System Model

DSP
1

2Ts
− 1

2Ts

ChannelTX

A(L, t)
t = kTs φ̂k,0

LPF

A(0, t)
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Transmitted Signal

Channel l signal:

Xl(t) =
∞∑

k=−∞

φk,l√
Ts

sinc

(
t − kTs

Ts

)
,

where sinc(θ) = sinπθ
πθ .

φk,l are elements of a discrete-amplitude continuous-phase input
constellation M, i.e, for N rings, θ ∈ [0, 2π), and r ≥ 0,

M = {m · r exp (jθ) |m ∈ {1, 2, . . . ,N}} .

Each ring is assumed equiprobable, and for a given ring, the phase
distribution is uniform.
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Multi-channel systems

In the general case of a multi-channel system having 2B + 1
channels with a channel spacing 1/Ts Hz, the input to the fiber
has the form

A(z = 0, t) =
∞∑

k=−∞

B∑

l=−B

φk,l√
Ts

sinc

(
t − kTs

Ts

)
e j2πlt/Ts .
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Towards a Probability Model

Back-rotation:

φ̃k,l = φ̂k,l exp (−j(ΦXPM + ∠φk,l)) ,

where ΦXPM is a constant (input-independent) phase rotation
contributed by cross-phase modulation (XPM).
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Gaussian fitting

For each i and a fixed l (the channel of interest), we calculate the
mean µi and covariance matrix Ωi (of the real and imaginary
components) of those φ̃k,l corresponding to the i-th ring, and
model the distribution of those φ̃k,l by N (µi ,Ωi ).
From the rotational invariance of the channel, the channel is
modeled as

f (y |x = r · i exp (jφ)) ∼ N (µi exp (jφ) ,Ωi ),

where the (constant) phase rotation due to ΦXPM is ignored, since
it can be canceled in the receiver.
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Capacity Estimation

The mutual information of the (assumed) memoryless channel is

I (X ; Y ) =

∫ ∫
f (x , y) log2

f (y |x)

f (y)
dx dy ,

where f (x) represents the input distribution on M with
equiprobable rings and a uniform phase distribution, which provides
an estimate of the capacity of an optically-routed fiber-optic
communication system.
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Signaling Parameters

Baud rate 1/Ts 100 GHz
Channel bandwidth W 101 GHz
Number of rings N 64
Number of channels 2B + 1 = 5
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Achievable Rates from Memoryless Capacity
Estimate
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(BP adds 0.55 to 0.75 bits/s/Hz relative to EQ)
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Pragmatic Coded Modulation via Staircase Codes

Approach: BICM + shaping, modulation 2K+2-QAM,
hard-decisions

K bits/sym

M
o
d
u
la
to
r

C
h
an
n
el

D
em

o
d
u
la
to
r

Viterbi

Decoder

Binary FEC

Decoder

Binary FEC

Encoder

HT
U

2 bits/sym

X Y

K · R
bits/sym

1
bit/sym

[H−1
U ]T

1
bit/sym

K · R
bits/sym

Syndrome-former matrix

HT
U = [1 + D + D2, 1 + D2]T .
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Achievable Rates

Pin IP
Fiber System K pavg (dBm) (bits/s/Hz)

L = 500 km, EQ 8 1.61× 10−2 −6 8.05
L = 500 km, BP 8 3.52× 10−3 −4 8.73
L = 1000 km, EQ 6 3.88× 10−3 −6 6.78
L = 1000 km, BP 8 2.22× 10−2 −4 7.77
L = 2000 km, EQ 6 2.52× 10−2 −6 5.98
L = 2000 km, BP 6 5.16× 10−3 −4 6.72

(These achieve within 0.4 to 0.6 bits/s/Hz of estimated channel
capacity.)
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Staircase code design

First, design a collection of staircase codes of various (appropriate)
rates:

10−3 10−2 10−1
10−14
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BER
in
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Coded Modulation Performance

Then, simulate their performance on the actual channel:
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Performance to within 0.62 bits of estimated capacity is achieved!
(Much of the gap is due to quantization, i.e., hard-decisions).
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Code Parameters

Spec. Eff.
Fiber System m t R (bits/s/Hz)

L = 500 km, EQ 190 4 77/95 7.48
L = 500 km, BP 255 3 239/255 8.50
L = 1000 km, EQ 255 3 239/255 6.62
L = 1000 km, BP 144 4 3/4 7.00
L = 2000 km, EQ 120 4 11/15 5.40
L = 2000 km, BP 628 4 146/157 6.58
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Central Question:

Does fiber nonlinearity really place an upper limit on achievable
spectral efficiency?

To try to answer this question, we have to understand the
nonlinearity more deeply.

Spoiler:

We will not give a satisfactory answer in this talk.
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Evolution Equations

An evolution equation (in 1+1 dimensions) is a partial
differential equation for an unknown function q(t, z) of the form

∂q

∂z
= K (q),

where K (q) is an expression involving only q and its derivatives
with respect to t.

Heat: K (q) = c2qtt

NLSE: K (q) = −j
(
qtt(t, z) + 2|q(t, z)|2q(t, z)

)

KdV: K (q) = qttt(t, z) + q(t, z)qt(t, z)

(Here subscripts denote partial derivatives, thus qtt = ∂2

∂t2 q(t, z).)
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Normalized NLS Equation

Changing variables (to so-called “soliton units”):

q =
Q√
P
, z ′ =

z

L , t ′ =
t

T0
,

with T0 =
√
|β2|L

2 and P = 2
γL (and then dropping the “primes”)

we get the:

Normalized NLS equation

jqz(t, z) = qtt + 2|q(t, z)|2q(t, z) + v(t, z).
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Isospectral Flow

A Key Idea

We seek an invariant under evolution (in the absence of noise),
e.g., let L be a linear differential operator (depending on q(t, z)).
It may be possible to find an L whose (eigenvalue) spectrum
remains constant, even as q evolves (in z) according to some
evolution equation.

0 · · · z · · · L

q(t, 0) · · · q(t, z) · · · q(t,L)

L(q(t, 0)) · · · L(q(t, z)) · · · L(q(t,L))

Constant Spectrum
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Example: Isospectral Families of Matrices

Let L(z) be a family of diagonalizable square matrices whose
entries are functions of z . Clearly, the eigenvalues of these
matrices in general depend on z .
For some families (isospectral families), it might be the case that
while the entries of the matrix change with z , the eigenvalues
remain constant.
Each member of an isospectral family is similar to a constant
diagonal matrix Λ, i.e.,

L(z) = G (z)ΛG−1(z)

for some similarity transformation G (z).
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Isospectral Families of Operators

Let H be a Hilbert space, and let L(z) be a family of
diagonalizable bounded linear operators operating on H, e.g.,

L(q(t, z)) = − ∂2

∂t2
+ q(t, z).

If the eigenvalues of L(z) do not depend on z , then we refer to
L(z) as an isospectral family of operators.
For each z , L(z) is similar to a multiplication operator Λ (the
operator equivalent of a diagonal matrix), i.e.,

L(z) = G (z)ΛG−1(z),

for some operator G (z).
The spectrum of an operator is defined as

σ(L) = {λ | L− λI is not invertible}.

Spectrum can be discrete (like matrices), continuous, residual, etc.
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The Lax Equation

We have L(z) = G (z)ΛG−1(z), where Λ does not depend on z .
Assuming that L(z) varies smoothly with z , we can form

dL(z)

dz
= G ′ΛG−1 + G Λ

(
−G−1G ′G−1

)

= G ′G−1
︸ ︷︷ ︸
M(z)

(
G ΛG−1

)
︸ ︷︷ ︸

L(z)

−
(
G ΛG−1

)
︸ ︷︷ ︸

L(z)

G ′G−1
︸ ︷︷ ︸
M(z)

= M(z)L(z)− L(z)M(z) = [M, L] (1)

where [M, L]
∆
= ML− LM is the commutator bracket.

In other words, every diagonalizable isospectral operator L(z)
satisfies the differential equation (1).
The converse is also true.
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Lax Pairs

Lemma

Let L(z) be a diagonalizable family of operators. Then L(z) is an
isospectral family if and only if it satisfies

dL

dz
= [M, L], (2)

for some operator M, where [M, L] = ML− LM.

Definition

The operators L and M satisfying (2) are
called a Lax Pair (after Peter D. Lax, who
introduced the concept [1968]).
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Lax Pairs

Recall that L may depend on a function q(t, z) and so can M. The
commutator bracket [M, L] can create nonlinear evolution
equations for q(t, z) in the form

Lz = [L,M] ⇔ ∂q

∂z
= K (q),

where K (q) is some, in general nonlinear, function of q(t, z) and
its time derivatives.
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KdV Equation

An example of this is the Korteweg-de Vries (KdV) equation
(which arises in the evolution of waves on shallow water surfaces).
Let q(t, z) be a real-valued function and choose

L =
∂2

∂t2
+

1

3
q,

M = 4
∂3

∂t3
+ qt + q

∂

∂t
.

The Lax equation Lz = [M, L] is easily simplified to

1

3
qz −

1

3
(qttt + qqt) + (some terms)

∂

∂t
≡ 0,

where 0 is the zero operator. The zero-order term of this equation,
which must be zero, produces the KdV equation qz = qttt + qqt .
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NLS equation

If q(t, z) varies based on the NLS equation

jqz = qtt + 2|q|2q

then the spectrum of

L = j

(
∂
∂t −q(t, z)

−q∗(t, z) − ∂
∂t

)
(3)

is preserved during the evolution (Zakharov-Shabat 1972).
In addition, the operator M is given by

M =

(
2jλ2 − j |q(t, z)|2 −2λq(t, z)− jqt(t, z)

2λq∗(t, z)− jq∗t (t, z) −2jλ2 + j |q(t, z)|2
)

Thus the NLS equation is indeed generated by a Lax pair!
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Eigenvalues and Eigenvectors of L

The eigenvalues of the operator L, which are constant in an
isospectral flow, are defined via

Lv = λv (4)

Taking the z derivative of (4) and using the Lax equation
Lz = [M, L], we can show that an eigenvector of L evolves
according to the linear equation vz = Mv .
Furthermore, we can re-write (4) as vt = Pv for some operator P.
Thus we get

Evolution of Eigenvectors of L

The eigenvectors of L evolve according to the linear system

vz = Mv (5)

vt = Pv (6)
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Zero-Curvature Condition

Combining equations (5) and (6) by using the equality of mixed
derivatives, i.e., vtz = vzt , the Lax equation (2) is reduced to the

Zero-curvature Condition

Pz −Mt + [P,M] = 0. (7)

Note that the nonlinear equation derived from (7) results as a
compatibility condition between the two linear equations (5) and
(6). Thus certain nonlinear evolution equations possess a certain
“hidden linearity.”
We can work with the Lax pair (L,M) or equivalently with the pair
(P,M).
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Integrable Systems

We refer to a system described by a Lax pair M, L, measured at
distance L, as the integrable system S = (L,M;L).

Lz(q) = [M(q), L(q)]
x(t) = q(t, 0)

input waveform

y(t) = q(t,L)

output waveform

Definition (Lax Convolution)

The action of an integrable system S = (L,M;L) on the input
q(t, 0) is called the Lax convolution of q with S . We write the
system output as q(t,L) = q(t, 0) ∗ (L,M;L).

Definition (Integrable communication channels)

A waveform communication channel C : x(t)× v(t, z)→ y(t)
with inputs x(t) ∈ L1(R) and space-time noise
v(t, z) ∈ L2(R,R+), and output y(t) ∈ L1(R), is said to be
integrable if the noise-free channel is an integrable system.
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Spectrum of L

The Zakharov-Shabat operator for the NLS equation has two types
of spectra:

the discrete (or point) spectrum, which occurs in C+ and
corresponds to solitons.

The continuous spectrum, which in general includes the
whole real line, corresponds to the non-solitonic (or radiation)
component of the signal.

<(λ)

=(λ)
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Eigenspace Associated with λ

Associated with each point λ in the spectrum of L is a
two-dimensional eigenspace in which eigenvectors v evolve in time
according to

vt = Pv =

(
−jλ q(t, z)

−q∗(t, z) jλ

)
v .

Assuming q(t, z) is “pulse-like,” decaying to zero as |t| → ∞, the
P operator approaches a diagonal matrix, and the eigenvectors
approach

v(t, λ)→ (αe−jλt , βe jλt)T , α, β ∈ C.
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Canonical Eigenvectors

For example, the “canonical” eigenvectors at t → −∞
(

1
0

)
e−jλt ,

(
−1
0

)
e−jλ

∗t

are bounded for λ in the upper (lower) half-complex plane
respectively.
We can propagate these vectors forward in time according to
vt = Pv , let them “interact” with q(t, z), and measure what is
“scattered” at t = +∞ in the basis

(
0
1

)
e jλt ,

(
0
1

)
e jλ

∗t

The corresponding coefficients a(λ) and b(λ) are called the
nonlinear Fourier coefficients.
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Continuous and Discrete Spectra

It can be shown that these scattering projections are well defined

at all points λ ∈ R, the real line ⇒ continuous spectrum

at those points λ ∈ C+, the upper-half complex plane, where
a(λ) = 0 (necessarily isolated points due to analyticity of
a(λ)) ⇒ discrete spectrum
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Computing the Fourier coefficients

v1(+∞, λ) ∼
(
0
1

)
ejλt

ṽ1(∞, λ∗) ∼
(
1
0

)
e−jλt

vt =

(
−jλ q(t)
−q∗(t) jλ

)
v

v2(∞, λ)v2(−∞, λ) ∼
(
1
0

)
e−jλt

Since the nonlinear Fourier coefficients are time independent,
simply compute them at t = +∞, by projecting v 2(+∞, λ) and
ṽ 2(+∞, λ) onto the basis v 1(+∞, λ) and ṽ 1(+∞, λ) to obtain

[
v 2(+∞, λ), ṽ 2(+∞, λ)

]
=
[
ṽ 1(+∞, λ), v 1(+∞, λ)

]
S ,

where

S =

(
a(λ) b∗(λ∗)
b(λ) −a∗(λ∗)

)
.
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Nonlinear Fourier Transform

For the purpose of developing the inverse transform, it is sufficient
to work with the ratios

q̂(λ) =
b(λ)

a(λ)
and q̃(λj) =

b(λj)

a′(λj)
.
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Nonlinear Fourier Transform

Definition (Nonlinear Fourier transform)

Let q(t) be a sufficiently smooth function in L1(R). The nonlinear
Fourier transform of q(t) with respect to a given Lax operator L
consists of the continuous and discrete spectral functions
q̂(λ) : R 7→ C and q̃(λj) : C+ 7→ C where

q̂(λ) =
b(λ)

a(λ)
, q̃(λj) =

b(λj)

a′(λj)
, j = 1, 2, · · · ,N,

in which λj are the zeros of a(λ). Here, the spectral coefficients
a(λ) and b(λ) are given by

a(λ) = lim
t→∞

v 2
1 e jλt ,

b(λ) = lim
t→∞

v 2
2 e−jλt
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The (ordinary) Fourier Transform

The nonlinear Fourier transform measures, for each fixed
eigenvalue λ, the interaction of a propagating eigenvector
(initialized as a complex exponential) with a waveform q(t).
The ordinary Fourier transform measures, for each fixed
frequency ω, the interaction of the complex exponential e jωt

with a waveform q(t) via the inner product

Q(ω) = 〈q(t), e jωt〉 =

∫ ∞

−∞
q(t)e−jωtdt.

An “eigenvector evolution” version of the ordinary Fourier
transform is recovered by defining

vt =

(
0 q(t)
0 −jω

)
v ,

giving

v = α

(
1
0

)
+ β

(∫ t
−∞ q(τ)e−jωτdτ

e−jωt

)
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Example: NFT of a Rectangular Pulse

Consider the rectangular pulse

q(t) =

{
A, t ∈ [t1, t2];

0, otherwise.

Let T = t2 − t1 and T ′ = t2 + t1, and let ∆ =
√
λ2 + |A|2.

After some work, we find that the zeros of a(λ) in C+, satisfy

j tan(T
√
|A|2 + λ2) =

√
1 +
|A|2
λ2

,

giving rise to the discrete spectrum. The continuous spectrum is
given by

q̂(λ) =
A∗

jλ
e−2jλt2

(
1− ∆

jλ
cot(∆T )

)−1

→ −A∗Te−
t1+t2

2 sinc(2Tf ).
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Discrete and Continuous Spectra of Rectangular
Pulse
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NFT Properties

Let q(t)↔ (q̂(λ), q̃(λk)) be a nonlinear Fourier transform pair.

(The ordinary Fourier transform as limit of the nonlinear
Fourier transform): If ||q||L1 � 1, there is no discrete
spectrum and q̂(λ)→ Q(λ), where Q(λ) is the ordinary
(linear) Fourier transform of −q∗(t)

Q(λ) = −
∞∫

−∞

q∗(t)e−2jλtdt.

(Weak nonlinearity): If |a| � 1, then âq(λ) ≈ aq̂(λ) and
ãq(λk) ≈ aq̃(λk). In general, however, âq(λ) 6= aq̂(λ) and
ãq(λk) 6= aq̃(λk).

(Constant phase change): ê jφq(t)(λ) = e jφq̂(t)(λ) and

ẽ jφq(t)(λk) = e jφq̃(t)(λk).
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Fourier Transform Properties (cont’d)

(Time dilation): q̂( t
a) = |̂a|q(aλ) and q̃( t

a) = |̃a|q(aλk);

(Time shift): q(t − t0)↔ e−2jλt0 (q̂(λ, )q̃(λk));

(Frequency shift): q(t)e−2jωt ↔ (q̂(λ− ω), q̃(λk − ω));

(Parseval identity):
∞∫
−∞
‖q(t)‖2 dt = Ê + Ẽ , where

Ê =
1

π

∞∫

−∞

log
(
1 + |q̂(λ)|2

)
dλ, Ẽ = 4

N∑

j=1

= (λj) .

The quantities Ê and Ẽ represent the energy contained in the
continuous and discrete spectra, respectively.
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The Key NFT Property

(Lax convolution): If q2(t) = q1(t) ∗ (L,M;L), then
q̂2(λ) = c(λ,L)q̂1(λ) and q̃2(λk) = c(λ,L)q̃1(λk).

For the NLS equation, c(λ,L) = exp(−4jλ2L).
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Signals and Systems

LTI systems:

y(t) = h(t) ∗ x(t) + z(t)⇔ Y (ω) = H(ω)X (ω) + Z (ω)

Nonlinear Integrable systems:

y(t) = x(t)∗(L,M;L)+z(t)⇔
{

Ŷ (λ) = H(λ)X̂ (λ) + Ẑ (λ),

Ỹ (λj) = H(λj)X̃ (λj) + Z̃ (λj)

where the channel filter is H(λ) = e−4jλ2z .

We see that the operation of the Lax convolution in the nonlinear
Fourier domain is described by a simple multiplicative (diagonal)
operator (i.e., filters), much in the same way that the ordinary
Fourier transform maps x(t) ∗ y(t) to X (ω) · Y (ω).
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Launching a Pulse (revisited)
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Nonlinear FDM

Immediate application: encode data in the nonlinear spectrum!

{λj , q̃(λj), q̂(λ)}TX

S/P INFT P/S D/A LPF

P/S NFT S/P A/D LPF

{λj , q̃(λj), q̂(λ)}RX

...
...

...
...

channel

See also: A. Hasegawa and T. Nyu, “Eigenvalue Communication,”
J. of Lightwave Technology, vol. 11, pp. 395–399, March 1993.
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Multisoliton Communication

Multisolitons are signals whose NFT spectrum only contains the
discrete component, i.e., the corresponding L operator has only
discrete eigenvalues
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Generation of Multisoliton Signals

Inverse NFT problem: Given a set of points in C+, compute a signal
q(t) such that the eigenvalues of its corresponding L operator are
exactly these points

Several approaches: Riemann–Hilbert system of linear equations,
Hirota bilinearization scheme, Darboux transformation

Darboux method (recursive construction)

Starting with a multisoliton signal q(t, λ1, λ2, . . . , λk), and a
solution, φ(t, λk+1), of

vt(t, λ) =

(
−jλ q(t, z)

−q∗(t, z) jλ

)
v(t, λ),

compute q̃ = q − 2j(λ∗k+1 − λk+1)
φ∗2φ1

|φ1|2 + |φ2|2
.

q̃ has eigenvalues of q and new eigenvalue from φ
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On-Off Eigenvalue Encoder (OOK)
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OOK signals for input bits [0 0 1 0] and [0 1 1 1]

Problem: Spectral efficiency drops as the number of points is
increased
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Multi-eigenvalue position encoding
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Multi-eigenvalue position encoding
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Spectral efficiency as a function of the cutoff parameters (N=50,
∆ = 0.1j , k = 5)
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Multi-eigenvalue position encoding
Achievable spectral efficiencies

k M̃ M Tc Bc SE (in bits/s/Hz)

3 20,876 201 0.88 ns 6.54 GHz 1.34
4 251,176 804 0.88 ns 5.08 GHz 2.17
5 2,369,936 2,569 1 ns 3.64 GHz 3.14

Table : Spectral efficiencies of the multi-eigenvalue position encoder
(N = 50 and ∆ = 0.1)

119



Experimental Demonstration
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Z. Dong, S. Hari, T. Gui, K. Zhong, M. I. Yousefi, C. Lu, P.-K. A. Wai,

F. R. Kschischang, and A. P.-T. Lau, “Nonlinear Frequency Division

Multiplexed Transmissions based on NFT,” IEEE Photonics

Techn. Letters, vol. 27, no. 15, pp. 1621–1623, Aug. 2015.
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4 eigenvalues (300km)
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3 eigenvalues (1800km)
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Received Signal (1800km)
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Central Question:

Does fiber nonlinearity really place an upper limit on achievable
spectral efficiency?

To try to answer this question, we have to understand the
nonlinearity more deeply.

Spoiler:

We will not give a satisfactory answer in this talk, however . . .
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Conclusion

Pulse train transmission and WDM may not be the best
transmission strategy for the nonlinear optical channel.

All deterministic distortions are zero for all users under NFDM:

NFDM removes inter-channel interference (cross-talk) between
users of a network sharing the same fiber channel;

NFDM removes inter-symbol interference (ISI) (intra-channel
interactions) for each user;

with NFDM, information in each channel of interest can be
conveniently read anywhere in a network without knowledge of the
distance or any information about other users;

spectral invariants are remarkably stable features of the NLS flow.

Exploiting the integrability of the NLS equation, NFDM modulates
non-interacting degrees of freedom and thereby does not suffer
from cross-talk, a major limiting factor for prior work.
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Conclusions
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The NFT can be used for transmission of information
NFT solves at least two major problems

1 it removes ISI
2 spectral data appear to be more robust to noise compared with

time-domain processing (e.g., digital backpropagation)

Is it better than existing methods? We do not know yet. So
far we can match existing methods. However, our insights
suggest that the achievable rates for NFDM will trend
upwards for increasing SNRs.
disadvantages:

1 critically relies on integrability
2 it is hard to implement or sometimes to simulate.

126



Open Problems

Plenty of open problems:

Entropy (rate) evolution (production) in NLS equation with
additive noise

Rigorous bounds on capacity

Vector models (for polarization, multimode, multicore)

Discrete models

Development of fast algorithms

· · ·
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2006 Steele Prize

For their discovery in the 1970s of the mathematical framework
underlying the nonlinear Fourier transform, Clifford S. Gardner,
John M. Greene, Martin D. Kruskal and Robert M. Miura received
the prestigious 2006 Leroy P. Steele Prize for a Seminal
Contribution to Research, awarded by the American Mathematical
Society.

From the Steele Prize Announcement:

Nonlinearity has undergone a revolution: from a nuisance to be
eliminated, to a new tool to be exploited.
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No Time To Discuss:

polarization (Manakov system)

few-mode, multi-mode, multi-core fibers

interference models (Extended GN, Kolmogorov-Zhakarov)

shaping

challenges in coded modulation design (decoding energy!)

other approaches to nonlinearity mitigation (e.g., optical
phase conjugation)
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