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Motivation
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n  Example 1: Shannon’s schematic of a general secrecy system 
(Communication Theory of Secrecy Systems, BLTJ, 1949)

Motivation: Secrecy
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n  Example 2: Massey’s general model of a secrecy-key 
cryptosystem (ADIT 2 – ETH Course Notes 1981-97)
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n  Example 3: Wyner’s Wiretap Channel

Source Wiretap

Wiretapper 
wants the Data

Private Data Private Data

Destination

Motivation: Secrecy Without a Key
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n  Example 4: Biometric Security

Source Noisy Versions Enrollment

Secret Key, e.g., 
to encrypt data

Helper Data, e.g., in 
public cloud Storage

Noisy Versions

Secret Key, e.g., 
to decrypt and 

encrypt data

Authentication

Motivation: Secrecy and Privacy
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n  Example 5: Device Security for Things and their Internet, 
Hardware “Fingerprint” via a PUF*

PUF Source Noisy Versions Enrollment

Secret Key

Helper Data, e.g., 
on-chip Storage

Noisy Versions Secret Key, e.g., 
to decrypt and 

encrypt data

Authentication

* Physical Unclonable Function

...110101...

...110111...

...110101...

...100101...

...110101...
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n  Example 6: Wiretap Channel with a New Requirement

Source Wiretap

Wiretapper 
wants to know if Private Data 
was sent and, if yes, decrypt it

Public Data Public Data

Destination

Motivation: Stealth

Private Data Private Data
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n  Low Probability of Intercept (LPI):* communication methods 
whose primary purpose is to prevent an unauthorized listener 
from determining the presence or location of the transmitter, in 
order to decrease the possibility of both electronic attack 
(jamming) and physical attack

Stealth (Discussion)

* Based on Prescott 1993 (AFSOR Grant #AFOSR-91-0018 )
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n  Four sequential operations that exploitation systems attempt to perform:

1) Cover: a receiver is tuned to frequencies occupied by a signal of interest 
2) Detect: decide whether the signal is data plus noise and interference or 
just noise and interference.  
3) Intercept: extract features of the signal to determine if it is interesting  
4) Exploit: extract signal features as necessary and demodulate the 
baseband signal to generate a stream of (meaningful) binary digits. 

n  Interpretation: 4) deals with secrecy and 2) and/or 3) deal with stealth

n  Example of 2): covert communication where data signal has very low energy 
Example of 3): some data signals may be uninteresting (see above)

Stealth (Discussion Continued)
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Part 1:
Secrecy and Stealth 
for Wiretap Channels
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Information Theory 
and “Basic” Models



13

n  Entropy: 
 

n  Mutual Information and Informational Divergence:

Information Theory

H(X ) = −PX a( ) log
a∈supp PX( )
∑ PX a( ) =E −log PX X( )!" #$

H(X |Y ) = −PXY ab( ) log
ab∈supp PXY( )
∑ PX|Y a | b( )

I(X;Y ) = D(PXY || PXPY )

= PXY ab( ) log
ab∈supp PXY( )
∑ PXY ab( )

PX a( )PY b( )
=E log

PXY XY( )
PX X( )PY Y( )

#

$
%

&

'
(
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n  Problem: find the maximum R for reliable communications: 
small Pr[M≠Ḿ]

n  Random coding: choose each letter xi(m) independently via PX

n  Shannon’s Capacity Function:

Xn

Source Encoder P(y|x)
M

B message bits 
n channel uses
R = B/n bits/use

Sink
Yn

Decoder
Ḿ

Channel

C =max

PX

I(X;Y)

Shannon’s Channel Coding
Xn=X1X2...Xn 

Yn=Y1Y2...Yn
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n  Problem: find the minimum R and 
channels P(xn|w), P(yn|w) so that

n  Result:
R = min

PVPX|VPY |V : PXY =QXY

I(V;XY)

Common Information*

1

n
D P

XnY n QXY
n( ) ≤ ε for ε > 0

* Wyner 1975; above is the 2nd of Wyner’s two approaches

W

Source Encoder

P(xn|w)
M

M has B bits 
Test length-n sequences
R = B/n bits/use

Xn

Test for QXY  
Randomness

P
XnY n ≈ QXY

n = QXYi=1

n

∏

P(yn|w)
Yn

Something you may have not seen before
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n  Problem: find the minimum R so that

n  Random coding: choose each letter xi(m) independently via PX

n  Result:

Xn

Source Encoder P(y|x)
M

M has B bits 
Test length-n sequences
R = B/n bits/use

Yn
Test for QY  

Randomness

Channel

R = min
PX : PY =QY

I(X;Y)

Resolvability*

D P
Yn QY

n( ) ≤ ε for any ε > 0

* Han-Verdú 1993 used variational distance dv=||PYn-PY
n||1; For un-normalized divergence 

see, e.g., Winter 2005, Hayashi 2006, Watanabe-Oohama 2012, Hou-Kramer 2013

P
Yn ≈ QY

n = QYi=1

n

∏



Wire-Tap Channel
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Bob

XnMessage 
Source

Sink

Encoder

Decoder
M

Ḿ

Random 
Source

W

Broadcast 
Channel* 
P(y,z|x)

Yn

Zn

Decoder Sink

Alice

Eve

Ṁ

§  Requirements: high rate R and

§  Reliability: error probability Pe=Pr[Ḿ≠M] should be small

§  Confusion/Secrecy: M should be “almost independent” of Zn

§  Stealth/Covert: Zn should “look like” a default QZn, typically 
an i.i.d. sequence of letters

Wyner 1975 (physically degraded BC: chain X-Y-Z is Markov); Csiszár-Körner 1978

M has B bits, R = B/n

W has B1 bits, R1=B1/n
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Security Measures 
for Secrecy and Stealth
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n  Equivocation* (used by Wyner): 
 
Goal: make Δ, 0 ≤ Δ ≤ 1, as large as possible 
Note: for Δ=1-ε get growing leakage Bε

n  Alternatively: make 1-Δ as small as possible. If H(M)=B then 

n  Weak secrecy:

Δ =
1
B
H(M | Zn ) =

1
nR

H(M | Zn )

* to use unclear language to deceive

I(M;Zn ) B  or I(M;Zn ) n

IT Security Measures

1− Δ =
1
B

H(M )−H(M | Zn )( ) = 1
B
I(M ; Zn )
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n  Weak secrecy:

n  Criticism: if we fix the ratio then more bits leak as B grows. 
So perhaps we want an absolute measure.

n  Strong secrecy*: I(M;Zn)

n  Remark: the approaches are effectively the same if we fix B

n  Alternative**: measure variational distance 
and use** (B≥2, say dv decreases faster than 1/B ) 

n  Most IT (and CS) papers since 1993 use dv rather than I(M;Zn), 
which is somewhat strange

* Maurer 1993; Ahlswede-Csiszár 1993; ** Csiszár 1996

I(M;Zn ) B  or I(M;Zn ) n

dv = P
MZn −PMPZn

1

dv
2

2ln2
≤ I(M;Zn ) ≤ dv log2

2B

dv

Security Measures (Continued)
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n  Strong secrecy:

n  Stealth:

n  Effective secrecy*: replace the last P with Q

n  Remarks: (1) stronger than strong secrecy that has 
(2) can study I & D separately; (3) “better” than var. distance; 
(4) we mainly study                ; (5) worst case measures exist 

P
Zn ≈ Q

Zn  for some "default" Q
Zn

D(P
MZn PMQZn ) = H M( )−E log Q

Zn Zn( )( )"
#

$
%{ }−H MZn( )

= I(M;Zn )+D(P
Zn Q

Zn )

I(M;Zn ) = D(P
MZn PMPZn )

* Independently used by Han-Endo-Sasaki 2013

Q
Zn =QZ

n

Q
Zn = P

Zn

Security Measures (Continued)
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n  A natural worst-case* rather than an average metric is:

 

n  So a natural worst-case metric for us is (Q replaces P):

n  Remark: for design we wish to know how fast dv or D approach 
zero with n, and not only the limit

n  But we know that exponential dependence on n is possible 
⇒ Should consider reasonable block length and code design

Worst-Case Measures

max
m

D(P
Zn|M=m

Q
Zn ) rather than D(P

Zn|M
Q

Zn | PM )

max
m

D(P
Zn|M=m

P
Zn ) rather than I(M;Zn )=D(P

Zn|M
P
Zn | PM )

* Use standard expurgation arguments; valid for non-uniform M 
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n  Semantic Security* (Goldwasser & Micali 1984): based on 
Turing machines (other definitions: indistinguishability, non-
malleability, non-dividability, etc.)

n  Uses worst-case “advantage”: consider g at Eve, hr random 
 
 

Complexity-Based Security Measures

Adv =max
f ,m

max
g

Pr g Zn( ) = f (m)⎡
⎣

⎤
⎦−max

h
Pr hr B( ) = f (m)⎡⎣ ⎤⎦{ }

* Wikipedia: A cryptosystem is semantically secure if any probabilistic, 
polynomial-time algorithm (PPTA) that is given the ciphertext of a certain 
message m (taken from any distribution of messages), and the message's 
length, cannot determine any partial information on the message with 
probability non-negligibly higher than all other PPTA's that only have 
access to the message length (and not the ciphertext)
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Capacity



§  Result*: 
 
 
where chain V–X–YZ is Markov. The cardinality |V| is at most |X|.

§  Remarks:

§  C has same form as secrecy capacity except for the constraint

§  Stealth: if possible, choose QZ to maximize secrecy rate, i.e., 
as default send i.i.d Xi with PX that maximizes the secrecy rate

§  Results extend to continuous-alphabet channels

§  Common complaint: C=0 if Bob’s channel is worse than Eve’s. 
How can we be sure this does not happen in practice? 
Reply 1: this can be reasonable 
Reply 2: the methods will improve security in any case

25

Capacity

C = max
PVX : PZ =QZ

I V;Y( )− I V;Z( )"# $%

* Hou-Kramer 2013



§  Further Remarks:

§  C depends on P(y|x) and P(z|x) only, not on “all” of P(y,z|x)

§  Physically degraded channel: chain X-Y-Z is Markov and thus 
 
 
 
 
 

§  Implication: best V is X

§  Stochastically degraded channel has P(y,z|x) where P(y|x) and 
P(z|x) are those of a physically degraded channel

§  Implications: same capacity C, and the best V is X

26

I V;Y( )− I V;Z( ) = H V Z( )−H V Y( )
= I V;Y Z( ) … why?

≤ I X;Y Z( ) … why?

= I X;Y( )− I X;Z( ) … why?



§  BSCs: 
 
where Pr[A1=1]=p1, Pr[A2=1]=p2, p1 ≤ p2 < 0.5

§  Channel is stochastically degraded (why?) so that best V is X

§  Stealth: suppose we require QZ(1)=q where p2 ≤ q ≤ (1-p2) 
We have* (try q=1/2 and q=p2):

27

Example: BSC

C = max
PX : PZ =QZ

I X;Y( )− I X;Z( )⎡⎣ ⎤⎦

Y = X ⊕ A1, Z = X ⊕ A2

q = PZ (1) = 1−PX (1)( ) p2 +PX (1)(1− p2 ) ⇒ PX (1) =
q − p2

1− 2p2

C = H2 p2( )−H2 p1( )−H2 q( )+H2 q − p2( ) 1− 2p1

1− 2p2

+ p1

⎛

⎝
⎜

⎞

⎠
⎟

* H2(p) = -p log2p – (1-p) log2(1-p)



§  AWGN Channels: 
 
where A1~N(0,N1), A2~N(0,N2), 0 ≤ N1 ≤ N2

§  Channel is stochastically degraded (why?) so that best V is X

§  Stealth: suppose we require Z~N(0,Q) where N2 ≤ Q ≤ P+N2 
We have X~N(0,Q-N2) and 
 
 

§  Secrecy and covert capacities: Q=P+N2 and Q=N2, respectively

28

Example: AWGN Channel

Y = X + A1, Z = X + A2

C =
1

2
log 1+

Q −N2

N1

⎛

⎝
⎜

⎞

⎠
⎟−

1

2
log

Q
N2

⎛

⎝
⎜

⎞

⎠
⎟

C = max
PX : PZ =QZ

I X;Y( )− I X;Z( )⎡⎣ ⎤⎦
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Proofs

Warning: lots of equations!



§  Choose a PX. Consider Shannon random coding experiment.

§  Classic methods give E[Pe|M=m,W=w]→0 if n→∞ and

§  For secrecy & stealth, consider the following direct proof*:

30

R +R1 < I X;Y( )

D P
Zn M=m,Code

Q
Zn( ) = 1

2B1
E log

PZ|X
n Zn X n m, j( )( )

j=1

2B1

∑
2B1Q

Zn Zn( )
M = m,W =w

"

#

$
$
$

%

&

'
'
'w=1

2B1

∑

* Hou-Kramer 2013; cf. Cuff 2009 and Yassaee 2013 who use concavity of x2 for var. distance

D(P
MZn Code

PMQZn ) = I(M;Zn Code)+D(P
Zn Code

Q
Zn )

Random Coding Experiment



§  For a fixed zn we have:

§  Using the concavity of log(.) and Jensen’s inequality for the 
expectation over the code words Xn(m,j) with j≠w, we have

31

D P
Zn|M=m,Code

Q
Zn( )

≤
1

2B1
E log

PZ|X
n Zn X n m,w( )( )
2B1Q

Zn Zn( )
+
PZ

n Zn( )
Q

Zn Zn( )

"

#

$
$

%

&

'
'
M = m,W =w

(

)

*
*

+

,

-
-

w=1

2B1

∑

E PZ|X
n zn X n m, j( )( )!

"
#
$= PZ

n zn( )



§  Alternatively, we have

§  Keeping only 𝛿-typical sequences, we “basically” have

§  As long as                     and                , avg. divergence is small

32

D P
Zn|M=m,Code

Q
Zn( ) ≤ E log

PZ|X
n Zn X n( )
2B1PZ

n Zn( )
+1

"

#

$
$

%

&

'
'

(

)

*
*

+

,

-
-
+D PZ

n Q
Zn( )

D P
Zn|M=m,Code

Q
Zn( ) ≤ log 2

−n 1−δ( )H Z|X( )

2B12
−n 1+δ( )H Z( ) +1

#

$
%%

&

'
((+D PZ

n Q
Zn( )

R1 > I X;Z( ) Q
Zn = PZ

n



§  Resulting rate bounds:

which gives: 

§  To get capacity:

§  replace X with V and generate code words Vn(m,w)

§  For each Vn(m,w) generate Xn(m,w) via artificial channel* PX|V

§  Default behavior for stealth: send i.i.d Xi with distribution PX
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R < I X;Y( )− I X;Z( )

R +R1 < I X;Y( )  for reliability

R1 > I X;Z( )        for resolvability

* To reduce # random bits to n∙I(X;Z): see Chia-El Gamal 2012 & Watanabe-Oohama 2015

Coding Theorem



§  Several steps:

Stealth Converse

34

ξ ≥ D P
MZn PMQZ

n( ) = D P
Zn M

QZ
n PM( )

= P zn( ) log
1

QZ z( )i=1

n

∑
zn
∑
⎡

⎣
⎢

⎤

⎦
⎥−H Zn M( )

≥ PZi
z( )log

1

QZ z( )zn
∑
⎡

⎣
⎢

⎤

⎦
⎥

i=1

n

∑ −H Zi( )

= D PZi
QZ( )

i=1

n

∑

≥ nD PZT
QZ( )  where  PT i( ) = 1

n
, i = 1, 2,…, n

Stealth Converse



§  Main observation: can often replace 2 Csiszár sum identities 
steps with 1 telescoping identity

§  As usual, Fano’s inequality gives the first step

§  Requirement                           (weak secrecy) implies:

Secrecy Converse (Simplified)

35

B = H(M ) = I M;Y n( )+H M Y n( )
≤ I M;Y n( )+ H2 Pe( )+PeB( )

Secrecy Converse

I M;Zn( ) ≤ εn
B ≤ I M;Y n( )+ εn− I M;Zn( )( )+ H2 Pe( )+PeB( )



§  Now use telescoping sum, set                         and let T be 
a time-sharing RV and Ui-Xi-YiZi forms a Markov chain for all i

36

I M;Y n( )− I M;Zn( )
= I M;Y iZi+1

n( )− I M;Y i−1Zi
n( )"

#
$
%i=1

n

∑ (telescoping)

= I M;Yi Y
i−1Zi+1

n( )− I M;Zi Y
i−1Zi+1

n( )"
#

$
% (chain rule)

i=1

n

∑
= n I M;YT UTT( )− I M;ZT UTT( )"# $%

Ui = Y
i−1Zi+1

n



§  Final steps*:

§  Result with B=nR: 

37

n I M;YT UTT( )− I M;ZT UTT( )"# $%

≤max
u

max
PMX|U . u( )∈Π

n I M;Y U = u( )− I M;Z U = u( )"# $%

= max
PVX ∈Π

n I V;Y( )− I V;Z( )"# $%= nC

R ≤
C +ε +H2 Pe( ) n

1−Pe

* Maximization constraint and cardinality bound follow by other steps
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Operational Meaning 
of Stealth



§  Since 
 
effective secrecy implies a small

§  Operational meaning? Can extend ideas from steganography*

Stealth and Binary Hypothesis Testing

39

Bob

XnMessage 
Source

Sink

Encoder

Decoder
M

Ḿ

Random 
Source

W

Broadcast 
Channel 
P(y,z|x)

Yn

Zn

Decoder Sink

Alice

Eve

Ṁ

D(P
MZn PMQZn ) = I(M;Zn )+D(P

Zn Q
Zn )

D(P
Zn Q

Zn )

* Cachin 2004



§  Eve has two hypotheses:

§  Error probabilities:

§  Neyman-Pearson: test the ratio

§  The set of zn where H0 is accepted:

40

H0 :Q
Zn (Alice transmits junk)

H1 : P
Zn (Alice transmits information)

α =Pr H1 accepted H0  is true!" #$  (false alarm)

β =Pr H0  accepted H1 is true!" #$  (mis-detection)

Q
Zn zn( ) P

Zn zn( )

AF
n
= zn :

Q
Zn zn( )

P
Zn zn( )

> F
!
"
#

$#

%
&
#

'#



§  Error probabilities again:

§  Using Pinsker’s inequality, we have

41

α = 1−Q
Zn AF

n( )   (false alarm)

β = P
Zn AF

n( )   (mis-detection)

2ln2 ⋅D P
Zn Q

Zn( ) ≥ P
Zn −QZn

1

≥ P
Zn zn( )−QZn zn( )

zn∈AF
n

∑ ≥ P
Zn zn( )−QZn zn( )

zn∈AF
n

∑

≥ P
Zn AF

n( )−QZn AF
n( ) = β − 1−α( )



§  Thus, small                      means small 
or 

§  But then Eve may as well guess without observing Zn

42

D(P
Zn Q

Zn ) β − 1−α( )

α

β

no stealth

0 1

1

stealth: α+β ≈ 1

α + β ≈ 1
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Other Stealth/Covert Models



§  An IT steganography model*: Alice sends either (1) embedded message M=E 
via stegotext Xn=Sn or (2) an open message via covertext Xn=Cn

§  Require: (1) encoder does not know PE (universality); (2) I(Ê;E)>0; 
(3) Bob knows when Alice is active; (4) secrecy via one-time pad**

§  Limitations: (1) measure stealth via normalized divergence 
(2) Universality only if H(E) is below threshold and rate loss is permitted

IT Stealth/Covert Models: An Incomplete History

44* Cachin 2004; ** secrecy for free

Bob

XnMessage 
Source

Sink

Encoder

Decoder
M

Ḿ

Random 
Source

W Public 
Channel

Yn

Zn

Decoder Sink

Alice

EveṀ

Key Source

K
Secure Channel

D(P
Cn P

Sn ) n



§  Low probabability of detection (LPD)*: AWGN channel,         chosen for Xn=0n

§  Secret key: BK ~ n1/2log(n) bits* ... in fact, n∙[I(X;Y)–I(X;Z)] ≤ c∙n1/2 bits suffice

§  Measure stealth via un-normalized                      ; note swap of cover/stegotext

§  Result*: a square-root law due to local quadratic nature of divergence

§  Result**: for BSCs, no need for K if Bob has a better channel than Eve (i.e., 
nI(X;Z)“deniability”) but rate depends on channel differences

Recently

45* Bash-Goeckel-Towsley 2012; ** Che-Bakshi-Jaggi 2013

D(P
Zn Q

Zn )

Bob

XnMessage 
Source

Sink

Encoder

Decoder
M

Ḿ

Random 
Source

W

Yn

Zn

Decoder Sink

Alice

EveṀ

Key Source

K
Secure Channel

Broadcast 
Channel 
P(y,z|x)

Q
Zn



§  Consider (1) reliability; (2) secrecy; (3) stealth at the same time*

§  Break* the square-root law if default (covertext) behavior is Xn≠0n

§  Other work: (1**) BSCs, variational distance, weak secrecy (n1/2 normalization) 
(2***) noiseless compound channels; a “hidability” secrecy criterion uses 
probability ratios (worst case analysis similar to semantic security)

More Recently (up to end 2014)

46

Bob

XnMessage 
Source

Sink

Encoder

Decoder
M

Ḿ

Random 
Source

W

Yn

Zn

Decoder Sink

Alice

Eve

Ṁ

* Hou-Kramer 2013; Hou Dr. Ing. Thesis 2014; 
** Che-Bakshi-Chan-Jaggi 2014; ***Kadhe-Bakshi-Jaggi-Sprintson 2014

Broadcast 
Channel 
P(y,z|x)



§  Input* and output cost constraints (*Han-Endo-Sasaki 2013)

§  Broadcast channel with a confidential message: add common message

§  Secret key K with key rate** RK ... security even if Ross has a better channel:

Extensions

47

Bob

XnMessage 
Source

Sink

Encoder

Decoder
M

Ḿ

Random 
Source

W

Yn

Zn

Decoder Sink

Alice

EveṀ

Key Source

K
Secure Channel

Broadcast 
Channel 
P(y,z|x)

C = max
PVX : PZ =QZ

I V;Y( )−max 0, I V;Z( )−RK( )"# $%

** replace W bits with K bits; leads to at most n1/2 bits for LPD 
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Summary

Effective secrecy*

§  includes the notion of stealth/covert communication;

§  proofs use simple steps only

For more information, please see

•  J. Hou, “Coding for Relay Networks and Effective Secrecy for 
Wire-tap Channels”, Dr. Ing. Dissertation, TUM, Germany, 2014

•  J. Hou and G. Kramer, “Effective secrecy: reliability, confusion 
and stealth,” arXiv:1311.1411, 2013 and 2014

* Independently introduced by Han-Endo-Sasaki 2013
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Part 2:
Secrecy, Privacy, and Storage 

for Noisy Identifiers
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Motivation (Again) and Model
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n  Example A: Biometric Security

Source Noisy Versions Enrollment

Secret Key, e.g., 
to encrypt data

Helper Data, e.g., in 
public cloud Storage

Noisy Versions

Secret Key, e.g., 
to decrypt and 

encrypt data

Authentication
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n  Example B: Device Security for Things and their Internet, 
Hardware “Fingerprint” via a PUF*

PUF Source Noisy Versions Enrollment

Secret Key

Helper Data, e.g., 
on-chip Storage

Noisy Versions Secret Key, e.g., 
to decrypt and 

encrypt data

Authentication

* Physical Unclonable Function

...110101...

...110111...

...110101...

...100101...

...110101...



Noisy Identifier Model*

53

Xn

Encoder

M

Ŝ

Remote 
Source

Yn

Decoder

§  Requirements:

§  Reliability: error probability Pe=Pr[Ŝ≠S] should be small

§  Secrecy: S should be independent of M and Rs large 

§  Privacy: leakage rate Rℓ should be small

§  Storage: storage rate Rm should be small

Enrollment 
Channel 

P(ẋ|x)

Identifier 
Channel 

P(y|x)

Ẋn

S

Public Helper Data: 
- Storage Rate Rm

- Leakage Rate 
   Rℓ = I(Xn;M)/n

Secret Key: 
- Key Rate Rs 

* Günlü-Kramer 2016 



Variations (1)
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Xn

Encoder

M

Ŝ

Remote 
Source

Yn

Decoder

§  Remarks:

§  Commonly studied model* has noiseless enrollment: Ẋ=X

§  Noisy identifier: Rs and Rm stay the same, Rℓ decreases

§  So why study the noisy model? Two arguments: 
The correct model leads to practical insight and is a first 
step to model uncertainty about the source.

Enrollment 
Channel 

Ẋ=X

Identifier 
Channel 

P(y|x)

Ẋn

S

Public Helper Data: 
- Storage Rate Rm

- Leakage Rate 
   Rℓ = I(Xn;M)/n

Secret Key: 
- Key Rate Rs 

* Ignatenko-Willems 2009



Variations (2)
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Xn

Encoder

M

Ŝ

Remote 
Source

Yn

Decoder

§  Insights:

§  Multiple-measurements* have Ẋ and/or Y being vectors 
and multiple enrollment measurements are useful

§  Finite block-length results can be expected to lead to 
interesting tradeoffs

Enrollment 
Channel 

P(ẋ|x)

Identifier 
Channel 

P(y|x)

Ẋn

S

Public Helper Data: 
- Storage Rate Rm

- Leakage Rate 
   Rℓ = I(Xn;M)/n

Secret Key: 
- Key Rate Rs 

* Günlü-Kramer-Skórski 2015; Günlü-Kramer 2016 
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Security Measures
and Capacity



Remarks:

§  εsmall and positive

§  Reliability 
Secrecy 
Privacy 
Key Rate 
Storage Rate
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Requirements

Pr S ≠ Ŝ⎡
⎣

⎤
⎦ ≤ ε

I S;M( ) n ≤ ε

I X n;M( ) n ≤ Rℓ +ε

H S( ) n ≥ Rs −ε

H M( ) n ≤ Rm +ε



where union is over Markov chains U-Ẋ-X-Y

§  Remarks:

§  If Ẋ=X then Rℓ=Rm ... there are effectively two rates

§  Design for general Ẋ: one “simply” leaks less

§  Design for “wrong” X may violate requirements; a 
conservative approach designs for Ẋ (assuming model known)
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Capacity

∪
Rs,Rℓ,Rm( ) : 0 ≤ Rs ≤ I U;Y( )
Rℓ ≥ I U;X( )− I U;Y( )

Rm ≥ I U; !X( )− I U;Y( )

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪



§  Noise-free enrollment: Ẋ=X

where union is over Markov chains U-X-Y

§  BSC: Y = X+Z mod 2, Pr[X=1]=0.5, Pr[Z=1]=p, 0 ≤ p < 0.5

§  Problem: maximize I(U;Y) while minimizing I(U;X) aka the 
information bottleneck problem*

§  Solved by using Mrs. Gerber’s Lemma** which implies: 
 
 
with equality if the U-to-X channel is a BSC with crossover 
probability h-1(H(X|U)) ... here p*q denotes “cyclic convolution”
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Example: BSCs

∪
Rs,Rℓ,Rm( ) : 0 ≤ Rs ≤ I U;Y( )
Rℓ = Rm ≥ I U;X( )− I U;Y( )

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

* Witsenhausen-Wyner 1975; Tishby-Pereira-Bialek 1999; ** Wyner-Ziv 1973

H Y U( ) ≥ h p∗ h−1 H X U( )( )( )



§  Given U, let q=h-1(H(X|U)). Mrs. Gerber’s Lemma implies:

§  Proof steps:

§  So a BSC from U-to-X is best: must optimize one number only

§  Results extend (with a few limitations) to multiple 
measurements during enrollment and identification*
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H Y U( ) ≥ h p∗q( )

I(U;Y ) = H Y( )−H Y U( ) ≤ H Y( )− h p∗q( )
I U;X( )− I(U;Y ) = H X( )−H Y( )+H Y U( )−H X U( )

≥ H X( )−H Y( )+ h p∗q( )−H X U( )

* Günlü-Kramer-Skórski 2015; Günlü-Kramer 2016 



§  Rs vs. Rℓ=Rm

§  Biometrics: 
low leakage Rℓ

§  PUFs: large key 
rate Rs and (then) 
minimal leakage 
rate Rℓ

61* Günlü-Kramer-Skórski 2015 

Example: BSCs and Multiple Measurements*
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Summary

Biometric and Device Security

§  use unique variations to authenticate and produce keys

§  measurement process is noisy: use error control codes

§  three parameters: security, privacy, storage

For more information about PUFs, see

•  “Physical Unclonable Functions and Applications: A Tutorial”, 
Proc. IEEE, vol. 102, no. 8, 2014


