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Distributed Storage Setting

@ data pertaining to a single file
is distributed across storage

° . nodes
o ®
® o o ¢ e @ nodes are inexpensive storage
° ° devices
O o o (a) prone to failure,
o

(b) down for maintenance,
(c) unavailable, busy serving
other demands..

26



Distributed Storage Setting

@ Need for efficient repair of a

o failed node arises
([
° 8
RN
® o o L @ Focus on

° o] (a) repair bandwidth - amount

° ° o of data download

i (b) repair degree - number of

helper nodes contacted

(the amount of data stored can be very very large = “Big Data")
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Just How Big is Big Data 7

@ Pictures from two different Data
Centers..

/26



A Recently Completed Large Data Center

Figure: The NSA Data Center in Utah.

@ Estimated to store several between 3 — 12 Exabytes!

GigaByte — TeraByte — PentaByte — ExaByte = One Billion GB!
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Utah Data Center

Power substations

Power line
/ Water storage
6 cooling

towers
\

Water stor: Fuel
ate StO age
Chlller

plant
Powe 6 cooling
buildings ' towers

Visitor center

Admlmstratlon bu1|d|ngs

250 m

o Completed at an estimated cost of $1.5 billion..

@ Another $2 billion for hardware, software, and maintenance
@ 65 MW of power, costing about $40 million per year

@ use 1.7 million gallons of water per day
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Reed-Solomon Codes

I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. J. SIAM, 1960.
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The Underlying Principle of Reed-Solomon (RS) Codes

@ Assume that this is the plot of a polynomial of degree 5

@ then its values at any 6 of the 9 points shown are sufficient to
determine its values everywhere else

@ can use as an [9,6] erasure code (any 6 out of 9)

12/26



Example Finite Field Fg of size 2° = 8

The field Fg consists of all polynomial expressions of the form
3 s
i
involving an imaginary element « that satisfies the equation

ad+a+1 = 0.

For this reason, we can write:

2
Fg = {) a,|a €{0,1}}.
i=0
Here, the coefficients a; € {0,1}, commute multiplicatively with o, and
arithmetic involving the a; is carried out modulo 2:

ai+a =aj+a (mod 2)

ajaj = ajaj (mod 2).

13 /26



Conversion Table for Adding and Multiplying

H Exponential rep. \ Polynomial rep. H

o N Ne)
[y

a+1
o’ +a
a?+a+1
a?+1
1

~N O O N W N

QIRLIRIL|IL|R

With this, we can add elements in the polynomial domain:

(@®+a) + (a+1) = a?+1

and use the exponential form to multiply:

ata® = o = a’a? = &2
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Recovery by Solving a System of Linear Equations

I
/o
fo
WA
x\/.‘
5
f(x) = Za,x ,  (with a; lying in an appropriate finite field)
i=0
f(Xl) 1 X1 s X15 ao
f(x2) 1 x x5
f(Xﬁ) 1 X6 Xg’ as

Vandermonde matrix
(invertible)

@ The 6 coefficients {a;}3_, can be recovered from any 6 values {f(x;)}%_,
@ possesses the ‘any-6-of-9' property
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The Reed-Solomon Code in Operation

X1 Xy X3 Xq ! X5 [ Xg| Py Pyl Ps

@ the contents of a single data file split into 6 fragments and a
Reed-Solomon code used to generate 3 additional redundant
fragments which are stored in 9 nodes in the network

@ each fragment represents a single symbol of the codeword

@ the file can be recovered from any 6 fragments

@ it can hence tolerate 3 node failures

@ Overhead = 50% (sometimes, we will say overhead of 1.5)

o offers lower probability of data loss to triple replication (a competing
code!), for lesser overhead
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Maximum Distance Separable (MDS) Codes

MDS codes are a class of codes that also possess the ‘any k of n' property
@ this class includes Reed-Solomon codes

@ the minimum Hamming distance dpi, between a pair of distinct
codewords in an MDS code satisfies the Singleton bound

Amin < n—k+1,

with equality and the codes are hence said to be maximum distance
separable.

17 /26



An Example MDS Code Used in the Storage Industry

@ [4,2] MDS code

Disk 1
e Can recover data by connecting
to any 2 of 4 nodes
— _ Disk 2
>
A+B | Disk 3 @ In comparison with triple
replication, offers robustness at
[S—
Disk 4 smaller values of storage
overhead

RAID: Redundant Array of Independent Disks

18 /26



But How Well Does It Handle Node Failure ?

An obvious approach:

New disk 1

@ Connect to any k nodes, Diskl g

[ S—
@ Reconstruct entire data file, pe—
i =) Disk2
@ Reconstruct data stored in the | B |

node

Disk 3

Disk 4
But downloading 2 units of data to revive a node that stores 1 units of
data is wasteful!

19/26



A Second Example: Facebook's HDFS-RAID Code

ClEEHEEEEEE

J

0

0

EIEEE EEEREEEEEE

3

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

Node 9

Node 10

Node 11

Node 12

Node 13

Node 14

[14,10] MDS code

@ Can recover data by
connecting to any 10
nodes

@ Used in Facebook data
centers

e HDFS = Hadoop
Distributed File System

D. Borthakur, R. Schmit, R. Vadali, S.
Chen, and P. Kling. "HDFS RAID.” Tech
talk. Yahoo Developer Network, Nov.
2010
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How Well Does it Handle Node Failure ?

ClEEHEEEEEE

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

Node 9

0 | Node 10

Node 11

Node 12

0

EIEEE EEEREEEEEE

3 | Node 13

Node 14

Needs to connect to 10
nodes to repair a failed
node

This calls for interrupting
operations in 10 nodes
(apart from downloading
the entire data file)

10 is the repair degree

Are there better options ?
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Two Problems — Two Solutions

Low
Repair
Bandwidth

\ 4 v

Regenerating
Codes

Codes with
Locality

(the focus of this tutorial is on the development
of these two classes of codes)

@ A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran, “Network
Coding for Distributed Storage Systems,” IEEE Trans. Inform. Th., Sep. 2010.

@ P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the Locality of Codeword
Symbols,” IEEE Trans. Inf. Theory, Nov. 2012.
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Push Back from Reed-Solomon Codes

Piggybacked RS codes
» Improvements in repair of a modified RS code by repairing several
codewords cooperatively

repairing RS codes using nonlinear operations

K. V. Rashmi, N. B. Shah, and K. Ramchandran. A piggybacking design framework for
read-and download-efficient distributed storage codes. In IEEE International Symposium
on Information Theory, 2013.

K. V. Rashmi, Nihar B. Shah, Dikang Gu, Hairong Kuang, Dhruba Borthakur, and
Kannan Ramchandran , “A "Hitchhiker's” Guide to Fast and Efficient Data
Reconstruction in Erasure-coded Data Centers, " ACM SIGCOMM, Aug 2014.

Venkatesan Guruswami, Mary Wootters, “Repairing Reed-Solomon Codes,”
arXiv:1509.04764 [cs.IT] .
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Piggy-Backing RS Codes - Encoding

a1 a
by b = (adding functions of col. 1 to entries in col. 2)
ai+b || a+b ' '
ar+2by || a2 +2b2
a1 a2
b b = (linear operations within the same node)
a1+ b ax+ by
a1+ 2by || a» + 2by+a1
a1 a2
b1 b2
a1+ b ax + bo
a1+ 2b1—(ax +2by + a1) || a2 +2b2 + a1

(each row is a node)
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Piggy-Backing RS Codes - Repair

a1 a»
by b2 &< The Code
a1+ b a» + by
2b1 —ax —2by || ax + 2by + a1

b1 ¢ g
by b2 < when node 1 fails
air + by a+b

2by —ax —2by || a2 +2by + a1

ai a2
:b( % < when node 2 fails
a1+ by a> + b

2by —ax —2by || @ +2by + a1

(helper symbols in blue )

25 /26



Efficient Repair of RS Codes

@ Show that
“O(k) bits are necessary to recover a missing evaluation. In contrast,

the traditional method of looking at k evaluations requires
Q(klog(k)) bits. We also show that our result is optimal for linear
methods, even up to the leading constants.”

@ Venkatesan Guruswami and Mary Wootters, “Repairing Reed-Solomon Codes,"”

arXiv:1509.04764v1 [cs.IT] for this version. 26/26



Regenerating Codes

Dimakis, Godfrey, Wu,Wainwright, Ramchandran, T-IT, Sep. 2010, Communications Society &
Information Theory Society Joint Paper Award.



RAID Codes not very Efficient at Handling Node Repair

Approach to node repair: New disk 1

@ Connect to any k nodes,

@ Reconstruct entire data file, “
) =) Disk2
@ Reconstruct data stored in the u

node

Disk 3

Disk 4
But downloading 2 units of data to revive a node that stores 1 unit of data
is wasteful!

(focus here is on minimizing repair bandwidth)



An Improved (Regenerating) Code

@ Here, each node now stores two “half-symbols”
@ We download 3 half-symbols as opposed to 2 full-symbols
» vector symbol alphabet = F2 versus F.

s,!

Disk 1

Bl
= B,

Disk 2

2A,+2A,+B,
A,+2B +2B,

Disk 3

2A+4A,+2B,
A+2B +4B,

Disk 4




Regenerating Codes - Formal Definition

Parameters: ( (n, k,d), (o, ), B, Fq)

Data
Collector

k+1

o]

o capacity o capacity
nodes nodes

@ Data to be recovered by connecting to any k of n nodes

@ Nodes to be repaired by connecting to any d nodes, downloading 3
symbols from each node; (df << file size B))



Regenerating Codes - Formal Definition

Parameters: ( (n, k,d), (o, ), B, Fq)

Data
Collector

o capacity o capacity
nodes nodes

@ Data to be recovered by connecting to any k of n nodes

@ Nodes to be repaired by connecting to any d nodes, downloading 3
symbols from each node; (df << file size B))

@ Differentiate between functional and exact repair



Cut-Set Bound from Network Coding
Given code parameters {[n, k, d], («a, 5)}:

k
B < > minfa,(d—i+1)8}.
i=1

=

(can be shown to be achievable under functional repair)

Dimakis, Godfrey, Wu,Wainwright, Ramchandran, T-IT, Sep. 2010
Wau, IEEE JSAC, Feb. 2010.



(the capacity of the cut shown equals « + a + (d —2)5 + (d — 3)3 )



The Storage-Repair Bandwidth Tradeoff

The upper bound on file size:

K
B < Z min{a, (d — i + 1)} (multiple (o, 8) pairs can achieve bound)
i=1

@ Tradeoff curve drawn for

5600

fixed (k, d), B. 54001 { MSR

B 5200
o Extreme points: MSR & 5000 (B-27000, ke10, o=t}

MBR T 4800|
a3
> MSR=Minimum Storage " 4400
. 4200]
Regenerating 1000
Oé:(d—k—f—].)ﬂ 3800
> MBR=Minimum %%

2600 2800 30b0 3260 3400 36b0 3800
Bandwidth Regenerating a—
o= dp (k, d) = (120,129), B = 725360



File Sizes

me{a d—i+1)5}

@ MSR Code:
B = ak
» Hence ¢ = g% = (q%)* = (g®)"~9mn+1 achieves the Singleton

bound on code size over an alphabet Fg of size ¢*.
» Hence MSR codes are MDS!

@ MBR File size:

S I G H)



AN EXAMPLE MSR CODE



The (Previously Seen) Example MSR Code

e Parameters: {(n=4,k=2,d=3), («=2,6=1), B

@ A vector MDS code
e a=(d— k+1) (minimum possible) and B = ak

A

A |
A

Disk 1

—

?

A

I o

“ e
2A+2A,+B,
[ A:+2B,+2B,

Disk 3

—
2A +4A,+2B,

A,+2B +4B,
Disk 4




At the other end of the tradeoff,

AN EXAMPLE MBR CODE

(aka “The Repair-by-Transfer” MBR Code)

Shah, Rashmi, PVK, Ramchandran, T-IT, Mar. 2012.



Step 1: Add an Extra Parity to the 9 Units of Data

B BBEOBGEEABEA



Step 2: Set up Completely-Connected Pentagon (10 Edges)

=




Step 3: Place Coded Data on Edges

=

==

 Im
- |




Step 4: Load Data from Edges onto Nodes

s




Step 4: Transfer Data from Edges into Nodes




End of Encoding Procedure




Node Failure

1,4,9,p 1,3,6,7




Node Repair

1,4,9,P




Node Repair




Node Repair Complete




Data Collection

Data

4




Data Collection

Data

4

Only symbol
"




Data Collection Complete

Data
Collector

Only symbol
E
Can be
recomputed

from “P”




Pentagon Code Node Downloads only as Much as it Stores

(hence, is repair-bandwidth efficient)



THE PRODUCT MATRIX CODE

Rashmi, Shah and PVK, T-IT, AUG. 2011, 2011-12 IEEE Data Storage Best Paper and Best
Student Paper Award.



Product-Matrix Framework

L =L

nxo nxd dxa«

o M : Message matrix

» Contains message symbols with some message symbols repeated
> Possesses a block-symmetry property

@ VW : Encoding matrix
» Used to disperse information across the nodes
> Independent of message symbols

@ C : Code matrix

» Each row represents one node
» M node stores: wa



The Product-Matrix MBR (PM-MBR) Code

a=d
o B=kd— (5 — B=(}")+k(d-k)

@ Let S be a (k x k) symmetric matrix with (k;rl) distinct message
symbols

o Let T be a (k x (d — k)) matrix with k(d — k) distinct message
symbols

thus all message symbols are accounted for



Product-matrix MBR Code

S T
~— ~—
kxk kx(d—k)
@ Message matrix M = (symmetric)
N~~~ t
dxd T 0

~—~ ~~
(d—k)xk  kx(d—k)

e Encoding matrix WV = [ & \A/ }
\fd’ nxk  nx(d—k)
nXx

®: any k rows linearly independent
WV: any d rows linearly independent

e.g., Cauchy, Vandermonde matrix



Product-matrix MBR Code : Data Reconstruction

Node i passes: ;M
aggregate l

VoM
(Wpc = [®pc Apc] is (k x d))

decode
[ OpcS + Apc TE & T ]
+

®pc is k x k, invertible
Decode T

!
Subtract Apc T¢, Decode S

S T
M:[TtO
v=[o A]
C=wvM



Product-matrix MBR Code : Exact Regeneration

Replacement node f needs: Q;M

Helper node /i, 1 < j < d stores: ny

Helper node i passes: ny@f

aggregate l
wrepairM%f

(Wrepair is d X d, invertible)

!
My,

(M is symmetric)

l

t
YeM

S T
M:[TtO
v=[o A]
C=wvM



The Product-matrix MSR Code Parameters

@ Here again =1
e a=d—-—k+1



The MSR point-Numerology

d < 2k — 3 not possible with 8 =1
This code is designed for d > 2k — 2

Choose d = 2k — 2 first, then extend to higher d

Gives

a+1
2a
ala+1)

a(a+1)

S1, S2: (o x @) symmetric matrices with ==~

symbols each

distinct message



The Product-Matrix MSR Code

S
~—~
. axXo
@ Message matrix M =
S
dxa 2
axXo
. . ) AL
@ Encoding matrix U = | v —~~
g \’:; |: nxXa nxa
nXx

®: any « rows linearly independent

A: n x n diagonal matrix with the diagonal elements distinct
WV: any d rows linearly independent

e.g., Vandermonde



The Product-Matrix MSR Code-Data Reconstruction

Node i passes: ng
aggregatel
VoM
(Wpc = [®pc Apc®pc] is k x d)

!
[¢DC51 + ADC¢DCS2]
[(chSlchc + /\DCq)DCSZq)Ec]
!
[P+ AocQ]
(P and Q symmetric)
!
(i, J): P+ XiQy, (U, i) Py +NQj
(Solve for P and Q)

l

Recover S; and S>

_ S
w={ 3 |
\U:[CD /\¢]
C=VvM




The Product-Matrix MSR Code-Exact Regeneration

Replacement node f needs: Q;M
Helper node i stores: gfl\/l

Helper node i passes: nygf

aggregate l
\llrepl\/@f

(Wrep is d X d, invertible)
$19
Mo, = | 2%
Qf [ S2?f ]

l

9;51 -l-)\f?;Sz = %;M

_ |3
M-
V=[ o A® ]
C=uM




INTERIOR POINTS OF THE TRADEOFF



Interior Points Not-Achievable Under Exact Repair!

No exact-repair code can achieve an interior point on the tradeoff...

450

*

00 ——————>[Unknown]

350

3001

Repair bandwidth, df

Not Achievable
2001 :

1 i i i i i i
0 110 120 130 140 150 160 170
Storage per node, a

(However, can exact-repair codes approach the tradeoff asymptotically,
ie,asB—0o0?)

(Shah, Rashmi, PVK, Ramchandran, T-IT, Mar. 2012),



Explaining Why Not Achievable - Notation

W,

St [Feparama

@ n nodes

@ /th node stores a symbols,
random variable W;

e S) = the 3 symbols sent
from x to repair node y




The Repair Matrix R

1 Y d+1
s
€T U
e SJ is the repair data sent
from node x to node y
d¥T a+1

((d+1) x (d+1))



More Notation

n random variables:
{W;|1<i<n}.
A further n(n — 1) random variables:
{(Sh11<ij<n, i#j}.
Hence, in all, n? random variables.
Let BB denote the data file and

| B |= B.



Constraints

H(W;) < «, | entropy of ith node
H(S!) < B, | entropy of repair data

H(B| Wa)=0,| A|=k data collection property

H(W; | B) =0, node contents a function of file data

H(SIJ | W) = 0, repair data draws from node contents

H(W; [Sh) = o,

repair property
if |Al=dandigA




Some Background: Non-Existence Proof (Exact-Repair)

O MSR< a=(d—k+1)3, MBR< a=dj

@ Interior: & a=(d—u)f,1<pu<(k-2)

We assume wolog (n = d + 1), as restriction to (d + 1) nodes is also a
regenerating code:

Parameters: ( (n' =d+1,k,d), (o, 8), B, Fq)



Exact-Repair File Size Bound

Let
[d+1] = XUYUZ
| X = pn+1
Y] = k—(u+1)
|Z| = (d+1—k)
Then

B = H(Wx,Sy,SY)
Sy = {Sl|ijeY,i>j}
SYy = {SY|zeZyeY}



Exact-Repair File Size Bound

Turns out that if an exact-repair code meets the cut-set bound, in the
inequalities

B = H(Wx,Sy,57)

= H(Wx) + H(Sy | Wx) + H(SY | Wx, Sy)
H(Wx) + H(Sy) + H(SY)
[ X|a+ [Sy|B+ |SY|B,

IN A

we must have, equality throughout, i.e.,

B = |X|a+ |Sy|[B+ [S)|B.



Non-Existence via Properties of the Repair Matrix R

Assuming the existence of an optimal exact-repair code, we must have:

Y Y
B=H(Wx,S5y,5z) = [X|a+ [Sy|B+ [S7]B.
X Y z
}”o\o 0c00c000000OO .
Wy 090000000000 O
X ' ocogoiocoooo0o0o00o0:!
0008000000000
o ) o
o 2\ o
o o o o
Y o SY © 0 o o
o 0 0 0 0% o
o cocooo °
o Yooooox o
zZ IS Sz oco0oo0o0o0 IS
ooooppﬂorggooo\o

@ Turns out however, every row of R has entropy at most (3 -
contradiction!

Shah, Rashmi, PVK, Ramchandran, T-IT, 2012.



Explaining Why Rows Have Small Entropy
Goal: Explain why every row of R has entropy at most 3. In figure below,
L =p=(n+1).

I Sy d+1 L
5 m
AFT TH1
H(Sp) = H(SLIWL) + I(Sh:W) <8

<(uA)H(SO W )=0 I (WmWi)<p

Because | L |= (u+1) is
@ large enough to permit interference cancellation to take place while
passing repair information
@ small enough that the mutual information is limited by 3



The Computation

We have:

H(Sy) = H(Sh| W)+ 1(Sh: W)
¢ {H(WL/S,é?) + H(SR) - H(WL)}
+ {H(Wpm) + HWL) — H(W,, W)}
{pa+(a—pB)+B—(p+1)a}
=0
+{(p+Da+a—(p+a+ (a—pB)}
=5

IN

IN

- B



CAN AN INTERIOR POINT BE APPROACHED 7



No! From Characterization of the (4,3, 3) Tradeoff

25

n
o

Repair bandwidth, df
>

8 9 10 11 12 13
Storage per node, o

@ FR Tradeoff = Blue

o ER Tradeoff = Max{Blue, Green}

@ Chao Tian provided an explicit proof by using Raymond Yeung's ITIP
framework to extract an additional inequality for the (4,3, 3) case.

Chao Tian, ISIT 2013



A Dozen Bottles of Quzo!




Our Subsequent Results (2014)

(4,3,3) Case (5,4,4) Case
0.25¢
0.32 — Functional repair tradeoff
: —New outer bound —Functional repair tradeoff
0.3 ——Achievable by Layered/Tians Code — New outer bound
—— Achievable by Layered Code|
0.28 0.2 H
T 0.26| \\ I
=8 Q.24 o
0.22 0.15] E
0.2
0.18
0.35 0.4 0.45 0.5 041

& 0.25 03 035

& —

Coincides with the ER tradeoff characterized by Tian for the [4, 3, 3] case

Shown alongside is the outer bound in the [5,4, 4] case

First instance of an optimal code operating off of the FR tradeoff.

0.4

First outer bound on the ER tradeoff that improves upon the FR tradeoff for all [n, k, d]

In the [5,4, 4] case, bound coincides at one point P with performance of a layered code.

Layered code: (Tian, Sasidharan, Aggarwal, Vaishampayan, PVK, T-IT, Apr 2015)



Our Approach

Let 7 denote the ‘trapezium-shaped’ region of the repair matrix:
T = SyUSY Cc R
Assuming the existence of an optimal exact-repair code, we must have:
H(T) = |TIB

X Y z
iQoooco0o0o0o0o00000;

Wy o9 o0o0000000O0O0O:
og oloooo0o0
00900000

ok\x
oo
Sy 6o on

0 000X
o0 ocoo0oo
o0 o0ooo
ocoo0o0o0
O 000 ©O0 O Qo O0O0

o 0
oo
oo
oo

0000000 0

e
/f

00000000 000

@ On the other hand, every row of 7 has entropy at most (3, this is a
large gap which we exploit!

Birenjith, Senthoor, PVK, ISIT 2014.



Approach to Deriving the New Bound

Decreasing file size to B-¢ moves the
bounds close together until contradiction

is resolved
Upper Bound Lower Bound
on H(T) on H(T)
—] I
— —
-—
moves upper moves lower
bound bound
«—— to the right to the left f——
Ro——
—
-—

This leads to an new tradeoff as shown earlier.



The New Outer Bound

The case of (4,3, 3) The case of (5,4,4)
0.25
0.32 — Functional repair tradeoff
e — New outer bound — Functional repair tradeoff
0.3 ——Achievable by Layered/Tians Code —New outer bound

——Achievable by Layered Code

0.28] \ 0.2
T 0.26 \\ T
=120,24 ~

Pl

0.22] 0.15
0.2]
0.18]
0.35 0.4 0.45 0.5 041
a— 0.25 0.3 0.35 0.4

@ Provides a new outer bound on ER tradeoff for all [n, k, d]

Bound coincides with the tradeoff characterized by Tian in [4, 3, 3] case.

@ The bound in [5, 4, 4] case coincides at one point P with an achievable region by layered
codes.

@ First instance of an optimal code operating off of the FR tradeoff.



Subsequent Work

@ lwan Duursma, “Outer bounds for exact repair codes,” 2014.
@ lwan Duursma, “Shortened regenerating codes,” 2015.

@ Soheil Mohajer & Ravi Tandon. Exact Repair for Distributed Storage
Systems: Partial Characterization via New Bounds, 2015

@ Chao Tian, A Note on the Rate Region of Exact-Repair Regenerating
Codes, 2015

@ N. Prakash, M. Nikhil Krishnan, “The Storage-Repair-Bandwidth

Trade-off of Exact Repair Linear Regenerating Codes for the Case
d=k=(n-1)", 2015.

(not described here for lack of time)



CONSTRUCTION OF HIGH-RATE MSR CODES



Constructions of MSR Codes (Rate R < %)

Q K. V. Rashmi, Nihar B. Shah and PVK, “Optimal Exact-Regenerating Codes for
Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction,”
IT-Trans, August 2011.

@ Changho Suh and Kannan Ramchandran, “Exact-Repair MDS Code Construction Using
Interference Alignment,” IT-Trans, March 2011.
> Nihar Shah, K. V. Rashmi, PVK and Kannan Ramchandran, “Interference Alignment
in Regenerating Codes for Distributed Storage: Necessity and Code Constructions,”
IT-Trans, April 2012.



Constructions of High-Rate MSR Codes (Rate R > 1)

@ Viveck R. Cadambe, SyedAli Jafar, Hamed Maleki, Kannan Ramchandran and Changho
Suh, “Asymptotic Interference Alignment for Optimal Repair of MDS Codes in Distributed
Storage,” IT-Trans, May 2013. (establish existence)

@ D. S. Papailiopoulos, A. G. Dimakis, and V. R. Cadambe, “Repair Optimal Erasure Codes
through Hadamard Designs,” IT-Trans, May 2013. (construction for 2 parities)

© Itzhak Tamo, Zhiying Wang, and Jehoshua Bruck, “Zigzag Codes: MDS Array Codes With
Optimal Rebuilding,” IT-Trans, March 2013. (repair systematic nodes)

@ Z. Wang, I. Tamo, J. Bruck, “On Codes for Optimal Rebuilding Access,” Allerton, 2011
(also repair parity)



Sub-Packetization Level

@ Bound in [1]

k—1
logy () (logs(a) +1) > 5
1
6 = 1+ —— = (n— k).
+ 1 (n— k)
@ Construction in [2]
a = rkt1
@ Present Construction
(0% g rg

[1] Sreechakra Goparaju, Itzhak Tamo, and Robert Calderbank, “An Improved Sub-Packetization
Bound for Minimum Storage Regenerating Codes,” IT-Trans, May 2014.
[2] Z. Wang, I. Tamo, J. Bruck, “On Codes for Optimal Rebuilding Access,” Allerton, 2011.



Sub-Packetization Level

@ Present Construction

H Parameter t | Rate R = % \ Sub-packetization level « H

t=3 % r3
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Construction Builds on the Earlier Work ...

@ Itzhak Tamo, Zhiying Wang, and Jehoshua Bruck, “Zigzag Codes:
MDS Array Codes With Optimal Rebuilding,” IT-Trans, March 2013

@ Z. Wang, |. Tamo, J. Bruck, “On Codes for Optimal Rebuilding
Access,” Allerton, 2011



How We Will Explain Construction ...

@ Parity-Check Point of View

o First present a simplistic view of parities that will repair but cannot
handle data collection

@ Will then refine this

@ Will then refine this further (this will now permit data collection as
desired)



Parameters of Construction

Parameters: ( [n =6,k =4,d =5], [a,5], B, Fq)

General | General || in Example
n tq 6
k (t—1)q 4
d (n—1) 5
« qt 8
5 qtfl 4
r q 2
-1 2
Rate tT 3
« re 25 — 8




Notation Used in Construction

Parameters: ( [n, k,d], [, (], B, Fq)

H Node 1 [ Node 2 [ [ Node n H

First symbol in node
Second symbol in node

Last ath symbol in node

(n x ) codeword array

~—

node symbol in node

Code symbol C( 4,6 ; X )
<~

lth node group || 6th node || xth symbol
£=1,2,---,¢t 6 € Fq x € Fy




Parity Checks

Row-Sum Parity Checks:

Jump (Zig-Zag) Parity Checks:

t

D )+ Cllzi (z—Dey) )

=1 \ 07z jump in fth position



lllustrating Row-Sum Parity Checks (z; = 0 only)

(x1xox3) ||| 6=0 | =1 =0 | 6=1 6=0 | =1
Node 1 | Node 2 || Node 3 | Node 4 || Node 5 | Node 6

A A A A A A

B B B B B B

C C C C C C

(A B, C represent Row-Sum parity checks)



lllustrating Jump Parity Checks (z; = 0 only)

(x1x2x3) =0 | =1 0=0 | =1 0=0 | =1
Node 1 | Node 2 || Node 3 | Node 4 || Node 5 | Node 6

o

P PR PQ

Q Q PQ

R PR R

ol ool o
L k=l =]
=IOl

Q R

==
o O
[y

—
—_
(=)

111

|| —~|—~||—~|—~|—~|—~
o
~— | |~ |~ | |~ |~ |~ | ~~—

e (P, @, R and 5 represent Jump parity checks)

@ From this it is clear how node 1 can be repaired by downloading 4
symbols from each of the other nodes



First refinement: Bringing in Coefficients

t

Z A, 0) C(L,0;z)
H/—/

=1 0€Fq _ thicient

ST MEOCL,0:2) + ML z2)C(4, 2 (z— Dey) )

=1 \ 0#z jump in fth position



Second Refinement: Adding Extra Terms in the Parity
Check Equations (for Data Collection)

t

Z Z AC,O)C(,0,z) =

(=1 0€eF,

ST MEOCL,0:2) + M 2)C(4, 2, (z— Dey) )

=1\ 07z jump in fth position

+ ZZ (4,6)C(¢,6; 2) -

(=1 0cF,

~
helps guarantee data-collection property



Parity-Check Matrix (without extra terms)

Associated parity-check matrix H is of the form:

(=1 =2 =3
0= 0= 0= 0= 0= 6=
Node 1 || Node 2 || Node 3 || Node 4 || Node 5 || Node 6
zZ1 = 0 I4 I4 I4 I4 I4 /4
zZ1 = 1 /4 /4 I4 /4 /4 /4
zZ1 = 0 /4 I4 Al A3 A5 A7
zZ1 = 1 /4 I4 A2 A4 A6 Ag

@ A =0 in the first two rows
e A =1 (indicating jump parity) in bottom two rows



Parity-Check Matrix (with extra terms in blue )

To ensure data recovery, replace H by the form:

H = Ho+H
where Hp, H; are given respectively by:
(=1 =2 {=3
0=0 0=1 0= 0= 0= 6=
Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
z1=0 Iy Iy Iy Iy N N
z1=1 Iy Iy Iy Iy Iy Iy
z1=0 Iy Iy Iy Iy Iy Iy
z1=1 Iy In In Iy Iy Iy
(=1 (=2 (=3
0=0 0=1 0=0 =1 0=0 6=1
Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
z1=0
z1=1
zZ1 = 0 /4 I4 A1 A3 A5 A7
zZ1 = 1 /4 I4 AQ A4 A6 Ag

(this ensures the data collection property; Polynomial root counting)



Codes with Locality



Some References

o
2]
o

© 00 ©

Gopalan, Huang, Yekhanin, Simitci, T-IT, Nov. 2012, winner of joint COMSOC-IT Best
Paper Award.

P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the Locality of Codeword
Symbols,” IEEE Trans. Inf. Theory, vol. 58, no. 11, pp. 6925-6934, Nov. 2012.

M. Forbes and S. Yekhanin, " On the locality of codeword symbols in non-linear codes”,
arXiv:1303:3921, 2013.

C. Huang, M. Chen, J. Li, "Pyramid codes: Flexible schemes to trade space for access
efficiency in reliable data storage systems,” Sixth IEEE International Symposium on
Network Computing and Applications, 2007.

J. Han and L. A. Lastras-Montano, “Reliable memories with subline accesses,” Proc.
IEEE Internat. Sympos. Inform. Theory, 2007, pp. 2531-2535.

D. S. Papailiopoulos, A. G. Dimakis, “Locally repairable codes,” ISIT, 2012.

F. Oggier, A. Datta, “Self-repairing homomorphic codes for distributed storage systems,”
IEEE INFOCOM, 2011.

D. S. Papailiopoulos, J. Luo, A. G. Dimakis, C. Huang, and J. Li, “Simple regenerating
codes: Network coding for cloud storage, " Proc. IEEE INFOCOM, 2012, pp. 2801-2805.
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United by an Acronym

Codes with Locality

locally repairable codes
locally recoverable codes
locally reconstructible codes

local reconstruction codes
LRC |



Codes with Locality
Setting: C is an [n, K, dmin] linear code. {c;}7_; are code symbols.

@ Code symbol ¢; has locality (r,d) if there exists a subset of code
¢} that includes ¢; and forms a “local” code with

symbols {cy, -
parameters:
[length < r+ 6 —1, dimension < r, dmnin > 9]
1 ¢ n
C DDD.&DD..DDDD.DDD
/ // / //////
/ / / -
1 v v e
EEEEE <(r+0-1)
(€ > 6

dmm punctur ed)

23



All-Symbol and Information-Symbol Locality (r, d)

Y

Codewords in C : C1,C2, ... Cky Ckt+1, Ckt2y - - -, Cn
—_—

information set

° {cj}J’.‘:l is an information set if message symbols can be uniquely
decoded from {cj}j-‘zl, but not from any subset of {cj}j-‘zl

e C is said to have information symbol locality (r, ), if all k code
symbols comprising an information set {cj}j-‘zl have locality (r,d)

@ Code C is said to have all-symbol locality (r,¢), if all n code symbols
have (r,0) locality



lllustrating Information and All-Symbol Locality

\\\\ /,// \\\‘ B / (global parities)

(local codeword) (local codeword)

(information-symbol locality)

(local codeword)

EEEEE

o

(local codeword) (local codeword)

(all-symbol locality)
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Bound on Global Minimum Distance

Theorem
If an [n, K, dmin] code C has information symbol locality (r,¢), then

dmin < (n— K +1) —(m —1)(5—1).

Singleton bound

loss due to locality

@ Bound established by P. Gopalan et al. for the case when the local
codes are parity check codes (6 = 2)

@ Our extension to the general case is straightforward, but useful

Gopalan, Huang, Yekhanin, Simitci, T-IT, Nov. 2012.
Prakash, Kamath, Lalitha, and PVK, (ISIT 2012), Jul. 2012.
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Derivation of the Bound on Minimum Distance

@ Based on a recursive algorithm that
searches for a large (k x ¢) sub-matrix
of the generator matrix whose rank is
<(k-1).

@ keep adding columns of G while slowing
rank increase in matrix

811 812 813 8i¢ || 815 816 817
G = 821 822 823 82 || 825 826 827
831 832 833 83¢ || 835 836 837

(¢ = 4 here) Then we have:
dm,',, S (n — 5)

@ P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the Locality of Codeword
Symbols,” IEEE Trans. Inf. Theory, Nov. 2012.



Pyramid Codes:
Codes with Optimal Information-Symbol Locality

@ Given generator matrix G of a systematic [7,4,4] MDS code:

1 g1 g12 813
c = 1 &1 82 g3
1 831 832 833

1 g g gi

@ Split first two “parity” columns, and then rearrange columns:

1 g1 812 ‘g13
1 gu g» 823

‘ 1 g31 832 | 833

1 gu gu | g3

The new [9,4, 4] code has two [4,2, 3] local codes and is optimal.

C. Huang, M. Chen, and J. Li “ Pyramid Codes: Flexible Schemes to Trade Space for Access Efficiency in Reliable Data Storage
Systems,” NCA 2007.



Some Optimal Constructions of Codes with Locality
Explicit Constructions
© Pyramid Code construction for information locality.
@ Parity splitting construction for all symbol locality:
n=[5](r+6-1).
© Rank-Distance based code with all-symbol locality : § = 2.
© Tamo-Barg construction

Non-Explicit Construction All symbol locality codes can be constructed
whenever
. -1
(r+ 0 —1)|n, provided g > (}~7)

C. Huang, M. Chen, and J. Li “"Pyramid Codes: Flexible Schemes to Trade Space for Access Efficiency in Reliable Data
Storage Systems,” NCA 2007.

J. Han, L. A. Lastras-Montano; , “Reliable Memories with Subline Accesses,” ISIT- 2007.
P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the Locality of Codeword Symbols,” IT-Trans, Nov. 2012.

N. Prakash, G. M. Kamath, V. Lalitha, and PVK, “Optimal linear codes with a local-error-correction property,”
ISIT-2012.

N. Silberstein, A. S. Rawat and S. Vishwanath, “Error Resilience in Distributed Storage via Rank-Metric Codes”,
Allerton, 2012.

Itzhak Tamo and Alexander Barg, “A Family of Optimal Locally Recoverable Codes,” T-IT, Aug 2014. (IT-Trans. best
paper award).
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Windows Azure Storage Coding Solution

| Microsoft Azure Code |

_____________________ ,

AN N
1

KA (A EA A KA T |
I

7
{
1
1

-

___________________________________________

Comparison: In terms of reliability and number of helper nodes contacted
for node repair, the two codes are comparable. The overheads however are
quite different, 1.29 for the Azure code versus 1.5 for the RS code. This
difference has reportedly saved Microsoft millions of dollars.

Huang, Simitci, Xu, Ogus, Calder, Gopalan, Li, Yekhanin, “Erasure Coding in Windows Azure
Storage,” USENIX, Boston, MA, 2012.
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Windows Azure Storage Coding Solution (continued)

Windows Azure Code:

|x1 ||x2||x3||x4||x5||xe| |Y1 ||Y2||Y3||Y4||Y5||Y6| |p1 ||P2|
Comparison: In terms of reliability and number of helper nodes contacted
for node repair, the two codes are comparable. The overheads however are
quite different, 1.33 for the Azure code versus 1.5 for the RS code. This

difference has reportedly saved Microsoft millions of dollars.
Reed-Solomon Code

12/23



The Tamo-Barg Construction (all-symbol locality)

@ subset of RS codewords: (f(P1),f(P2),---,f(Pn)), with
deg(f) < (k—1)
@ subset ensures that given point P, there exist other points fitted by a
lower degree polynomial which can be used for correction
o for example, to a line when evaluated at 3 points; this provides locality
@ provides low-field-size constructions for many parameter sets

Itzhak Tamo and Alexander Barg, “A Family of Optimal Locally Recoverable Codes,” T-IT,

Aug. 2014, . (IT-Trans. best paper award).
13/23



The Tamo-Barg Construction

@ subset of RS codewords: (f(P1),f(P2),---,f(Pys)), with

deg(f) < (k—1)

@ subset ensures that given point P, there exist other points fitted by a
lower degree polynomial which can be used for correction

o for example, to a line when evaluated at 3 points; this provides locality

@ provides low-field-size constructions for many parameter sets

@ There is also a Chinese Remainder Theorem interpretation



Codes with Hierarchical Locality

Birenjith Sasidharan, Gaurav Kumar Agarwal, PVK, “Codes With Hierarchical Locality,” ISIT
2015.
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Codes with Locality

24 14,7]
(32| (w3 |w3al  wzal  (w3al 132

d < (n—k+1) —([é]—l) (65— 1)

Singleton bound

loss due to locality
r = locality

6 = minimum distance of the local code

16/23



Codes with Locality do not Scale

24 14,7]
(B3| (w32 |(B3a]  B3al  (w3al 632

@ If the local code is overwhelmed, then one has to appeal to the

overall code which means contacting all 14 nodes for node repair.

@ Is it possible to build a code where the repair degree increases
gradually as opposed to in a single jump ?

17/23



Codes with Hierarchical Locality

[12,8,3]

24, 14, 6]

[12,8,3]

[4,3,2]

[4,3,2]

[4,3,2]

[4,3,2]

[4,3,2]

[4,3,2]

@ Codes with hierarchical locality do exactly that by calling for help
from an intermediate layer of codes when the local code fails.

@ These codes may be regarded as the “middle codes”.

18/23



Codes with Hierarchical Locality - Parameters

24,14, 6]

[12,8,3]

[12,8,3]

[4,3,2]

[4,3,2]

[4,3,2]

[4,3,2]

[4,3,2]

[4,3,2]

d < n—k+1—<[

o)

2

W - 1> (61— 62)

bound for codes with locality

-~

~
additional loss for 2nd locality layer

19/23



Derivation of the Bound on Minimum Distance

@ Proceeds along the lines of the original
paper on codes with locality

@ Based on a recursive algorithm that
searches for a large (k x £) sub-matrix
of the generator matrix whose rank is
< (k-1).

811 812 813 8¢ || 815 816 817
821 822 823 B2 || 825 826 827
831 832 833 83¢ || 835 836 837

()
I

W=W+V,
W=wUS;
i=i+l

(¢ = 4 here) Then we have:

dmin < (n - E)

20

23



All-symbol Local Optimal Construction: An Example

@ Need to satisfy a divisibility condition ny | ny | n

o Example: [24,14], [12,8], [4,3]. Here: (np =4 | ny =12 | n = 24).

HI/HO\%HI
P Nl

H, B1Ho 2Hy  BoHs  PofiH:  BoBiH:

@ Choose Fys.
@ Identify subgroup chain H, C H; C H =TF5g

© Coset decomposition - supports of local codes

21/23



A ChineseRemainder-Theorem-Based All-symbol Local
Optimal Construction

X222 x20 x18 x17 x16 yld y13 yl12
{ Xl(Jijf) X8, X6, X5 x4 X2 )’(IAX(J ' }

X“J,XU,Xg, X“),X”,XH,
XG,X‘F"X/]‘ ){(57){57){47
XZ,XI,XO Xz,Xl,XU
{XZ,XI,X()} {X2,X1,X()} {X2,X1,XU} {Xz‘Xl,XU}
{X27X17X1J} {Xzﬁxl‘Xl)}

@ The tree above shows the monomials appearing in the restriction of
the code polynomial (its monomials appear on top) to each local
code.

22/23



All-symbol Local Optimal Construction: An Example
(continued)

Xls,Xl.?.XlG.XM‘XI:S Xlz.
{ X9, X8, X6, X5 x4 X2 X!, X0 }

/\

X%)vXB.’Xo"XVS’XAg ){.‘).’)('87)(61){5.’)(47
XQ,XI,X() Xz,Xl,XO
{XZ,XI,XO} {XQ,XI,XU} {XZ,Xl,XU} {XZ.XI,XO}
{XZ,XI,XO} {XZ,XI,XO}

@ The local codes can be tied together using an overall global code by
simply restricting the set of code polynomials at the top. Here we do

not allow the maximum degree to exceed 18. (The maximum was
previously 22).
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Codes with Local Regeneration



Some References

@ A.S. Rawat, O. O. Koyluoglu, N. Silberstein, S. Vishwanath, “Optimal locally repairable
and secure codes for distributed storage systems,” T-IT, Jan 2014.

@ G. M. Kamath, N. Prakash, V. Lalitha, PVK, ‘Codes With Local Regeneration and
Erasure Correction,” T-IT, Aug. 2014 .

© N. Prakash, G.M. Kamath, V. Lalitha, PVK, A.S. Rawat, O.0. Koyluoglu, N. Silberstein,
S. Vishwanath, “Explicit MBR All-Symbol Locality Codes,” ISIT 2013.

Q M. N. Krishnan, N. Prakash, V. Lalitha, B. Sasidharan, PVK, S. Narayanamurthy, R.
Kumar and S. Nandi, “Evaluation of codes with inherent double replication for Hadoop”,
in Proc. USENIX HotStorage, 2014

(first two references represent independent work carried out in parallel
the last reference is to an evaluation through hardware emulation in collaboration with NetApp)
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Codes with Local Regeneration

Codes with Locality:
Minimize repair degree

Regenerating Codes:
Minimize repair BW

Codes with Local Regeneration:
Small repair BW and
small repair degree

@ Combine notions of locality and low-bandwidth regeneration
@ New upper bounds on minimum distance

@ optimal code constructions

a G. M. Kamath, N. Prakash, V. Lalitha, PVK, ‘Codes With Local Regeneration and
Erasure Correction,” T-IT, Aug. 2014 .
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Vector Code Viewpoint

o capacity
nodes

Data
Collector

Regenerating codes can be
viewed as codes over the vec-
tor alphabet g since each node
stores o symbols.

16



Generator Matrix of a Vector Code -
Thin and Thick Columns

Thin column

Thick
column

G =

Here o = 3, so there are 3 thin columns per thick column

5/16



Codes with Uniform Rank Accumulation

o If C has length n, then G

Thin column _ will have n thick columns.

— b
% o Let S be any subset
consisting of |S| thick
columns.

column

G = @ Then C has the uniform
rank accumulation (URA)
N/ property if

S
= Cemyd - Rank(G|s)

Function only of |S|

is a function of |S| alone.

16



Examples of Codes with Uniform Rank Accumulation

Set

bi = Rank(Gls), |S|=1i

ai = bj—bji—1, i>1 (incremental rank)

bj = Za,— (cumulative rank).

Then a; > a, > --- > a,

@ A scalar code has the URA property iff it is an MDS code
@ Both MSR and MBR codes have the URA property

@ there are other examples as well...
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Uniform Rank Accumulation — MSR Code

URA profile of an (n =5,k =3,d =4), (a =2,8=1) MSR Code

Cumulative g |

Rank

(MSR

8

4

Codes) 2

0

1

2 3 4
Number of thick columns of G

5

(317 a2, ds, d4, a5)

Cumulative rank:

J
bj = E a;.
i=1

(b1, bo, b3, by, bs)

(2,2,2,0,0)

(2,4,6,6,6)



Uniform Rank Accumulation — MBR Code

URA profile of an (n =5,k =3,d =4), (a =4,8 =1) MBR Code

(31732733)34735) — (4)3727070)

Cumulative rank:
/

J

b, = g aj.

1 2 3 4 5 J !
i=1

Rank

(MBR
Codes)

onN & o ® O

Number of thick columns of G

(b17b27b37b47b5) - (47 77 97979)



Back to Vector Codes with Uniform Rank Accumulation

Recall that a vector code has the
URA has the uniform rank accu-
mulation (URA) property if

Rank(G|5) = b|5|

Function only of |S]

10/16



The Cumulative Function P
Let the sequence {a;} be repeated periodically:

(317327"'ana ai1,da2,- -+ an, a1, a2, - ,dn " )
P(j) = sum of first j terms of this periodic sequence..

Can be verified that P(-) is sub-additive:
P(x+y) < P(x)+P(y).

30
T 25 /
20
Cumulative 15 &
Function | /
P P
5T ¢
0
1 2 3 a4 5 6 7 8 9 10 1 12 13 14 15
Number of thick columns
_—
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The dmin Bound When the Local Codes have URA

Number of thick columns
Em—

«

PlmI(K)=11

Let S be maximal w.r.t. Rank(G|s) < K where K = Rank(G). Then

dmin = n—|S| = n—(PM™(K)—1) where
PIM(K) = jif P(j—1) < K < P(j).

In the example, dpin < 15— (11 —1) =5.

12/16



(Global) Code with MBR Code Locality

The construction makes use of the scalar pyramid code and is optimal:

Ps, Py,
PS,PS
Global Parity Local Code 2
|1|2|...9|P1 |12 -|9 P, P3| Py | Ps| Pg

13/16



Performance in Terms of Repair BW and Repair “Degree”

Py

Py, Py,
Ps,Ps

Local Code 1 Global Parity Local Code 2

Global Code: length = 11, dmin = 4,
Local MBR Codes: length (r + ¢ — 1) =5, minimum distance ¢ = 3,
Local MBR codes are optimum in terms of repair

Repair degree = 4 through locality.

14/16



(Global) Code with AS-MBR Code Locality

The construction makes can make use of an all-symbol local scalar code
and is also optimal:

Local Code 1 Local Code 2 Local Code 3
I Scalar All-Symbol Locality Code |
Gl G E R

15/16



Code Comparison Based on Repair BW, Repair Degree for
Given Storage Overhead

\8BF63068) MBBymbol  forudg oveaimati 22 2.4 2.6

scalar, all-symbol

16/16



Codes with Locality for Multiple
Erasures



Different Approaches: Codes with Locality for Multiple
Erasures

@ Increasing trend towards low-cost commodity servers with higher
failure rates
@ Presence of "hot" nodes which are inaccessible during repair

=

| | N

Simultaneous Recovery in Parallel

Recovery

2/14



Handling Multiple Erasures: Stronger Local Codes
Approach

(local codeword) (local codeword)

(Information-Symbol locality)

(local codeword) (local codeword)

3/14



More on ‘Stronger Local Codes Approach’

If an [n, K, dmin] code C has information symbol locality r, then

K

dmin < (N—K+1) — (H—1)(5_1)

Singleton bound

~
price for locality requirement

@ Generalization of the Gopalan et al bound

@ Pyramid code construction can be extended to this case as can the
construction by Tamo and Barg

@ More recent results by Wentu Song, Son Hoang Dau, Chau Yuen, and
Tiffany Jing Li

@ N. Prakash, G. Kamath, V. Lalitha, and PVK, “Optimal linear codes with a
local-error-correction property,” in ISIT 2012.
@ Optimal Locally Repairable Linear Codes, by Wentu Song, Son Hoang Dau, Chau Yuen,
and Tiffany Jing Li.
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Example of the Orthogonal Parity-Check Approach

@ Each data symbol is protected by two local codes with disjoint support

@ All local codes are single-parity-check codes

5/14



LDPC Code Connection

Codes with orthogonal parity-checks can also be obtained from

(dy, dc)-regular LDPC Codes, assuming the absence of cycles of length
<4

(this is well known)
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An Example (d,, d.)-Regular LDPC Code




An Example (d,, d.)-Regular LDPC Code

Our interest is in those codes where
@ each variable node has degree t
@ each check node has degree (r + 1)

@ there are no cycles of length 4
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An Example (d,, d.)-Regular LDPC Code

This ensures that:
@ each code symbol has locally r

@ Each code symbol is protected by t orthogonal parity checks

/14



Codes for Two-Erasure Correction
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The Sequential-Recovery Approach - An Example

Parity- '

Check
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The Sequential-Recovery Approach - A More General
Turan-Graph Framework

\ [ - \ P4

Turan Graph

Pl / \
/ \
\“ \‘
P, ‘ , ‘ Ps
\ ‘ /
P, @— —w / P
N N

(9 edges form remaining code symbols)
(n=15)
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The Sequential-Recovery Approach - A More General
Turan-Graph Framework

@ The Turan graph construction has an additional feature that it leads
to optimal solutions for smaller rates than the rate that arises from
the constraints

@ This can be explained using the theory of Generalized Hamming
Weights of a block code

@ V.K. Wei, “Generalized Hamming Weights for Linear Codes,” IEEE Trans. Inform. Th,
1991.
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Additional References

Note: This list adds to the papers referenced in the slides. Coding for
distributed storage is a rapidly growing field of research activity and there
are a large and ever-growing number of publications in this area. The listing
below does not claim in any way to be comprehensive, and apologies are
offered in advance for any missing references.



R rating Codes

@ A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran, “Network
coding for distributed storage systems,” IEEE Transactions on Information Theory, vol. 56
no. 9, pp. 4539-4551, 2010.

e Y. Wu, A. G. Dimakis, K. Ramchandran, “Deterministic Regenerating Codes for

Distributed Storage,” 45th Annual Allerton Conference on Communication, Control, and
Computing, Allerton, 2007.



rating Codes - MSR and MBR Co

e V.R. Cadambe, S. A. Jafar, H. Maleki, K. Ramchandran, and C. Suh, “Asymptotic
interference alignment for optimal repair of MDS codes in distributed storage,” IEEE
Transactions on Information Theory, vol. 59 no. 5 pp. 2974-2987, 2013.

Q K. V. Rashmi, N. B. Shah, P.V. Kumar, “Optimal Exact-Regenerating Codes for
Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction,”
IEEE Transactions on Information Theory, vol. 57, no.8, pp. 5227-5239, Aug. 2011. 8

© N. B. Shah, K. V. Rashmi, P. V. Kumar, K. Ramchandran, “Distributed Storage Codes
With Repair-by-Transfer and Nonachievability of Interior Points on the Storage-Bandwidth
Tradeoff," IEEE Transactions on Information Theory, vol. 58 no. 3, pp. 1837-1852, March
2012.

0 N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran, “Interference Alignment in
Regenerating Codes for Distributed Storage: Necessity and Code Constructions,” IEEE
Transactions on Information Theory, vol. 58, no. 4, pp. 2134-2158, April 2012.

e C. Suh and K. Ramchandran, “Exact-repair MDS code construction using interference
alignment,” IEEE Transactions on Information Theory, vol. 57, no. 3, pp. 1425-1442,
2011.

@ |. Tamo, Z. Wang, J. Bruck, “Zigzag Codes: MDS Array Codes with Optimal Rebuilding,
CoRR, abs/1112.0371, 2011.

@ D. S. Papailiopoulos, A. G. Dimakis, and V. R. Cadambe, “Repair Optimal Erasure Codes
through Hadamard Designs,” IEEE Transactions on Information Theory, vol. 59, no.5, pp.
3021-3037, 2013.

Q Z. Wang, |. Tamo, J. Bruck, “On Codes for Optimal Rebuilding Access,” Allerton, 2011.



Regenerating Codes - MSR and MBR Constructions

(contd.)

@ K. Rashmi, N. Shah, P. Kumar and K. Ramchandran, “Explicit construction of optimal
exact regenerating codes for distributed storage,” in Proc. 47th Annu. Allerton Conf.
Communication, Control, and Computing, Urbana-Champaign, IL, Sep. 2009, pp.
1243-1249

@ S. Lin and W. Chung, “Novel Repair-by-Transfer Codes and Systematic Exact-MBR Codes
with Lower Complexities and Smaller Field Sizes,” IEEE Trans. Parallel Distrib. Syst., vol.
25, no. 12, pp. 3232-3241, 2014

© B. Sasidharan, G. K. Agarwal and P. V. Kumar, " A high-rate MSR code with polynomial
sub-packetization level,” Information Theory (ISIT), IEEE International Symposium on,
2015, pp. 2051-2055

@ Y. S. Han, H. Pai, R. Zheng, and P. K. Varshney, “Update-Efficient Error- Correcting

Product-Matrix Codes,” IEEE Trans. Commun., vol. 63, no. 6, pp. 19251938, Jun. 2015

G. K. Agarwal, B. Sasidharan and P. V. Kumar, “An alternate construction of an

access-optimal regenerating code with optimal sub-packetization level”, in Proc.

Communications (NCC), National Conference on, 2015

A. S. Rawat, O. O. Koyluoglu, and S. Vishwanath, “Progress on High-rate MSR Codes:

Enabling Arbitrary Number of Helper Nodes,” CoRR, abs/1601.06362, 2016

M. N. Krishnan and P. V. Kumar, “On MBR codes with replication,” CoRR,

abs/1601.08190, 2016

S.Goparaju, A. Fazeli and A. Vardy, “Minimum Storage Regenerating Codes For All

Parameters,” CoRR, abs/1602.04496, 2016

N. Raviv, N. Silberstein and T. Etzion, “Constructions of High-Rate Minimum Storage

Regenerating Codes over Small Fields,” CoRR, abs/1505.00919
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Interior-Point Constructions (Between MSR and MBR

Points)

@ S. Goparaju, S. El Rouayheb, A. R. Calderbank, “New Codes and Inner Bounds for Exact
Repair in Distributed Storage Systems,” ISIT 2014

9 T. Ernvall, “Exact-Regenerating Codes between MBR and MSR Points,” CoRR
abs/1304.5357

© B. Sasidharan, P. V. Kumar, “High-rate regenerating codes through layering,” ISIT 2013.

0 C. Tian, B. Sasidharan, V. Aggarwal, V. A. Vaishampayan, and P. V. Kumar, “Layered
exact-repair regenerating codes via embedded error correction and block designs,” IEEE
Trans. Inf. Theory, vol. 61, no. 4, pp. 1933-1947, 2015.

@ K. Senthoor, B. Sasidharan and P. V. Kumar, “Improved layered regenerating codes
characterizing the exact-repair storage-repair bandwidth tradeoff for certain parameter
sets,” in Proc. IEEE Information Theory Workshop (ITW), 2015.



Exact-Repair Tradeoff

@ N. B. Shah, K. V. Rashmi, P. V. Kumar, K. Ramchandran, “Distributed Storage Codes
With Repair-by-Transfer and Nonachievability of Interior Points on the Storage-Bandwidth
Tradeoff, " IEEE Transactions on Information Theory, vol. 58 no. 3, pp. 1837-1852, March
2012.

@ C. Tian, Characterizing the rate region of the (4, 3, 3) exact-repair regenerating codes,
IEEE Journal on Selected Areas in Communications, vol. 32, no. 5, pp. 967975, May 2014.

B. Sasidharan, K. Senthoor, P. V. Kumar, “An Improved Outer Bound on the
Storage-Repair-Bandwidth Tradeoff of Exact-Repair Regenerating Codes.” ISIT 2014
@ N. Prakash and M. N. Krishnan, “The storage-repair-bandwidth trade-off of exact repair
linear regenerating codes for the case d = k = n - 1, in Proc. IEEE International
Symposium on Information Theory, ISIT, 2015.

©

Q S. Mohajer and R. Tandon, “New bounds on the (n, k, d) storage systems with exact
repair,” in Proc. IEEE International Symposium on Information Theory, ISIT, 2015

@ M. Elyasi, S. Mohajer and R. Tandon, “Linear exact repair rate region of (k + 1, k, k)
distributed storage systems: A new approach,” in Proc. IEEE International Symposium on
Information Theory, ISIT, 2015

e I. M. Duursma, “ Outer bounds for exact repair codes,” CoRR abs/1406.4852
Q I. M. Duursma, “Shortened regenerating codes,” CoRR abs/1505.00178



Sub-Packetization Bounds

Q S. Goparaju, I. Tamo, and R. Calderbank, “An Improved SubPacketization Bound for
Minimum Storage Regenerating Codes,” in IEEE Transactions on Information Theory, vol.
60, no. 5, 2014, pp. 2770-2779.

@ 1. Tamo, Z. Wang, J. Bruck, "Access vs. bandwidth in codes for storage,” ISIT, 2012.



Cooperative and Adaptive Repair

e K. W. Shum, Y. Hu, “Cooperative Regenerating Codes,” CoRR abs/1207.6762, 2012.

Q A. M. Kermarrec, N. Le Scouarnec, G. Straub, “Repairing Multiple Failures with
Coordinated and Adaptive Regenerating Codes,” NetCod, 2011.

. Wang, Z. ang, xact Cooperative Regenerating Codes wit
A. W Z. Zh “E C ive R ing Cod ith
Minimum-Repair-Bandwidth for Distributed Storage,” INFOCOM, 2013.



etition Codes

@ N. Silberstein and T. Etzion, “Optimal fractional repetition codes based on graphs and
designs,” IEEE Trans. Inf. Theory, vol. 61, no. 8, pp. 41644180, 2015.

@ J. C. Koo and J. T. Gill. Ill, “Scalable constructions of fractional repetition codes in
distributed storage systems,” in Proc. 49th Annual Allerton Conf. on Comm., Control, and
Computing, pp. 1366-1373, 2011.

© O. Olmez and A. Ramamoorthy, “Repairable replication-based storage systems using
resolvable designs,” in Proc. 50th Annual Allerton Conf. on Comm., Control, and
Computing, pp. 1174-1181, 2012.

@ S. El Rouayheb, K. Ramchandran, “Fractional repetition codes for repair in distributed
storage systems,” Allerton, 2010.



Codes with Locality

Q P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the Locality of Codeword
Symbols,” IEEE Trans. Inf. Theory, vol. 58, no. 11, pp. 6925-6934, Nov. 2012.

@ M. Forbes and S. Yekhanin, " On the locality of codeword symbols in non-linear codes”,
arXiv:1303:3921, 2013.

e C. Huang, M. Chen, J. Li, “"Pyramid codes: Flexible schemes to trade space for access
efficiency in reliable data storage systems,” Sixth IEEE International Symposium on
Network Computing and Applications, 2007.

0 J. Han and L. A. Lastras-Montano, “Reliable memories with subline accesses,” Proc. IEEE
Internat. Sympos. Inform. Theory, 2007, pp. 2531-2535.

@ D. S. Papailiopoulos, A. G. Dimakis, “Locally repairable codes,” ISIT, 2012.

© F. Oggier, A. Datta, “Self-repairing homomorphic codes for distributed storage systems,”
IEEE INFOCOM, 2011.

@ D. S. Papailiopoulos, J. Luo, A. G. Dimakis, C. Huang, and J. Li, “Simple regenerating
codes: Network coding for cloud storage, " Proc. IEEE INFOCOM, 2012, pp. 2801-2805.

© N. Prakash, G.M. Kamath, V. Lalitha, P. V. Kumar, “Optimal linear codes with a
local-error-correction property,” ISIT, 2012.

© 1. Tamo, A. Barg, “A Family of Locally Recoverable Codes,” ISIT 2014.



Codes Combining R eration with Locality

@ A.S. Rawat, O. O. Koyluoglu, N. Silberstein, S. Vishwanath, “Optimal locally repairable
and secure codes for distributed storage systems,” IEEE Transactions on Information
Theory, Jan. 2014.

@ G. M. Kamath, N. Prakash, V. Lalitha, P.V. Kumar, “Codes with local regeneration,” ISIT
2013, also IEEE Transactions on Information Theory, Aug. 2014.

© N. Prakash, G.M. Kamath, V. Lalitha, P.V. Kumar, A.S. Rawat, 0.0. Koyluoglu, N.
Silberstein, S. Vishwanath, “Explicit MBR All-Symbol Locality Codes,” ISIT 2013.



Maximal Recoverable and Partial-MDS Codes

@ M. Chen, C. Huang, and J. Li, "On the Maximally Recoverable Property for
Multi-Protection Group Codes”, ISIT 2007.

@ P. Gopalan, C. Huang, B. Jenkins, S. Yekhanin, “Explicit maximally recoverable codes with
locality,” CoRR, abs/1307.3150, 2013.

Q M. Blaum, J. Hafner, and S. Hetzler, Partial-MDS Codes and their Application to RAID
Type of Architectures, CoRR, vol. abs/1205.0997, 2012.

© J. S. Plank and M. Blaum, Sector-disk (SD) erasure codes for mixed failure modes in RAID
systems, TOS, vol. 10, no. 1, p. 4, 2014.

@ M. Blaum, Construction of PMDS and SD codes extending RAID 5, CoRR, vol.
abs/1305.0032, 2013.

Q M. Blaum and J. S. Plank, Construction of two SD codes, CoRR, vol. abs/1305.1221, 2013.

0 M. Blaum, J. S. Plank, M. Schwartz, and E. Yaakobi, Construction of partial MDS
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Codes with Locality - Parallel Reco
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Codes with Locality - Sequential Recovery
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