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Organization

Module No Topic

1 Distributed Storage, Reed-Solomon
2 Regenerating Codes
3 Interior Points, High-Rate Codes
4 Codes with Locality
5 Codes with Local Regeneration
6 Codes for Multiple Erasures

List of References
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Distributed Storage Setting

data pertaining to a single file
is distributed across storage
nodes

nodes are inexpensive storage
devices
(a) prone to failure,
(b) down for maintenance,
(c) unavailable, busy serving

other demands..
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Distributed Storage Setting

Need for e�cient repair of a
failed node arises

Focus on
(a) repair bandwidth - amount

of data download
(b) repair degree - number of

helper nodes contacted

(the amount of data stored can be very very large ) “Big Data”)
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Just How Big is Big Data ?

Pictures from two di↵erent Data
Centers..
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A Recently Completed Large Data Center

Figure: The NSA Data Center in Utah.

Estimated to store several between 3� 12 Exabytes!

GigaByte ! TeraByte ! PentaByte ! ExaByte = One Billion GB!
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Completed at an estimated cost of $1.5 billion..

Another $2 billion for hardware, software, and maintenance

65 MW of power, costing about $40 million per year

use 1.7 million gallons of water per day

10 / 26



Reed-Solomon Codes

I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. J. SIAM, 1960.

11 / 26



The Underlying Principle of Reed-Solomon (RS) Codes

Assume that this is the plot of a polynomial of degree 5

then its values at any 6 of the 9 points shown are su�cient to
determine its values everywhere else

can use as an [9, 6] erasure code (any 6 out of 9)
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Example Finite Field F8 of size 23 = 8
The field F8 consists of all polynomial expressions of the form

X

i

a
i

↵i

involving an imaginary element ↵ that satisfies the equation

↵3 + ↵+ 1 = 0.

For this reason, we can write:

F8 = {
2X

i=0

a
i

↵i , | a
i

2 {0, 1}}.

Here, the coe�cients a
i

2 {0, 1}, commute multiplicatively with ↵j , and
arithmetic involving the a

i

is carried out modulo 2:

a
i

+ a
j

= a
i

+ a
j

(mod 2)

a
i

a
j

= a
i

a
j

(mod 2).
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Conversion Table for Adding and Multiplying

Exponential rep. Polynomial rep.

0 0
1 1
↵ ↵
↵2 ↵2

↵3 ↵+ 1
↵4 ↵2 + ↵
↵5 ↵2 + ↵+ 1
↵6 ↵2 + 1
↵7 1

With this, we can add elements in the polynomial domain:

(↵2 + ↵) + (↵+ 1) = ↵2 + 1

and use the exponential form to multiply:

↵4↵5 = ↵9 = ↵7↵2 = ↵2.
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Recovery by Solving a System of Linear Equations

f (x) =
5X

i=0

a

i

x

i , (with a

i

lying in an appropriate finite field)

2

6664

f (x1)
f (x2)

...
f (x6)

3

7775
=

2

6664

1 x1 · · · x

5
1

1 x2 · · · x

5
2

...
...

...
...

1 x6 · · · x

5
6

3

7775

| {z }
Vandermonde matrix

(invertible)

2

6664

a0

...
a5

3

7775

The 6 coe�cients {a
i

}5
i=0 can be recovered from any 6 values {f (x

i

)}6
i=1

possesses the ‘any-6-of-9’ property
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The Reed-Solomon Code in Operation

Reed$Solomon*
Codeword*X6*X1* X5*X2* X3* X4* P1* P2* P3*

(any*6*of*9*can*be*used*to*recover*the*codeword)*the contents of a single data file split into 6 fragments and a
Reed-Solomon code used to generate 3 additional redundant
fragments which are stored in 9 nodes in the network

each fragment represents a single symbol of the codeword

the file can be recovered from any 6 fragments

it can hence tolerate 3 node failures

Overhead = 50% (sometimes, we will say overhead of 1.5)

o↵ers lower probability of data loss to triple replication (a competing
code!), for lesser overhead
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Maximum Distance Separable (MDS) Codes

MDS codes are a class of codes that also possess the ‘any k of n’ property

1 this class includes Reed-Solomon codes

2 the minimum Hamming distance dmin between a pair of distinct
codewords in an MDS code satisfies the Singleton bound

dmin  n � k + 1,

with equality and the codes are hence said to be maximum distance
separable.
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An Example MDS Code Used in the Storage Industry

Disk 1

Disk 2

Disk 3

Disk 4

A

B

A+B

A+θB

A

B

(4, 2) MDS code

Used in RAID 6

[4, 2] MDS code

Can recover data by connecting
to any 2 of 4 nodes

In comparison with triple
replication, o↵ers robustness at
smaller values of storage
overhead

RAID: Redundant Array of Independent Disks
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But How Well Does It Handle Node Failure ?

An obvious approach:

Connect to any k nodes,

Reconstruct entire data file,

Reconstruct data stored in the
node

Disk 1

Disk 2

Disk 3

Disk 4

A

B

A+B

A+θB

A

B

(4, 2) MDS code
Used in RAID 6

B

A+B

New disk 1

But downloading 2 units of data to revive a node that stores 1 units of
data is wasteful!
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A Second Example: Facebook’s HDFS-RAID Code

1

3

2

4

9

8

7

6

5

10

1

3

2

4

9

8

7

6

5

10

P1

P3

P2

P4

Node 1

Node 3

Node 2

Node 5

Node 4

Node 7

Node 6

Node 9

Node 8

Node 12

Node 10

Node 11

Node 14

Node 13

[14, 10] MDS code

Can recover data by
connecting to any 10
nodes

Used in Facebook data
centers

HDFS ⌘ Hadoop
Distributed File System

D. Borthakur, R. Schmit, R. Vadali, S.

Chen, and P. Kling. ”HDFS RAID.” Tech

talk. Yahoo Developer Network, Nov.

2010
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How Well Does it Handle Node Failure ?

1

3

2

4

9

8

7

6

5

10

1

3

2

4

9

8

7

6

5

10

P1

P3

P2

P4

Node 1

Node 3

Node 2

Node 5

Node 4

Node 7

Node 6

Node 9

Node 8

Node 12

Node 10

Node 11

Node 14

Node 13

Needs to connect to 10
nodes to repair a failed
node

This calls for interrupting
operations in 10 nodes
(apart from downloading
the entire data file)

10 is the repair degree

Are there better options ?
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Two Problems – Two Solutions

Codes&with&
Locality&

Low&
Repair&
Degree&

Regenera6ng&
Codes&

Low&
Repair&

Bandwidth&

(the focus of this tutorial is on the development
of these two classes of codes)

A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran, “Network
Coding for Distributed Storage Systems,” IEEE Trans. Inform. Th., Sep. 2010.

P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the Locality of Codeword
Symbols,” IEEE Trans. Inf. Theory, Nov. 2012.
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Push Back from Reed-Solomon Codes

1 Piggybacked RS codes
I Improvements in repair of a modified RS code by repairing several

codewords cooperatively

2 repairing RS codes using nonlinear operations

K. V. Rashmi, N. B. Shah, and K. Ramchandran. A piggybacking design framework for
read-and download-e�cient distributed storage codes. In IEEE International Symposium
on Information Theory, 2013.

K. V. Rashmi, Nihar B. Shah, Dikang Gu, Hairong Kuang, Dhruba Borthakur, and
Kannan Ramchandran , “A ”Hitchhiker’s” Guide to Fast and E�cient Data
Reconstruction in Erasure-coded Data Centers, ” ACM SIGCOMM, Aug 2014.

Venkatesan Guruswami, Mary Wootters, “Repairing Reed-Solomon Codes,”
arXiv:1509.04764 [cs.IT] .
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Piggy-Backing RS Codes - Encoding

a1 a2
b1 b2

a1 + b1 a2 + b2
a1 + 2b1 a2 + 2b2

) (adding functions of col. 1 to entries in col. 2)

a1 a2
b1 b2

a1 + b1 a2 + b2
a1 + 2b1 a2 + 2b2+a1

) (linear operations within the same node)

a1 a2
b1 b2

a1 + b1 a2 + b2
a1 + 2b1�(a2 + 2b2 + a1) a2 + 2b2 + a1

(each row is a node)
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Piggy-Backing RS Codes - Repair

a1 a2
b1 b2

a1 + b1 a2 + b2
2b1 � a2 � 2b2 a2 + 2b2 + a1

( The Code

⇢⇢ZZa1 ⇢⇢ZZa2
b1 b2

a1 + b1 a2 + b2
2b1 � a2 � 2b2 a2 + 2b2 + a1

( when node 1 fails

a1 a2

��@@b1 ��@@b2
a1 + b1 a2 + b2

2b1 � a2 � 2b2 a2 + 2b2 + a1

( when node 2 fails

(helper symbols in blue )
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E�cient Repair of RS Codes

Show that
“O(k) bits are necessary to recover a missing evaluation. In contrast,
the traditional method of looking at k evaluations requires
⌦(klog(k)) bits. We also show that our result is optimal for linear
methods, even up to the leading constants.”

Venkatesan Guruswami and Mary Wootters, “Repairing Reed-Solomon Codes,”
arXiv:1509.04764v1 [cs.IT] for this version. 26 / 26



Regenerating Codes

Dimakis, Godfrey, Wu,Wainwright, Ramchandran, T-IT, Sep. 2010, Communications Society &
Information Theory Society Joint Paper Award.



RAID Codes not very E�cient at Handling Node Repair

Approach to node repair:

Connect to any k nodes,

Reconstruct entire data file,

Reconstruct data stored in the
node

Disk 1

Disk 2

Disk 3

Disk 4

A

B

A+B

A+θB

A

B

(4, 2) MDS code
Used in RAID 6

B

A+B

New disk 1

But downloading 2 units of data to revive a node that stores 1 unit of data
is wasteful!

(focus here is on minimizing repair bandwidth)



An Improved (Regenerating) Code

Here, each node now stores two “half-symbols”

We download 3 half-symbols as opposed to 2 full-symbols
I vector symbol alphabet ) F2

q versus Fq2

Disk 1

Disk 2

Disk 3

Disk 4

 

B 1

2
A

1
+
2
A

2
+
B

1

2
A

1
+
4
A

2
+
2
B

1

A
1

A
2

B
1

B
2

A
1

A
2

B
1

B
2

2A
1
+2A

2
+B

1

2A
1
+4A

2
+2B

1

A
2
+2B

1
+2B

2

A
2
+2B

1
+4B

2

A
1

A
2



Regenerating Codes - Formal Definition

Parameters: ( (n, k , d), (↵,�), B , Fq )

1 

k+1 

k 

2 

n 

Data 
Collector 

α 

α 

α 

α capacity 
nodes 

1 

d+1 

2 

n 

1’ 

3 
β 

β 

β 

α capacity 
nodes 

Data to be recovered by connecting to any k of n nodes

Nodes to be repaired by connecting to any d nodes, downloading �
symbols from each node; (d� << file size B )

Di↵erentiate between functional and exact repair



Regenerating Codes - Formal Definition

Parameters: ( (n, k , d), (↵,�), B , Fq )

1 

k+1 

k 

2 

n 

Data 
Collector 

α 

α 

α 

α capacity 
nodes 

1 

d+1 

2 

n 

1’ 

3 
β 

β 

β 

α capacity 
nodes 

Data to be recovered by connecting to any k of n nodes

Nodes to be repaired by connecting to any d nodes, downloading �
symbols from each node; (d� << file size B )

Di↵erentiate between functional and exact repair



Cut-Set Bound from Network Coding

Given code parameters {[n, k , d ], (↵,�)}:

B 
kX

i=1

min{↵, (d � i + 1)�}.

cut

DC

in out

(can be shown to be achievable under functional repair)

Dimakis, Godfrey, Wu,Wainwright, Ramchandran, T-IT, Sep. 2010
Wu, IEEE JSAC, Feb. 2010.



cut

DC

in out

(the capacity of the cut shown equals ↵+ ↵+ (d � 2)� + (d � 3)� )



The Storage-Repair Bandwidth Tradeo↵

The upper bound on file size:

B 
kX

i=1

min{↵, (d � i + 1)�} (multiple (↵,�) pairs can achieve bound)

Tradeo↵ curve drawn for
fixed (k , d),B .

Extreme points: MSR &
MBR

I MSR=Minimum Storage

Regenerating

↵ = (d � k + 1)�
I MBR=Minimum

Bandwidth Regenerating

↵ = d�

  

(k, d) = (120, 129),B = 725360



File Sizes

B =
kX

i=1

min{↵, (d � i + 1)�}

1 MSR Code:

B = ↵k

I Hence qB = q↵k = (q↵)k = (q↵)n�dmin+1 achieves the Singleton
bound on code size over an alphabet F↵

q of size q↵.
I Hence MSR codes are MDS!

2 MBR File size:

B =
kX

i=1

(d � i + 1)� =

✓
dk �

✓
k

2

◆◆
�.



AN EXAMPLE MSR CODE



The (Previously Seen) Example MSR Code

Parameters: {(n = 4, k = 2, d = 3), (↵ = 2,� = 1), B = 4}
A vector MDS code

↵ = (d � k + 1) (minimum possible) and B = ↵k

Disk 1

Disk 2

Disk 3

Disk 4

 

B 1

2
A

1
+
2
A

2
+
B

1

2
A

1
+
4
A

2
+
2
B

1

A
1

A
2

B
1

B
2

A
1

A
2

B
1

B
2

2A
1
+2A

2
+B

1

2A
1
+4A

2
+2B

1

A
2
+2B

1
+2B

2

A
2
+2B

1
+4B

2

A
1

A
2



At the other end of the tradeo↵,

AN EXAMPLE MBR CODE

(aka “The Repair-by-Transfer” MBR Code)

Shah, Rashmi, PVK, Ramchandran, T-IT, Mar. 2012.



Step 1: Add an Extra Parity to the 9 Units of Data

1" 2" 3" 4" 5" 6" 7" 8" 9"

1" 2" 3" 4" 5" 6" 7" 8" 9" P"



Step 2: Set up Completely-Connected Pentagon (10 Edges)

1,2,3,4&

&&&&

&&

1"

2"



Step 3: Place Coded Data on Edges

1,2,3,4&

&&&&

&&

1"

6"

8"

P"

4"

7"
3"

9"

2"

5"



Step 4: Load Data from Edges onto Nodes

2,5,6,P&

&&&&

&&&

P"

4"

8"

7"

6"

1"
2"

3"

5"

9"



Step 4: Transfer Data from Edges into Nodes

2,5,6,P&

&2,4,7,8&&3,5,8,9&

&1,3,6,7&1,4,9,P&

P&

4&

8&

7&

6&

1&
2&

3&

5&

9&



End of Encoding Procedure

2,5,6,P&

&2,4,7,8&&3,5,8,9&

&1,3,6,7&1,4,9,P&



Node Failure

2,5,6,P&

&2,4,7,8&&3,5,8,9&

&1,3,6,7&1,4,9,P&



Node Repair

2,5,6,P&

&2,4,7,8&&3,5,8,9&

&1,3,6,7&1,4,9,P&

P& 6&

2&5&



Node Repair

2,5,6,P&

&2,4,7,8&&3,5,8,9&

&1,3,6,7&1,4,9,P&

P& 6&

2&5&



Node Repair Complete

2,5,6,P&

&2,4,7,8&&3,5,8,9&

&1,3,6,7&1,4,9,P&



Data Collection

2,5,6,P&

&2,4,7,8&&&&

&1,3,6,7&!!

Data!
Collector!



Data Collection

2,5,6,P&

&2,4,7,8&&&&

&1,3,6,7&!!

Data!
Collector!

9!Only!symbol!!
missing!is!“9”!



Data Collection Complete

2,5,6,P&

&2,4,7,8&&&&

&1,3,6,7&!!

Data!
Collector!

9!Only!symbol!!
missing!is!“9”!

Can!be!!
recomputed!!
from!“P”!



Pentagon Code Node Downloads only as Much as it Stores

2,5,6,P&

&2,4,7,8&&3,5,8,9&

&1,3,6,7&1,4,9,P&

(hence, is repair-bandwidth e�cient)



THE PRODUCT MATRIX CODE

Rashmi, Shah and PVK, T-IT, AUG. 2011, 2011-12 IEEE Data Storage Best Paper and Best

Student Paper Award.



Product-Matrix Framework

C|{z}
n⇥↵

=  |{z}
n⇥d

M|{z}
d⇥↵

M : Message matrix
I Contains message symbols with some message symbols repeated
I Possesses a block-symmetry property

 : Encoding matrix
I Used to disperse information across the nodes
I Independent of message symbols

C : Code matrix
I Each row represents one node
I i th node stores:  t

i
M



The Product-Matrix MBR (PM-MBR) Code

↵ = d

B = kd �
�k
2

�
! B =

�k+1
2

�
+ k(d � k)

Let S be a (k ⇥ k) symmetric matrix with
�k+1

2

�
distinct message

symbols

Let T be a (k ⇥ (d � k)) matrix with k(d � k) distinct message
symbols

thus all message symbols are accounted for



Product-matrix MBR Code

Message matrix M|{z}
d⇥d

=

2

66664

S|{z}
k⇥k

T|{z}
k⇥(d�k)

T t
|{z}

(d�k)⇥k

0|{z}
k⇥(d�k)

3

77775
(symmetric)

Encoding matrix  |{z}
n⇥d

=


�|{z}

n⇥k

�|{z}
n⇥(d�k)

�

�: any k rows linearly independent
 : any d rows linearly independent

e.g., Cauchy, Vandermonde matrix



Product-matrix MBR Code : Data Reconstruction

Node i passes:  t
i
M

aggregate
?y

 DCM
( DC = [�DC �DC] is (k ⇥ d))?y

decode
⇥
�DCS +�DCT t �DCT

⇤

#

�DC is k ⇥ k , invertible
Decode T

#

Subtract �DCT t , Decode S

M =


S T
T t 0

�

 =
⇥
� �

⇤

C =  M



Product-matrix MBR Code : Exact Regeneration

Replacement node f needs:  t
f
M

Helper node i , 1  i  d stores:  t
i
M

————————————————————

Helper node i passes:  t
i
M 

f

aggregate
?y

 repairM 
f

( repair is d ⇥ d , invertible)
?y

M 
f

(M is symmetric)
?y

 t
f
M

M =


S T
T t 0

�

 =
⇥
� �

⇤

C =  M



The Product-matrix MSR Code Parameters

Here again � = 1

↵ = d � k + 1



The MSR point-Numerology

d < 2k � 3 not possible with � = 1

This code is designed for d � 2k � 2

Choose d = 2k � 2 first, then extend to higher d

Gives
k = ↵+ 1

d = 2↵

B = ↵(↵+ 1)

S1, S2: (↵⇥ ↵) symmetric matrices with ↵(↵+1)
2 distinct message

symbols each



The Product-Matrix MSR Code

Message matrix M|{z}
d⇥↵

=

2

6664

S1|{z}
↵⇥↵

S2|{z}
↵⇥↵

3

7775

Encoding matrix  |{z}
n⇥d

=


�|{z}

n⇥↵

⇤�|{z}
n⇥↵

�

�: any ↵ rows linearly independent
⇤: n ⇥ n diagonal matrix with the diagonal elements distinct
 : any d rows linearly independent
e.g., Vandermonde



The Product-Matrix MSR Code-Data Reconstruction

Node i passes:  t
i
M

aggregate
?y
 DCM

( DC = [�DC ⇤DC�DC] is k ⇥ d)

#
[�DCS1 + ⇤DC�DCS2]?y

[�DCS1�t
DC + ⇤DC�DCS2�t

DC]

#
[P + ⇤DCQ]

(P and Q symmetric)

#
(i , j) : Pij + �iQij , (j , i) : Pij + �jQij

(Solve for P and Q)

#
Recover S1 and S2

M =


S1
S2

�

 =
⇥
� ⇤�

⇤

C =  M



The Product-Matrix MSR Code-Exact Regeneration

Replacement node f needs:  t
f
M

Helper node i stores:  t
i
M

————————————————————

Helper node i passes:  t
i
M�

f

aggregate
?y

 repM�
f

( rep is d ⇥ d , invertible)

?y

M�
f
=


S1�f
S2�f

�

?y

�t
f
S1 + �f �

t
f
S2 =  t

f
M

M =


S1
S2

�

 =
⇥
� ⇤�

⇤

C =  M



INTERIOR POINTS OF THE TRADEOFF



Interior Points Not-Achievable Under Exact Repair!

No exact-repair code can achieve an interior point on the tradeo↵...

100 110 120 130 140 150 160 170
150

200

250

300

350

400

450

Storage per node, α

R
ep

ai
r b

an
dw

id
th

, d
β

Not Achievable

Unknown

(However, can exact-repair codes approach the tradeo↵ asymptotically,
i.e., as B ! 1 ? )

(Shah, Rashmi, PVK, Ramchandran, T-IT, Mar. 2012),



Explaining Why Not Achievable - Notation

W1#

W5#

W4# W3#

W2#

S#2#1#

S#1#2#
node#

Repair#data#

n nodes

ith node stores ↵ symbols,
random variable Wi

Sy
x ) the � symbols sent

from x to repair node y



The Repair Matrix R

Sy
x is the repair data sent

from node x to node y

( (d + 1) ⇥ (d + 1) )



More Notation

n random variables:

{Wi | 1  i  n}.

A further n(n � 1) random variables:

{S j
i | 1  i , j  n, i 6= j}.

Hence, in all, n2 random variables.

Let B denote the data file and

| B |= B .



Constraints

H(Wi )  ↵, entropy of ith node

H(S j
i )  �, entropy of repair data

H(B | WA) = 0, | A |= k , data collection property

H(Wi | B) = 0, node contents a function of file data

H(S j
i | Wi ) = 0, repair data draws from node contents

H(Wi | S i
A) = 0, repair property

if | A |= d and i 62 A



Some Background: Non-Existence Proof (Exact-Repair)

1 MSR , ↵ = (d � k + 1)�, MBR , ↵ = d�

2 Interior: , ↵ = (d � µ)� , 1  µ  (k � 2)

We assume wolog (n = d + 1), as restriction to (d + 1) nodes is also a
regenerating code:

Parameters: ( (n0 = d + 1, k , d), (↵,�), B , Fq )



Exact-Repair File Size Bound

Let

[d + 1] = X [̇ Y [̇ Z

| X | = µ+ 1

| Y | = k � (µ+ 1)

| Z | = (d + 1� k)

Then

B = H(WX , SY , S
Y
Z )

SY = {S j
i | i , j 2 Y , i > j}

SY
Z = {Sy

z | z 2 Z , y 2 Y }



Exact-Repair File Size Bound

Turns out that if an exact-repair code meets the cut-set bound, in the
inequalities

B = H(WX , SY , S
Y
Z )

= H(WX ) + H(SY | WX ) + H(SY
Z | WX , SY )

 H(WX ) + H(SY ) + H(SY
Z )

 | X | ↵ + | SY | � + | SY
Z | �,

we must have, equality throughout, i.e.,

B = | X | ↵ + | SY | � + | SY
Z | �.



Non-Existence via Properties of the Repair Matrix R
Assuming the existence of an optimal exact-repair code, we must have:

B = H(WX , SY , S
Y
Z ) = | X | ↵ + | SY | � + | SY

Z | �.

X 

Y 

Z 

X Y Z 

SY 

SZ 

WX 

Y 

Turns out however, every row of R has entropy at most � -
contradiction!

Shah, Rashmi, PVK, Ramchandran, T-IT, 2012.



Explaining Why Rows Have Small Entropy
Goal: Explain why every row of R has entropy at most �. In figure below,
|L| = p = (µ+ 1).

H(SL
m) = H(SL

m | WL)
| {z }

(µ+1)H(S
`0
m |WL)=0

+ I (SL
m : WL)

| {z }

I (Wm;WL)�

 �.

Because | L |= (µ+ 1) is

large enough to permit interference cancellation to take place while
passing repair information

small enough that the mutual information is limited by �



The Computation

We have:

H(SL
m) = H(SL

m | WL) + I (SL
m : WL)

 `
n

H(WL/S
`0
m ) + H(S`0

m )� H(WL)
o

+ {H(Wm) + H(WL)� H(WL,Wm)}
 ` {µ↵+ (↵� �) + � � (µ+ 1)↵}

| {z }

=0

+ {(µ+ 1)↵+ ↵� (µ+ 1)↵+ (↵� �)}
| {z }

=�

= �.



CAN AN INTERIOR POINT BE APPROACHED ?



No! From Characterization of the (4, 3, 3) Tradeo↵

7 8 9 10 11 12 13
10

15

20

25

Storage per node, α

R
ep

ai
r b

an
dw

id
th

, d
β

FR Tradeo↵ = Blue

ER Tradeo↵ = Max{Blue, Green}
Chao Tian provided an explicit proof by using Raymond Yeung’s ITIP
framework to extract an additional inequality for the (4, 3, 3) case.

Chao Tian, ISIT 2013



A Dozen Bottles of Ouzo!



Our Subsequent Results (2014)

(4, 3, 3) Case
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Functional repair tradeoff
New outer bound
Achievable by Layered/Tians Code

(5, 4, 4) Case
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Functional repair tradeoff
New outer bound
Achievable by Layered Code

P

First outer bound on the ER tradeo↵ that improves upon the FR tradeo↵ for all [n, k, d ]

Coincides with the ER tradeo↵ characterized by Tian for the [4, 3, 3] case

Shown alongside is the outer bound in the [5, 4, 4] case

In the [5, 4, 4] case, bound coincides at one point P with performance of a layered code.

First instance of an optimal code operating o↵ of the FR tradeo↵.

Layered code: (Tian, Sasidharan, Aggarwal, Vaishampayan, PVK, T-IT, Apr 2015)



Our Approach
Let T denote the ‘trapezium-shaped’ region of the repair matrix:

T = SY [̇ SY
Z ✓ R

Assuming the existence of an optimal exact-repair code, we must have:

H(T ) = | T | �

X 

Y 

Z 

X Y Z 

SY 

SZ 

WX 

Y 

On the other hand, every row of T has entropy at most �, this is a
large gap which we exploit!

Birenjith, Senthoor, PVK, ISIT 2014.



Approach to Deriving the New Bound

Lower&Bound&&
on&H(Τ)&

Upper&Bound&&
on&H(Τ)&

moves&upper&&
bound&&

to&the&right&

moves&lower&&
bound&&

to&the&le9&

Decreasing&file&size&to&B?ε moves&the&
bounds&close&together&un@l&contradic@on&

is&resolved&

Τ = Trapezium&

This leads to an new tradeo↵ as shown earlier.



The New Outer Bound

The case of (4, 3, 3)
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0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

↵
B �!

� B
�!
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The case of (5, 4, 4)

0.25 0.3 0.35 0.40.1
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α
B −→
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−
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Functional repair tradeoff
New outer bound
Achievable by Layered Code

P

Provides a new outer bound on ER tradeo↵ for all [n, k, d ]

Bound coincides with the tradeo↵ characterized by Tian in [4, 3, 3] case.

The bound in [5, 4, 4] case coincides at one point P with an achievable region by layered
codes.

First instance of an optimal code operating o↵ of the FR tradeo↵.



Subsequent Work

Iwan Duursma, “Outer bounds for exact repair codes,” 2014.

Iwan Duursma, “Shortened regenerating codes,” 2015.

Soheil Mohajer & Ravi Tandon. Exact Repair for Distributed Storage
Systems: Partial Characterization via New Bounds, 2015

Chao Tian, A Note on the Rate Region of Exact-Repair Regenerating
Codes, 2015

N. Prakash, M. Nikhil Krishnan, “The Storage-Repair-Bandwidth
Trade-o↵ of Exact Repair Linear Regenerating Codes for the Case
d = k = (n � 1)”, 2015.

(not described here for lack of time)



CONSTRUCTION OF HIGH-RATE MSR CODES



Constructions of MSR Codes (Rate R  1
2)

1 K. V. Rashmi, Nihar B. Shah and PVK, “Optimal Exact-Regenerating Codes for
Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction,”
IT-Trans, August 2011.

2 Changho Suh and Kannan Ramchandran, “Exact-Repair MDS Code Construction Using

Interference Alignment,” IT-Trans, March 2011.

I Nihar Shah, K. V. Rashmi, PVK and Kannan Ramchandran, “Interference Alignment

in Regenerating Codes for Distributed Storage: Necessity and Code Constructions,”

IT-Trans, April 2012.



Constructions of High-Rate MSR Codes (Rate R > 1
2)

1 Viveck R. Cadambe, SyedAli Jafar, Hamed Maleki, Kannan Ramchandran and Changho
Suh, “Asymptotic Interference Alignment for Optimal Repair of MDS Codes in Distributed
Storage,” IT-Trans, May 2013. (establish existence)

2 D. S. Papailiopoulos, A. G. Dimakis, and V. R. Cadambe, “Repair Optimal Erasure Codes
through Hadamard Designs,” IT-Trans, May 2013. (construction for 2 parities)

3 Itzhak Tamo, Zhiying Wang, and Jehoshua Bruck, “Zigzag Codes: MDS Array Codes With
Optimal Rebuilding,” IT-Trans, March 2013. (repair systematic nodes)

4 Z. Wang, I. Tamo, J. Bruck, “On Codes for Optimal Rebuilding Access,” Allerton, 2011
(also repair parity)



Sub-Packetization Level

1 Bound in [1]

log2(↵) (log�(↵) + 1) � k � 1

2

� = 1 +
1

r � 1
, r = (n � k).

2 Construction in [2]

↵ = rk+1

3 Present Construction

↵ = r
n
r

[1] Sreechakra Goparaju, Itzhak Tamo, and Robert Calderbank, “An Improved Sub-Packetization
Bound for Minimum Storage Regenerating Codes,” IT-Trans, May 2014.

[2] Z. Wang, I. Tamo, J. Bruck, “On Codes for Optimal Rebuilding Access,” Allerton, 2011.



Sub-Packetization Level

Present Construction

↵ = r
n
r

r = (n � k)

Parameter t Rate R = t�1
t Sub-packetization level ↵

t = 3 2
3 r3

t = 4 3
4 r4

t = 5 4
5 r5



Construction Builds on the Earlier Work ...

Itzhak Tamo, Zhiying Wang, and Jehoshua Bruck, “Zigzag Codes:
MDS Array Codes With Optimal Rebuilding,” IT-Trans, March 2013

Z. Wang, I. Tamo, J. Bruck, “On Codes for Optimal Rebuilding
Access,” Allerton, 2011



How We Will Explain Construction ...

Parity-Check Point of View

First present a simplistic view of parities that will repair but cannot
handle data collection

Will then refine this

Will then refine this further (this will now permit data collection as
desired)



Parameters of Construction

Parameters: ( [n = 6, k = 4, d = 5], [↵,�], B , Fq )

General General in Example
n tq 6
k (t � 1)q 4
d (n � 1) 5

↵ qt 8
� qt�1 4
r q 2

Rate t�1
t

2
3

↵ r
n
r 2

6
3 = 8



Notation Used in Construction

Parameters: ( [n, k , d ], [↵,�], B , Fq )

Node 1 Node 2 · · · Node n

First symbol in node
Second symbol in node

...
...

...
...

Last ↵th symbol in node
| {z }

(n ⇥ ↵) codeword array

Code symbol C ( `, ✓
|{z}

node

; x

|{z}

symbol in node

)

`th node group ✓th node xth symbol
` = 1, 2, · · · , t ✓ 2 Fq x 2 Ft

q



Parity Checks

Row-Sum Parity Checks:

t
X

`=1

X

✓2Fq

C (`, ✓; z) = 0

Jump (Zig-Zag) Parity Checks:

t
X

`=1

0

B

@

X

✓ 6=z`

C (`, ✓; z) + C (`, z`; (z ��e`)
| {z }

jump in `th position

)

1

C

A

= 0



Illustrating Row-Sum Parity Checks (z1 = 0 only)

` = 1 ` = 2 ` = 3
(x1x2x3) ✓ = 0 ✓ = 1 ✓ = 0 ✓ = 1 ✓ = 0 ✓ = 1

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

(000) A A A A A A

(001) B B B B B B

(010) C C C C C C

(011) D D D D D D

(100)
(101)
(110)
(111)

( A, B , C and D represent Row-Sum parity checks)



Illustrating Jump Parity Checks (z1 = 0 only)

` = 1 ` = 2 ` = 3
(x1x2x3) ✓ = 0 ✓ = 1 ✓ = 0 ✓ = 1 ✓ = 0 ✓ = 1

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

(000) P P R P Q

(001) Q Q S P Q

(010) R P R R S

(011) S Q S R S

(100) P

(101) Q

(110) R

(111) S

( P , Q, R and S represent Jump parity checks)

From this it is clear how node 1 can be repaired by downloading 4
symbols from each of the other nodes



First refinement: Bringing in Coe�cients

t
X

`=1

X

✓2Fq

�(`, ✓)
| {z }

coe�cient

C (`, ✓; z) = 0

t
X

`=1

0

B

@

X

✓ 6=z`

�(`, ✓)C (`, ✓; z) + �(`, z`)C (`, z`; (z ��e`)
| {z }

jump in `th position

)

1

C

A

= 0



Second Refinement: Adding Extra Terms in the Parity
Check Equations (for Data Collection)

t
X

`=1

X

✓2Fq

�(`, ✓)C (`, ✓; z) = 0

t
X

`=1

0

B

@

X

✓ 6=z`

�(`, ✓)C (`, ✓; z) + �(`, z`)C (`, z`; (z ��e`)
| {z }

jump in `th position

)

1

C

A

+
t

X

`=1

X

✓2Fq

�(`, ✓)C (`, ✓; z)

| {z }

helps guarantee data-collection property

= 0



Parity-Check Matrix (without extra terms)

Associated parity-check matrix H is of the form:

` = 1 ` = 2 ` = 3
✓ = 0 ✓ = 1 ✓ = 0 ✓ = 1 ✓ = 0 ✓ = 1
Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

z1 = 0 I4 I4 I4 I4 I4 I4
z1 = 1 I4 I4 I4 I4 I4 I4

z1 = 0 I4 I4 A1 A3 A5 A7

z1 = 1 I4 I4 A2 A4 A6 A8

� = 0 in the first two rows

� = 1 (indicating jump parity) in bottom two rows



Parity-Check Matrix (with extra terms in blue )
To ensure data recovery, replace H by the form:

H = H0 + H1

where H0,H1 are given respectively by:

` = 1 ` = 2 ` = 3
✓ = 0 ✓ = 1 ✓ = 0 ✓ = 1 ✓ = 0 ✓ = 1
Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

z1 = 0 I4 I4 I4 I4 I4 I4
z1 = 1 I4 I4 I4 I4 I4 I4

z1 = 0 I4 I4 I4 I4 I4 I4
z1 = 1 I4 I4 I4 I4 I4 I4

` = 1 ` = 2 ` = 3
✓ = 0 ✓ = 1 ✓ = 0 ✓ = 1 ✓ = 0 ✓ = 1
Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

z1 = 0
z1 = 1

z1 = 0 I4 I4 A1 A3 A5 A7

z1 = 1 I4 I4 A2 A4 A6 A8

(this ensures the data collection property; Polynomial root counting)



Codes with Locality
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United by an Acronym

Codes with Locality ⌘ locally repairable codes

⌘ locally recoverable codes

⌘ locally reconstructible codes

⌘ local reconstruction codes

⌘ LRC !
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Codes with Locality

Setting: C is an [n,, dmin] linear code. {ci}ni=1 are code symbols.

Code symbol cj has locality (r , �) if there exists a subset of code
symbols {c1, · · · , cn} that includes cj and forms a “local” code with
parameters:

[length  r + � � 1, dimension  r , dmin � �]

4 / 23



All-Symbol and Information-Symbol Locality (r , �)

Codewords in C :

0

@c1, c2, . . . ck| {z }
information set

, ck+1, ck+2, . . . , cn

1

A ,

{cj}kj=1 is an information set if message symbols can be uniquely

decoded from {cj}kj=1, but not from any subset of {cj}kj=1

C is said to have information symbol locality (r , �), if all k code
symbols comprising an information set {cj}kj=1 have locality (r , �)

Code C is said to have all-symbol locality (r , �), if all n code symbols
have (r , �) locality
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Illustrating Information and All-Symbol Locality

(local&codeword)&

X1& X5&X2& X3& X4& Y1& Y5&Y2& Y3& Y4&

PX& PY&

PG2&PG1&

(local&codeword)&

(global&pari9es)&

(information-symbol locality)

(local&codeword)&

X4&X1& X2& X3& Y1& Y2& Y3& Y4&PX& PY&

(local&codeword)&

PZ&

(local&codeword)&

(all-symbol locality)
6 / 23



Bound on Global Minimum Distance

Theorem

If an [n,, dmin] code C has information symbol locality (r , �), then

dmin  (n � + 1)| {z }
Singleton bound

�
⇣l

r

m
� 1

⌘
(� � 1)

| {z }
loss due to locality

.

Bound established by P. Gopalan et al. for the case when the local
codes are parity check codes (� = 2)

Our extension to the general case is straightforward, but useful

Gopalan, Huang, Yekhanin, Simitci, T-IT, Nov. 2012.

Prakash, Kamath, Lalitha, and PVK, (ISIT 2012), Jul. 2012.
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Derivation of the Bound on Minimum Distance

Based on a recursive algorithm that
searches for a large (k ⇥ `) sub-matrix
of the generator matrix whose rank is
 (k � 1).

keep adding columns of G while slowing
rank increase in matrix

G =

2

4
g11 g12 g13 g1` g15 g16 g17
g21 g22 g23 g2` g25 g26 g27
g31 g32 g33 g3` g35 g36 g37

3

5

(` = 4 here) Then we have:

dmin  (n � `).

START

Yes

Yes

EXIT
No

No

P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the Locality of Codeword
Symbols,” IEEE Trans. Inf. Theory, Nov. 2012. 8 / 23



Pyramid Codes:
Codes with Optimal Information-Symbol Locality

Given generator matrix G of a systematic [7, 4, 4] MDS code:

G =

2

664

1 g11 g12 g13
1 g21 g22 g23

1 g31 g32 g33
1 g41 g42 g43

3

775

Split first two “parity” columns, and then rearrange columns:
2

664

1 g11 g12 g13
1 g21 g22 g23

1 g31 g32 g33
1 g41 g42 g43

3

775

The new [9, 4, 4] code has two [4, 2, 3] local codes and is optimal.

C. Huang, M. Chen, and J. Li “ Pyramid Codes: Flexible Schemes to Trade Space for Access E�ciency in Reliable Data Storage
Systems,” NCA 2007.
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Some Optimal Constructions of Codes with Locality
Explicit Constructions

1 Pyramid Code construction for information locality.

2 Parity splitting construction for all symbol locality:
n =

⌃
k
r

⌥
(r + � � 1).

3 Rank-Distance based code with all-symbol locality : � = 2.

4 Tamo-Barg construction

Non-Explicit Construction All symbol locality codes can be constructed
whenever

(r + � � 1)|n, provided q >
�n�1
k�1

�

C. Huang, M. Chen, and J. Li “Pyramid Codes: Flexible Schemes to Trade Space for Access E�ciency in Reliable Data
Storage Systems,” NCA 2007.

J. Han, L. A. Lastras-Montano; , “Reliable Memories with Subline Accesses,” ISIT- 2007.

P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the Locality of Codeword Symbols,” IT-Trans, Nov. 2012.

N. Prakash, G. M. Kamath, V. Lalitha, and PVK, “Optimal linear codes with a local-error-correction property,”
ISIT-2012.

N. Silberstein, A. S. Rawat and S. Vishwanath, “Error Resilience in Distributed Storage via Rank-Metric Codes”,
Allerton, 2012.

Itzhak Tamo and Alexander Barg, “A Family of Optimal Locally Recoverable Codes,” T-IT, Aug 2014. (IT-Trans. best
paper award).
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Windows Azure Storage Coding Solution

Comparison:+In+terms+of+reliability+of+data+and+number+of+helper+nodes+contacted+for+
node+repair,+the+two+codes+are+comparable.+
+
+The+overheads+are+quite+different,+29%+for+the+Azure+code+versus+43%+for+the+RS+code.+++
+
This+difference+has+reportedly+saved+MicrosoH+millions+of+dollars!++

P1+

P2+

X1+ X2+ X3+ X4+ X5+ X6+ X7+

PX+XPcode+

Y1+ Y2+ Y3+ Y4+ Y5+ Y6+ Y7+

PY+YPcode+

Y1+ Y2+ Y3+ Y4+ Y5+ Y6+ Y7+ P1+ P2+ PY+

MicrosoH+Azure+Code+

ReedPSolomon+Code+

Comparison: In terms of reliability and number of helper nodes contacted
for node repair, the two codes are comparable. The overheads however are
quite di↵erent, 1.29 for the Azure code versus 1.5 for the RS code. This
di↵erence has reportedly saved Microsoft millions of dollars.

Reed$Solomon*
Codeword*X6*X1* X5*X2* X3* X4* P1* P2* P3*

(any*6*of*9*can*be*used*to*recover*the*codeword)*
Huang, Simitci, Xu, Ogus, Calder, Gopalan, Li, Yekhanin, “Erasure Coding in Windows Azure
Storage,” USENIX, Boston, MA, 2012.
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Windows Azure Storage Coding Solution (continued)

Windows Azure Code:

X1 X2 X3 X4 X5 X6 Y1 Y2 Y3 Y4 Y5 Y6 P1 P2

Px Py

Comparison: In terms of reliability and number of helper nodes contacted
for node repair, the two codes are comparable. The overheads however are
quite di↵erent, 1.33 for the Azure code versus 1.5 for the RS code. This
di↵erence has reportedly saved Microsoft millions of dollars.
Reed-Solomon Code

Reed$Solomon*
Codeword*X6*X1* X5*X2* X3* X4* P1* P2* P3*

(any*6*of*9*can*be*used*to*recover*the*codeword)*
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The Tamo-Barg Construction (all-symbol locality)

f(Pa)&

f(Pb)&

f(Pc)&

subset of RS codewords: (f (P1), f (P2), · · · , f (Pn)), with
deg(f )  (k � 1)
subset ensures that given point Pa there exist other points fitted by a
lower degree polynomial which can be used for correction
for example, to a line when evaluated at 3 points; this provides locality
provides low-field-size constructions for many parameter sets

Itzhak Tamo and Alexander Barg, “A Family of Optimal Locally Recoverable Codes,” T-IT,
Aug. 2014, . (IT-Trans. best paper award).
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The Tamo-Barg Construction

f(Pa)&

f(Pb)&

f(Pc)&

subset of RS codewords: (f (P1), f (P2), · · · , f (Pn)), with
deg(f )  (k � 1)

subset ensures that given point Pa there exist other points fitted by a
lower degree polynomial which can be used for correction

for example, to a line when evaluated at 3 points; this provides locality

provides low-field-size constructions for many parameter sets

There is also a Chinese Remainder Theorem interpretation
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Codes with Hierarchical Locality

Birenjith Sasidharan, Gaurav Kumar Agarwal, PVK, “Codes With Hierarchical Locality,” ISIT

2015.
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Codes with Locality

[4,3,2]' [4,3,2]'[4,3,2]' [4,3,2]' [4,3,2]' [4,3,2]'

[24,14,7]'

d  (n � k + 1)| {z }
Singleton bound

�
✓
dk
r
e � 1

◆
(� � 1)

| {z }
loss due to locality

r = locality

� = minimum distance of the local code
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Codes with Locality do not Scale

[4,3,2]' [4,3,2]'[4,3,2]' [4,3,2]' [4,3,2]' [4,3,2]'

[24,14,7]'

If the local code is overwhelmed, then one has to appeal to the
overall code which means contacting all 14 nodes for node repair.

Is it possible to build a code where the repair degree increases
gradually as opposed to in a single jump ?
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Codes with Hierarchical Locality

Codes with hierarchical locality do exactly that by calling for help
from an intermediate layer of codes when the local code fails.

These codes may be regarded as the “middle codes”.
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Codes with Hierarchical Locality - Parameters

d  n � k + 1�
✓⇠

k

r2

⇡
� 1

◆
(�2 � 1)

| {z }
bound for codes with locality

�
✓⇠

k

r1

⇡
� 1

◆
(�1 � �2)

| {z }
additional loss for 2nd locality layer
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Derivation of the Bound on Minimum Distance

Proceeds along the lines of the original
paper on codes with locality

Based on a recursive algorithm that
searches for a large (k ⇥ `) sub-matrix
of the generator matrix whose rank is
 (k � 1).

G =

2

4
g11 g12 g13 g1` g15 g16 g17
g21 g22 g23 g2` g25 g26 g27
g31 g32 g33 g3` g35 g36 g37

3

5

(` = 4 here) Then we have:

dmin  (n � `).

START

Yes

Yes

EXIT
No

No
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All-symbol Local Optimal Construction: An Example

Need to satisfy a divisibility condition n2 | n1 | n
Example: [24, 14], [12, 8], [4, 3]. Here: (n2 = 4 | n1 = 12 | n = 24).

1 Choose F25.

2 Identify subgroup chain H2 ✓ H1 ✓ H = F⇤
25

3 Coset decomposition - supports of local codes
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A ChineseRemainder-Theorem-Based All-symbol Local
Optimal Construction

The tree above shows the monomials appearing in the restriction of
the code polynomial (its monomials appear on top) to each local
code.
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All-symbol Local Optimal Construction: An Example
(continued)

The local codes can be tied together using an overall global code by
simply restricting the set of code polynomials at the top. Here we do
not allow the maximum degree to exceed 18. (The maximum was
previously 22).
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Codes with Local Regeneration
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Some References

1 A. S. Rawat, O. O. Koyluoglu, N. Silberstein, S. Vishwanath, “Optimal locally repairable
and secure codes for distributed storage systems,” T-IT, Jan 2014.

2 G. M. Kamath, N. Prakash, V. Lalitha, PVK, ‘Codes With Local Regeneration and
Erasure Correction,” T-IT, Aug. 2014 .

3 N. Prakash, G.M. Kamath, V. Lalitha, PVK, A.S. Rawat, O.O. Koyluoglu, N. Silberstein,
S. Vishwanath, “Explicit MBR All-Symbol Locality Codes,”ISIT 2013.

4 M. N. Krishnan, N. Prakash, V. Lalitha, B. Sasidharan, PVK, S. Narayanamurthy, R.
Kumar and S. Nandi, “Evaluation of codes with inherent double replication for Hadoop”,
in Proc. USENIX HotStorage, 2014

(first two references represent independent work carried out in parallel
the last reference is to an evaluation through hardware emulation in collaboration with NetApp)
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Codes with Local Regeneration

Regenera'ng(Codes:((
Minimize(repair(BW(

Codes(with(Locality:((
Minimize(repair(degree(

Codes(with(Local(Regenera'on:((
Small(repair(BW(and((
small(repair(degree(

Combine notions of locality and low-bandwidth regeneration

New upper bounds on minimum distance

optimal code constructions

1 G. M. Kamath, N. Prakash, V. Lalitha, PVK, ‘Codes With Local Regeneration and
Erasure Correction,” T-IT, Aug. 2014 .
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Vector Code Viewpoint

1 

k+1 

k 

2 

n 

Data 
Collector 

α 

α 

α 

α capacity 
nodes 

Regenerating codes can be
viewed as codes over the vec-
tor alphabet F↵

q since each node
stores ↵ symbols.
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Generator Matrix of a Vector Code -
Thin and Thick Columns

Thick&
column&

Thin&column&

G&&&&=&&

Here ↵ = 3, so there are 3 thin columns per thick column
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Codes with Uniform Rank Accumulation

Thick&
column&

Thin&column&

G&&&&=&& }&
Func0on&only&of&&|S|&

S&

If C has length n, then G

will have n thick columns.

Let S be any subset
consisting of |S | thick
columns.

Then C has the uniform
rank accumulation (URA)
property if

Rank(G |S)

is a function of |S | alone.
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Examples of Codes with Uniform Rank Accumulation

Set

bi = Rank(G |S), |S | = i

ai = bi � bi�1, i � 1 (incremental rank)

bj =

jX

i=1

ai (cumulative rank).

Then a1 � a2 � · · · � an

A scalar code has the URA property i↵ it is an MDS code

Both MSR and MBR codes have the URA property

there are other examples as well...
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Uniform Rank Accumulation – MSR Code

URA profile of an (n = 5, k = 3, d = 4), (↵ = 2,� = 1) MSR Code

0"

2"

4"

6"

8"

1" 2" 3" 4" 5"

Cumula&ve)
Rank)
)

(MSR)
Codes))

Number)of)thick)columns)of)G)

(a1, a2, a3, a4, a5) = (2, 2, 2, 0, 0)

Cumulative rank:

bj =

jX

i=1

ai .

(b1, b2, b3, b4, b5) = (2, 4, 6, 6, 6)
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Uniform Rank Accumulation – MBR Code

URA profile of an (n = 5, k = 3, d = 4), (↵ = 4,� = 1) MBR Code

0"

2"

4"

6"

8"

10"

1" 2" 3" 4" 5"

Cumula&ve)
Rank)
)

(MBR)
Codes))

Number)of)thick)columns)of)G)

(a1, a2, a3, a4, a5) = (4, 3, 2, 0, 0)

Cumulative rank:

bj =

jX

i=1

ai .

(b1, b2, b3, b4, b5) = (4, 7, 9, 9, 9)
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Back to Vector Codes with Uniform Rank Accumulation

Thick&
column&

Thin&column&

G&&&&=&& }&
Func0on&only&of&&|S|&

S&

Recall that a vector code has the
URA has the uniform rank accu-
mulation (URA) property if

Rank(G |S) = b|S |.
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The Cumulative Function P
Let the sequence {aj} be repeated periodically:

( a1, a2, · · · an, a1, a2, · · · an, a1, a2, · · · , an · · · )

P(j) = sum of first j terms of this periodic sequence..

Can be verified that P(·) is sub-additive:

P(x + y)  P(x) + P(y).

0"

5"

10"

15"

20"

25"

30"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15"

Cumula&ve)))
Func&on))

P)

Number)of)thick)columns)
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The dmin Bound When the Local Codes have URA

0"

5"

10"

15"

20"

25"

30"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15"

Cumula&ve))
Func&on))

P)

Number)of)thick)columns)

K=20"

P(inv)(K)=11"

Let S be maximal w.r.t. Rank(G |S) < K where K = Rank(G ). Then

dmin = n � |S | = n � (P(inv)(K )� 1) where

P

(inv)(K ) = j if P(j � 1) < K  P(j).

In the example, dmin  15� (11� 1) = 5.
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(Global) Code with MBR Code Locality

The construction makes use of the scalar pyramid code and is optimal:

 1,2, 
3,4 

3,6, 
8,P1 

 2,5, 
8,9 

4,7, 
9,P1 

1,5 
6,7 

1 

2 

5 3 

6 

9 

7 

4 

8 

 1,2, 
3,4 

3,6, 
8,P2 

 2,5, 
8,9 

4,7, 
9,P2 

 1,5, 
6,7 

1 

2 

5 P2 3 

6 

9 

7 

4 

8 
 P3, P4, 
P5, P6  

Local Code 1 Global Parity Local Code 2 

1 2 9 P1 .   .   . 1 2 9 P2 .   .   . P3 P4 P5 P6 

 Scalar Pyramid Code 

Local Code 1 Local Code 2 Global Parities 

P1 
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Performance in Terms of Repair BW and Repair “Degree”

Global Code: length = 11, dmin = 4,

Local MBR Codes: length (r + � � 1) = 5, minimum distance � = 3,

Local MBR codes are optimum in terms of repair

Repair degree = 4 through locality.
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(Global) Code with AS-MBR Code Locality
The construction makes can make use of an all-symbol local scalar code
and is also optimal:

 1,2, 
3,4 

3,6, 
8,P1 

 2,5, 
8,9 

4,7, 
9,P1 

1,5 
6,7 

1 

2 

5 3 

6 

9 

7 

4 

8 

 1,2, 
3,4 

3,6, 
8,P2 

 2,5, 
8,9 

4,7, 
9,P2 

 1,5, 
6,7 

1 

2 

5 P2 3 

6 

9 

7 

4 

8 

Local Code 1 Local Code 2 

1 2 9 P1 .   .   . 1 2 9 P2 .   .   . 

 Scalar All-Symbol Locality Code 

Local Code 1 Local Code 2 

P1 

1 2 9 P3 .   .   . 

Local Code 3 

 1,2, 
3,4 

3,6, 
8,P3 

 2,5, 
8,9 

4,7, 
9,P3 

 1,5, 
6,7 

1 

2 

5 P3 3 

6 

9 

7 

4 

8 

Local Code 3 
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Code Comparison Based on Repair BW, Repair Degree for
Given Storage Overhead
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Codes with Locality for Multiple

Erasures
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Di↵erent Approaches: Codes with Locality for Multiple
Erasures

Increasing trend towards low-cost commodity servers with higher
failure rates
Presence of ”hot”nodes which are inaccessible during repair

Codes&with&Locality&for&Multiple&Erasures


Codes&with&
sequential&
recovery


Stronger&local&
codes


Codes&with&
orthogonal&

parities


Recovery(in(Parallel(

Cooperative&
local&repair


Other&codes&with&
Parallel&
Recovery


Simultaneous(
Recovery(
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Handling Multiple Erasures: Stronger Local Codes
Approach

(local&codeword)&

X1& X5&X2& X3& X4& Y1& Y5&Y2& Y3& Y4&

PX1& PX2& PY1& PY2&

PG2&PG1&

(local&codeword)&

(global&pari9es)&

(Information-Symbol locality)

(local&codeword)&

X1& X5&X2& X3& X4& Y1& PA&Y2& Y3& Y4&

PX1& PX2& PY1& PY2&

(local&codeword)&

(All-symbol locality)
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More on ‘Stronger Local Codes Approach’

If an [n,, dmin] code C has information symbol locality r , then

dmin  (n � + 1)| {z }
Singleton bound

�
⇣l

r

m
� 1

⌘
(� � 1)

| {z }
price for locality requirement

.

Generalization of the Gopalan et al bound
Pyramid code construction can be extended to this case as can the
construction by Tamo and Barg
More recent results by Wentu Song, Son Hoang Dau, Chau Yuen, and
Ti↵any Jing Li

N. Prakash, G. Kamath, V. Lalitha, and PVK, “Optimal linear codes with a
local-error-correction property,” in ISIT 2012.
Optimal Locally Repairable Linear Codes, by Wentu Song, Son Hoang Dau, Chau Yuen,
and Ti↵any Jing Li.
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Example of the Orthogonal Parity-Check Approach

1 2 3

4 5 6

7 9

P

8

P

P

PPPP

Each data symbol is protected by two local codes with disjoint support

All local codes are single-parity-check codes
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LDPC Code Connection

Codes with orthogonal parity-checks can also be obtained from
(dv , dc)-regular LDPC Codes, assuming the absence of cycles of length
 4.

(this is well known)
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An Example (dv , dc)-Regular LDPC Code

 

5 
 

III. DECODING 
Different authors come up independently with 

more or less the same iterative decoding algorithm. 
They call it different names: the sum-product 
algorithm, the belief propagation algorithm, and the 
message passing algorithm. There are two 
derivations of this algorithm: hard-decision and 
soft-decision schemes. 

A. Hard-decision Decoder 

 
Figure 2: Belief propagation example code 

 
In [8], Leiner uses a (4, 8) linear block code to 

illustrate the hard-decision decoder. The code is 
represented in Figure 2, its corresponding parity-
check matrix is 

 



















=

01011001
11100100
00100111
10011010

H  (5) 

An error free codeword of H is                            
c = [1 0 0 1 0 1 0 1]T. Suppose we receive                
y = [1 1 0 1 0 1 0 1]T. So c2 was flipped.              
The algorithm is as follow: 

1. In the first step, all message nodes send a 
message to their connected check nodes. In 
this case, the message is the bit they believe 

to be correct for them. For example, 
message node c2 receives a 1 (y2=1), so it 
sends a message containing 1 to check nodes 
f1 and f2. Table 3 illustrates this step. 

2. In the second step, every check nodes 
calculate a response to their connected 
message nodes using the messages they 
receive from step 1. The response message 
in this case is the value (0 or 1) that the 
check node believes the message node has 
based on the information of other message 
nodes connected to that check node. This 
response is calculated using the parity-check 
equations which force all message nodes 
connect to a particular check node to sum to 
0 (mod 2).  

In Table 3, check node f1 receives 1 from 
c4, 0 from c5, 1 from c8 thus it believes c2 
has 0 (1+0+1+0=0), and sends that 
information back to c2. Similarly, it receives 
1 from c2, 1 from c4, 1 from c8 thus it 
believes c5 has 1 (1+1+1+1=0), and sends 1 
back to c5. 

At this point, if all the equations at all 
check nodes are satisfied, meaning the 
values that the check nodes calculate match 
the values they receive, the algorithm 
terminates. If not, we move on to step 3. 

3. In this step, the message nodes use the 
messages they get from the check nodes to 
decide if the bit at their position is a 0 or a 1 
by majority rule. The message nodes then 
send this hard-decision to their connected 
check nodes. Table 4 illustrates this step. To 
make it clear, let us look at message node c2. 
It receives 2 0’s from check nodes f1 and f2. 
Together with what it already has y2 = 1, it 
decides that its real value is 0. It then sends 
this information back to check nodes f1 and 
f2. 

4. Repeat step 2 until either exit at step 2 or a 
certain number of iterations has been passed. 
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An Example (dv , dc)-Regular LDPC Code
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message to their connected check nodes. In 
this case, the message is the bit they believe 

to be correct for them. For example, 
message node c2 receives a 1 (y2=1), so it 
sends a message containing 1 to check nodes 
f1 and f2. Table 3 illustrates this step. 

2. In the second step, every check nodes 
calculate a response to their connected 
message nodes using the messages they 
receive from step 1. The response message 
in this case is the value (0 or 1) that the 
check node believes the message node has 
based on the information of other message 
nodes connected to that check node. This 
response is calculated using the parity-check 
equations which force all message nodes 
connect to a particular check node to sum to 
0 (mod 2).  

In Table 3, check node f1 receives 1 from 
c4, 0 from c5, 1 from c8 thus it believes c2 
has 0 (1+0+1+0=0), and sends that 
information back to c2. Similarly, it receives 
1 from c2, 1 from c4, 1 from c8 thus it 
believes c5 has 1 (1+1+1+1=0), and sends 1 
back to c5. 

At this point, if all the equations at all 
check nodes are satisfied, meaning the 
values that the check nodes calculate match 
the values they receive, the algorithm 
terminates. If not, we move on to step 3. 

3. In this step, the message nodes use the 
messages they get from the check nodes to 
decide if the bit at their position is a 0 or a 1 
by majority rule. The message nodes then 
send this hard-decision to their connected 
check nodes. Table 4 illustrates this step. To 
make it clear, let us look at message node c2. 
It receives 2 0’s from check nodes f1 and f2. 
Together with what it already has y2 = 1, it 
decides that its real value is 0. It then sends 
this information back to check nodes f1 and 
f2. 

4. Repeat step 2 until either exit at step 2 or a 
certain number of iterations has been passed. 

Our interest is in those codes where

each variable node has degree t

each check node has degree (r + 1)

there are no cycles of length 4
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to be correct for them. For example, 
message node c2 receives a 1 (y2=1), so it 
sends a message containing 1 to check nodes 
f1 and f2. Table 3 illustrates this step. 

2. In the second step, every check nodes 
calculate a response to their connected 
message nodes using the messages they 
receive from step 1. The response message 
in this case is the value (0 or 1) that the 
check node believes the message node has 
based on the information of other message 
nodes connected to that check node. This 
response is calculated using the parity-check 
equations which force all message nodes 
connect to a particular check node to sum to 
0 (mod 2).  

In Table 3, check node f1 receives 1 from 
c4, 0 from c5, 1 from c8 thus it believes c2 
has 0 (1+0+1+0=0), and sends that 
information back to c2. Similarly, it receives 
1 from c2, 1 from c4, 1 from c8 thus it 
believes c5 has 1 (1+1+1+1=0), and sends 1 
back to c5. 

At this point, if all the equations at all 
check nodes are satisfied, meaning the 
values that the check nodes calculate match 
the values they receive, the algorithm 
terminates. If not, we move on to step 3. 

3. In this step, the message nodes use the 
messages they get from the check nodes to 
decide if the bit at their position is a 0 or a 1 
by majority rule. The message nodes then 
send this hard-decision to their connected 
check nodes. Table 4 illustrates this step. To 
make it clear, let us look at message node c2. 
It receives 2 0’s from check nodes f1 and f2. 
Together with what it already has y2 = 1, it 
decides that its real value is 0. It then sends 
this information back to check nodes f1 and 
f2. 

4. Repeat step 2 until either exit at step 2 or a 
certain number of iterations has been passed. 

This ensures that:

each code symbol has locally r

Each code symbol is protected by t orthogonal parity checks
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Codes for Two-Erasure Correction

10 / 14



The Sequential-Recovery Approach - An Example

Parity'(
Check((

Parity'(
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The Sequential-Recovery Approach - A More General
Turan-Graph Framework

Turan Graph

P1#

P2#

P3# P6#

P5#

P4#

(9#edges#form#remaining#code#symbols)#
(n=15)#
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The Sequential-Recovery Approach - A More General
Turan-Graph Framework

The Turan graph construction has an additional feature that it leads
to optimal solutions for smaller rates than the rate that arises from
the constraints

This can be explained using the theory of Generalized Hamming
Weights of a block code

V.K. Wei, “Generalized Hamming Weights for Linear Codes,” IEEE Trans. Inform. Th,
1991.
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Thanks!
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Additional References

Note: This list adds to the papers referenced in the slides. Coding for

distributed storage is a rapidly growing field of research activity and there

are a large and ever-growing number of publications in this area. The listing

below does not claim in any way to be comprehensive, and apologies are

o↵ered in advance for any missing references.



Regenerating Codes

1 A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran, “Network
coding for distributed storage systems,” IEEE Transactions on Information Theory, vol. 56
no. 9, pp. 4539–4551, 2010.

2 Y. Wu, A. G. Dimakis, K. Ramchandran, “Deterministic Regenerating Codes for
Distributed Storage,” 45th Annual Allerton Conference on Communication, Control, and
Computing, Allerton, 2007.



Regenerating Codes - MSR and MBR Constructions

1 V.R. Cadambe, S. A. Jafar, H. Maleki, K. Ramchandran, and C. Suh, “Asymptotic
interference alignment for optimal repair of MDS codes in distributed storage,” IEEE
Transactions on Information Theory, vol. 59 no. 5 pp. 2974–2987, 2013.

2 K. V. Rashmi, N. B. Shah, P.V. Kumar, “Optimal Exact-Regenerating Codes for
Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction,”
IEEE Transactions on Information Theory, vol. 57, no.8, pp. 5227–5239, Aug. 2011. 8

3 N. B. Shah, K. V. Rashmi, P. V. Kumar, K. Ramchandran, “Distributed Storage Codes
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2012.
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2011.
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Regenerating Codes - MSR and MBR Constructions

(contd.)
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