Lattice Index Coding
 Part II - Mathematical Preliminaries

Emanuele Viterbo

European School of Information Theory
4 April 2016, Gothenburg

Multidimensional Constellations-Part II:
Voronoi Constellations
G. DAVID FORNEY, JR., FELLOW, IEEE

References

- J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups. New York, NY, USA: Springer-Verlag, 1999.
- G. D. Forney, "Multidimensional constellations. II. Voronoi constellations," IEEE Journal on Selected Areas in Communications, vol. 7, no. 6, pp. 941-958, Aug 1989.
- R. Zamir, Lattice Coding for Signals and Networks. Cambridge, UK: Cambridge University Press, 2014.
- B. Nazer and M. Gastpar, "Compute-and-Forward: Harnessing Interference Through Structured Codes," IEEE Transactions on Information Theory, vol. 57, no. 10, pp. 6463-6486, Oct. 2011.
- C. Feng, D. Silva and F. R. Kschischang, "An Algebraic Approach to Physical-Layer Network Coding," IEEE Transactions on Information Theory, vol. 59, no. 11, pp. 7576-7596, Nov. 2013.
- Y.-C. Huang and K. R. Narayanan, "Construction π_{A} and π_{D} Lattices: Construction, Goodness, and Decoding Algorithms," arXiv:1506.08269, Jun. 2015.

Abelian Groups

Definition

An Abelian group \mathcal{G} is a set endowed with an 'addition' operation

$$
(a, b) \rightarrow a+b
$$

such that
(1) \mathcal{G} is closed under the addition operation
(2) there exists an identity element $0 \in \mathcal{G}: a+0=a$ for all $a \in \mathcal{G}$
(3) for every a, there is a $-a \in \mathcal{G}$ such that $a+(-a)=0$
(4) Associative: $a+(b+c)=(a+b)+c$ for all $a, b, c \in \mathcal{G}$
(5) Commutative: $a+b=b+a$ for all $a, b \in \mathcal{G}$

Example The set of all integers $\mathcal{G}=\mathbb{Z}$, with usual definition of addition

$$
\begin{aligned}
& \begin{array}{rrrrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline-5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\
\hline
\end{array}
\end{aligned}
$$

Finite Abelian Groups

Example The finite binary group $\{0,1\}$ with addition $\bmod 2($ or $\mathrm{XOR} \oplus)$

\oplus	0	1
0	0	1
1	1	0

Example The finite ternary group $\{0,1,2\}$ with addition $\bmod 3$

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

Subgroups of Abelian Groups

Definition

Let $(\mathcal{G},+)$ be group. Then \mathcal{H} is a subgroup of \mathcal{G} if
(1) $\mathcal{H} \subset \mathcal{G}$, and is non-empty
(2) $(\mathcal{H},+)$ is a group, i.e.,

- \mathcal{H} is closed under addition and negation.

Example Multiples of 3, i.e., $\mathcal{H}=3 \mathbb{Z}$ form a subgroup of $\mathcal{G}=\mathbb{Z}$

- For any integer $M, M \mathbb{Z}$ is a subgroup of \mathbb{Z}.

Cosets of a Subgroup in a Group

Definition

A coset is any set of the form $a+\mathcal{H}=\{a+h \mid h \in \mathcal{H}\}$, where $a \in \mathcal{G}$.

- Cosets are 'translates' of \mathcal{H} in \mathcal{G}.
- Notation: $\mathcal{G} / \mathcal{H}=$ set of all cosets of \mathcal{H} in \mathcal{G}.

Example $\mathcal{G} / \mathcal{H}=\mathbb{Z} / 3 \mathbb{Z}=\{0+3 \mathbb{Z}, 1+3 \mathbb{Z}, 2+3 \mathbb{Z}\}$

Quotient Group

Definition

Quotient group is the group formed by the cosets $\mathcal{G} / \mathcal{H}$ under the rules

$$
(a+\mathcal{H})+(b+\mathcal{H})=(a+b)+\mathcal{H}, \quad-(a+\mathcal{H})=(-a)+\mathcal{H}
$$

Example

$$
(1+3 \mathbb{Z})+(1+3 \mathbb{Z})=2+3 \mathbb{Z}, \quad-(1+3 \mathbb{Z})=-1+3 \mathbb{Z}=2+3 \mathbb{Z}
$$

Coset Leaders

- Coset leader: a representative element of a coset $(a+\mathcal{H})$.

Example

$$
\begin{aligned}
& (0+3 \mathbb{Z}) \rightarrow 0 \\
& (1+3 \mathbb{Z}) \rightarrow 1 \\
& (2+3 \mathbb{Z}) \rightarrow 2
\end{aligned} \quad \Rightarrow \mathbb{Z} / 3 \mathbb{Z}=\{0,1,2\}
$$

$\underline{\text { Addition in } \mathbb{Z} / 3 \mathbb{Z}}$

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

M-ary Pulse Amplitude Modulation

In general, for a fixed positive integer M,

- $\mathcal{G}=\mathbb{Z}$, subgroup $\mathcal{H}=M \mathbb{Z}$
- Quotient group $\mathcal{G} / \mathcal{H}=\mathbb{Z} / M \mathbb{Z}=\{0,1, \ldots, M-1\}=M$-PAM

Addition and negation performed 'modulo M '

- $a \bmod M$ is the remainder when a is divided by M.
- $14 \bmod 4=2$ since $14=3 \times 4+2$
- If $a, b \in\{0,1, \ldots, M-1\}=\mathbb{Z} / M \mathbb{Z}$, then

Addition: $(a+b) \bmod M$
Negation: $(-a) \bmod M=M-a$
M-PAM has the additive structure of a group.
Are there multidimensional codes with group structure?

Lattices

- A Lattice is a discrete group of points in \mathbb{R}^{n}

$$
\Lambda=\left\{\boldsymbol{G} \boldsymbol{u} \mid \boldsymbol{u} \in \mathbb{Z}^{n}\right\}
$$

- $\boldsymbol{G}=\left[\begin{array}{lll}\boldsymbol{g}_{1} & \cdots & \boldsymbol{g}_{n}\end{array}\right]$ is an $n \times n$ full-rank matrix (in this tutorial).
- Lattice points are integer-linear combinations of basis vectors
$\left\{u_{1} \boldsymbol{g}_{1}+\cdots+u_{n} \boldsymbol{g}_{n} \mid u_{1}, \ldots, u_{n} \in \mathbb{Z}\right\}$

- Λ is an abelian group under usual addition of vectors.
- $d_{\min }(\Lambda)=\min$ Euclidean distance between any two lattice points

$$
=\min _{\boldsymbol{\lambda} \in \Lambda \backslash\{\mathbf{0}\}}\|\boldsymbol{\lambda}\|
$$

Lattices - Examples

$$
\begin{gathered}
\boldsymbol{G}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
\mathbb{Z}^{2} \quad \mathrm{~d}_{\min }=1
\end{gathered}
$$

$$
\begin{gathered}
A_{2}=\left[\begin{array}{cc}
1 & \frac{1}{2} \\
0 & \frac{\sqrt{3}}{2}
\end{array}\right] \\
\mathrm{d}_{\min }=1
\end{gathered}
$$

Voronoi Region

- Quantizer $Q_{\Lambda}: \mathbb{R}^{n} \rightarrow \Lambda$ gives the lattice point $Q_{\Lambda}(\boldsymbol{x})$ closest to \boldsymbol{x}
- The Voronoi region $\mathcal{V}_{\Lambda}=Q_{\Lambda}^{-1}(\mathbf{0})$
- $\operatorname{Vol}(\Lambda) \triangleq \operatorname{Vol}\left(\mathcal{V}_{\Lambda}\right)=|\operatorname{det}(\boldsymbol{G})|$
- Shifted Voronoi regions tile \mathbb{R}^{n}

Modulo Lattice Operation

$\boldsymbol{x} \bmod \Lambda=\boldsymbol{x}-Q_{\Lambda}(\boldsymbol{x})$

Modulo operation lends algebraic structure to the Voronoi region \mathcal{V}_{Λ}

$$
\begin{aligned}
\mathcal{V}_{\Lambda} \times \mathcal{V}_{\Lambda} & \rightarrow \quad \mathcal{V}_{\Lambda} \\
(\boldsymbol{x}, \boldsymbol{y}) & \rightarrow(\boldsymbol{x}+\boldsymbol{y}) \bmod \Lambda
\end{aligned}
$$

Nested Lattices and Lattice Codes

Nested Lattices
 $\operatorname{Vol}(\Lambda)$

$$
\begin{gathered}
\underline{\text { Lattice Codes }} \\
\operatorname{Vol}\left(\Lambda_{\mathrm{s}}\right)=5 \operatorname{Vol}(\Lambda)
\end{gathered}
$$

- Coset leaders are $\Lambda \cap \mathcal{V}_{\Lambda_{\mathrm{s}}}$
- $\Lambda / \Lambda_{\mathrm{s}}=\Lambda \cap \mathcal{V}_{\Lambda_{\mathrm{s}}}$ is a group Addition: $(\boldsymbol{x}+\boldsymbol{y}) \bmod \Lambda_{\mathrm{s}}$

Lattice Codes

Coding lattice (Fine lattice) Λ

- Provides noise resilience
- Want large $\mathrm{d}_{\text {min }}(\Lambda) \&$ small $\operatorname{Vol}(\Lambda)$

Shaping lattice (Coarse lattice) Λ_{s}

- Carves a finite code from Λ
- Constrains peak power
- Want small power \& large $\operatorname{Vol}\left(\Lambda_{\mathrm{s}}\right)$

Lattice Code $\Lambda / \Lambda_{\mathrm{s}}$

- Finite group under addition $\bmod \Lambda_{\mathrm{s}}$
- $\left|\Lambda / \Lambda_{\mathrm{s}}\right|=\operatorname{Vol}\left(\Lambda_{\mathrm{s}}\right) / \operatorname{Vol}(\Lambda)$
- Rate $R=\frac{1}{n} \log _{2} \frac{\operatorname{Vol}\left(\Lambda_{\mathrm{s}}\right)}{\operatorname{Vol}(\Lambda)}$

Lattice codes are good for many things: achieve capacity in AWGN and dirty paper channel, DMT in MIMO channel, relay networks (compute \& forward), wiretap channels, interference channels, quantization, cryptography, etc. etc. etc.

The Sphere Packing Problem

How densely can we pack identical non-intersecting spheres of radius $r_{\text {pack }}$ in n-dimensional space

$\operatorname{Vol}(\Lambda)$

Center density $\delta(\Lambda)=\frac{\left(r_{\text {pack }}(\Lambda)\right)^{n}}{\operatorname{Vol}(\Lambda)}$ is the number of spheres per unit volume when the lattice is scaled to pack spheres of unit radius

Coding lattice Λ : pack many points in a given region with large min distance \min distance $=\mathrm{d}_{\min }(\Lambda)=2 r_{\text {pack }}(\Lambda)$

No. of codewords $\propto \frac{1}{\operatorname{Vol}(\Lambda)}$

The Sphere Covering Problem

How sparsely can we arrange identical overlapping spheres of radius $r_{\text {cov }}$ with every point in n-dimensional space covered by at least one sphere

Covering thickness $\theta\left(\Lambda_{\mathrm{s}}\right)=\frac{\left(r_{\mathrm{cov}}\left(\Lambda_{\mathrm{s}}\right)\right)^{n}}{\operatorname{Vol}\left(\Lambda_{\mathrm{s}}\right)}$ is the number of spheres per unit volume when the lattice is scaled to use spheres of unit radius

Shaping lattice Λ_{s} : pack many codewords in Voronoi region using min power

$$
\text { power }=\frac{\mathrm{r}_{\mathrm{cov}}\left(\Lambda_{\mathrm{s}}\right)^{2}}{n} \quad \text { No. of codewords } \propto \operatorname{Vol}\left(\Lambda_{\mathrm{s}}\right)
$$

The Quantization Problem

Quantization codebook must use as few codewords as possible while minimizing the mean square error distortion
No. of codewords $\propto \frac{1}{\operatorname{Vol}(\Lambda)} \quad$ Distortion $=\frac{\mathbb{E}\left\|\boldsymbol{x}-Q_{\Lambda}(\boldsymbol{x})\right\|^{2}}{n}$

- The quantization error $\boldsymbol{z}=\boldsymbol{x}-Q_{\Lambda}(\boldsymbol{x})=\boldsymbol{x} \bmod \Lambda \in \mathcal{V}(\Lambda)$
- For high resolution quantization

$$
\text { Distortion (per dimension) } \sigma^{2}(\Lambda)=\frac{1}{\operatorname{Vol}(\Lambda)} \cdot \frac{1}{n} \int_{\boldsymbol{z} \in \mathcal{V}(\Lambda)}\|\boldsymbol{z}\|^{2} \mathrm{~d} \boldsymbol{z}
$$

Choose Λ with small normalized second moment $G(\Lambda)=\frac{\sigma^{2}(\Lambda)}{\operatorname{Vol}(\Lambda)^{2 / n}}$

Coding for the Unconstrained AWGN Channel

Infinite Codebook: Λ
Decoder: $\boldsymbol{y} \rightarrow Q_{\Lambda}(\boldsymbol{y})$

Channel $\boldsymbol{y}=\boldsymbol{x}+\boldsymbol{z}$, Gaussian noise power: σ^{2}
Error probability $P_{e}\left(\Lambda, \sigma^{2}\right)=\mathrm{P}(\boldsymbol{z} \notin \mathcal{V}(\Lambda))$

The volume-to-noise ratio $\mu\left(\Lambda, \sigma^{2}\right)=\frac{\operatorname{Vol}(\Lambda)^{2 / n}}{\sigma^{2}}$ defines the effective SNR of the system

The problem of coding for unconstrained AWGN channel Given σ^{2} and ϵ find a lattice Λ with $P_{e}\left(\Lambda, \sigma^{2}\right)=\epsilon$ and as small a VNR $\mu\left(\Lambda, \sigma^{2}\right)$ as possible

Lattices from Codes: Construction A

Linear Codes over \mathbb{Z}_{M}

A code $\mathcal{C} \subset \mathbb{Z}_{M}^{n}$ is linear if it is closed under addition $\bmod M$

$$
\boldsymbol{x}, \boldsymbol{y} \in \mathcal{C} \Rightarrow(\boldsymbol{x}+\boldsymbol{y}) \bmod M \in \mathcal{C}
$$

- Addition is defined component-wise modulo M
- Additive inverse exists:

$$
-\boldsymbol{x}=(M-1) \boldsymbol{x} \bmod M \in \mathcal{C}
$$

- Additive identity exists: $\mathbf{0} \in \mathcal{C}$
- \mathcal{C} is a group.
- Embed \mathcal{C} into \mathbb{R}^{n} using natural map

Create a lattice Λ by tiling copies of \mathcal{C} in \mathbb{R}^{n}

Lattices from Codes: Construction A

$$
\Lambda=\mathcal{C}+M \mathbb{Z}^{n}=\cup_{\boldsymbol{u} \in \mathbb{Z}^{n}}(\mathcal{C}+M \boldsymbol{u})
$$

- Mod- M lattice:

$$
M \mathbb{Z}^{n} \subset \Lambda \subset \mathbb{Z}^{n}
$$

- Usually, $M=$ prime, which makes \mathbb{Z}_{M} a field
- If $\Lambda_{\mathrm{s}}=M \mathbb{Z}^{n}$ is used as shaping lattice, then $\Lambda / \Lambda_{\mathrm{s}} \cong \mathcal{C}$

Mod-2 lattices: $M=2$ and, say, $|\mathcal{C}|=2^{k}, w_{\mathrm{H}}=\min$ Hamming distance

$$
\operatorname{Vol}(\Lambda)=2^{(n-k)} \text { and } d_{\min }(\Lambda)=\min \left\{2, \sqrt{w_{\mathrm{H}}}\right\}
$$

Several other constructions of lattices: Constructions B, D, constructions from algebraic number fields, etc.

Rings and Fields

Definition

A set \mathbb{D} endowed with operations ' + ' and '. ' is a ring if
(1) $(\mathbb{D},+)$ is a group \Rightarrow addition well defined.
(2) (\mathbb{D}, \cdot) is a monoid

- $a(b c)=(a b) c$ for all $a, b, c \in \mathbb{D}$
- there exists a multiplicative identity $1 \in \mathbb{D}: 1 \cdot a=a \cdot 1=a$
(3) $a(b+c)=a b+a c \Rightarrow$ addition and multiplication interact nicely

Definition

A ring $(\mathbb{D},+, \cdot)$ is a field if $(\mathbb{D} \backslash\{0\}, \cdot)$ is a group

Examples

- \mathbb{Z} - the set of integers with usual addition and multiplication
- $\mathbb{R}, \mathbb{C}, \mathbb{Q}$ - real, complex and rational numbers
- Further, can divide by any non-zero element \Rightarrow fields.

Euclidean Domain

Definition

A Euclidean domain \mathbb{D} is a ring such that
(1) No zero divisors
product of non-zero elements is non-zero
(2) Division with small remainder there is a function $N: \mathbb{D} \rightarrow\{0,1,2, \ldots\}$ such that

- for any $a, d \in \mathbb{D}$, there exists q, r such that

$$
a=q d+r \text { and } N(r)<N(d)
$$

Example
$\mathbb{D}=\mathbb{Z}$ is a Euclidean domain: $N(a)=|a|$ is the absolute value

Gaussian Integers $\mathbb{Z}[i]$

$$
i=\sqrt{-1}
$$

$\mathbb{Z}[i]=\{m+i n \mid m, n \in \mathbb{Z}\}$
$N(m+i n)=|m+i n|^{2}=m^{2}+n^{2}$

Division with small remainder
For $a, d \in \mathbb{Z}[i]$
$a=q d+r$, with $N(r) \leq \frac{N(d)}{2}$

Eisenstein Integers $\mathbb{Z}[\omega]$

$|r| \leq \frac{|d|}{\sqrt{3}}$

Division with small remainder

$$
\begin{gathered}
a=q d+r, \text { with } \\
N(r) \leq \frac{N(d)}{3}
\end{gathered}
$$

$\mathbb{Z}[\omega]=\{m+n \omega \mid m, n \in \mathbb{Z}\}$
$N(m+n \omega)=|m+n \omega|^{2}$

$$
=m^{2}-m n+n^{2}
$$

Hurwitz Quaternionic Integers \mathbb{H}

Hyper-complex numbers with 4 components

$$
\mathbb{H}=\left\{a+i b+j c+k d \mid a, b, c, d \in \mathbb{Z} \text { or } a, b, c, d \in \mathbb{Z}+\frac{1}{2}\right\}
$$

Geometry

- $(a+i b+j c+k d) \rightarrow(a, b, c, d)$ generates the lattice $D_{4}^{*} \subset \mathbb{R}^{4}$
- $\mathrm{d}_{\min }\left(D_{4}^{*}\right)=1$ and $\operatorname{Vol}\left(D_{4}\right)^{*}=1 / 2$

Algebra

- Non-commutative multiplication: $i^{2}=j^{2}=k^{2}=i j k=-1$
- Norm $N(a+i b+j c+k d)=a^{2}+b^{2}+c^{2}+d^{2} \in \mathbb{Z}$
- Division with small remainder

$$
a=q d+r \text { with } N(r) \leq \frac{N(d)}{2}
$$

Gaussian and Eisenstein Lattices

A complex lattice is a discrete group of points in \mathbb{C}^{n}

- Gaussian lattice $\Lambda=\left\{\boldsymbol{G u} \mid \boldsymbol{u} \in \mathbb{Z}[i]^{n}\right\}, \boldsymbol{G} \in \mathbb{C}^{n \times n}$ full-rank
- Eisenstein lattice $\Lambda=\left\{\boldsymbol{G} \boldsymbol{u} \mid \boldsymbol{u} \in \mathbb{Z}[\omega]^{n}\right\}, \boldsymbol{G} \in \mathbb{C}^{n \times n}$ full-rank

The real version is obtained by natural embedding

$$
\begin{aligned}
\mathbb{C}^{n} & \rightarrow \mathbb{R}^{2 n} \\
\boldsymbol{\lambda} & \rightarrow(\operatorname{Re}(\boldsymbol{\lambda}), \operatorname{Im}(\boldsymbol{\lambda}))
\end{aligned}
$$

Let $\Lambda \subset \mathbb{C}^{n}$ be a \mathbb{D}-lattice where $\mathbb{D}=\mathbb{Z}[i]$ or $\mathbb{Z}[\omega]$

- $M \Lambda$ is a sub-lattice of Λ for any $M \in \mathbb{D}$
- $\Lambda / M \Lambda$ is a lattice code

Ideals

Definition

An ideal \mathcal{I} of a ring \mathbb{D} is a subset $\mathcal{I} \subset \mathbb{D}$ such that
(1) $(\mathcal{I},+)$ is a group \Rightarrow a subgroup of $(\mathbb{D},+)$
(2) $a \mathcal{I} \subset \mathcal{I}$ for any $a \in \mathbb{D}$

Property Every ideal of an Euclidean domain \mathbb{D} is of the form $\mathcal{I}=M \mathbb{D}$ for some $M \in \mathbb{D}$

$$
\mathbb{D}=\mathbb{Z}[\omega]
$$

$$
\mathcal{I}=2 \mathbb{Z}[\omega]
$$

Cosets of Ideals

Coset of $M \mathbb{D}$ in $\mathbb{D}: a+M \mathbb{D}$, where $a \in \mathbb{D}$

Quotient Ring $\mathbb{D} / M \mathbb{D}$

- $\mathbb{D} / M \mathbb{D}=$ set of all cosets of $M \mathbb{D}$ in \mathbb{D}.

$$
\mathbb{Z}[\omega] / 2 \mathbb{Z}[\omega]=\{0+2 \mathbb{Z}[\omega], 1+2 \mathbb{Z}[\omega], \omega+2 \mathbb{Z}[\omega], 1+\omega+2 \mathbb{Z}[\omega]\}
$$

- Can add, subtract and multiply cosets

$$
\begin{gathered}
(a+M \mathbb{D})+(b+M \mathbb{D})=(a+b)+M \mathbb{D} \\
(a+M \mathbb{D}) \cdot(b+M \mathbb{D})=a b+M \mathbb{D}
\end{gathered}
$$

$\mathbb{D} / M \mathbb{D}$ forms a ring with this definition

$\mathbb{D} / M \mathbb{D}$ is a field if M is prime in \mathbb{D}.
Example

- $(1+2 \mathbb{Z}[\omega])+(1+2 \mathbb{Z}[\omega])=2+2 \mathbb{Z}[\omega]=0+2 \mathbb{Z}[\omega]$
- $(\omega+2 \mathbb{Z}[\omega]) \cdot(\omega+2 \mathbb{Z}[\omega])=\omega^{2}+2 \mathbb{Z}[\omega]=(1+\omega)+2 \mathbb{Z}[\omega]$
- $-(\omega+2 \mathbb{Z}[\omega])=-\omega+2 \mathbb{Z}[\omega]=\omega+2 \mathbb{Z}[\omega]$

Coset Leaders of $\mathbb{D} / M \mathbb{D}$

Coset leader

- is a representative element of a coset.
- usually, it is an element with the smallest norm in a coset.
- Identify $\mathbb{D} / M \mathbb{D}$ as the set of coset leaders.

Example $\mathbb{Z}[\omega] / 2 \mathbb{Z}[\omega]$

- $0+2 \mathbb{Z}[\omega] \rightarrow 0$
- $1+2 \mathbb{Z}[\omega] \rightarrow 1$
- $\omega+2 \mathbb{Z}[\omega] \rightarrow \omega$
- $1+\omega+2 \mathbb{Z}[\omega] \rightarrow 1+\omega$

$$
\mathbb{Z} / 2 \mathbb{Z}[\omega]=\{0,1, \omega, 1+\omega\}
$$

Finite Constellations with Ring Structure

- For any $a \in \mathbb{D}, a \bmod M \mathbb{D} \triangleq$ coset leader of $(a+M \mathbb{D})$
- Identify $\mathbb{D} / M \mathbb{D} \triangleq$ set of all coset leaders
- $\mathbb{D} / M \mathbb{D}$ is a ring under modulo arithmetic

Addition: $(a+b) \bmod M \mathbb{D}$
Multiplication: $(a b) \bmod M \mathbb{D}$

Multiplication in $\mathbb{Z}[\omega] / 2 \mathbb{Z}[\omega] \cong \mathbb{F}_{4}$

\times	0	1	ω	$1+\omega$
0	0	0	0	0
1	0	1	ω	$1+\omega$
ω	0	ω	$1+\omega$	1
$1+\omega$	0	$1+\omega$	1	ω

Finite Constellations with Ring Structure

$$
|\mathbb{D} / M \mathbb{D}|= \begin{cases}|M|^{2} & \text { if } \mathbb{D}=\mathbb{Z}[i] \text { or } \mathbb{Z}[\omega] \\ |M| & \text { if } \mathbb{D}=\mathbb{Z}\end{cases}
$$

Units of \mathbb{D}

- Units are elements with multiplicative inverse

$$
a \in \mathbb{D} \text { is a unit iff } a b=1 \text { for some } b \in \mathbb{D}
$$

- Units of $\mathbb{Z}=\{+1,-1\}$
- Units of $\mathbb{Z}[\omega]$ and $\mathbb{Z}[i]$:

In both cases, $a \in \mathbb{D}$ is a unit iff $|a|=1$

Greatest Common Divisor (GCD)

Given $a, b \in \mathbb{D}$

- Generate the ideal $\mathcal{I}=a \mathbb{D}+b \mathbb{D}=\{a m+b n \mid m, n \in \mathbb{D}\}$
- This ideal can be generated by a single element d, i.e., $\mathcal{I}=d \mathbb{D}$

$$
d \triangleq \operatorname{gcd}(a, b)
$$

Properties

- $d \mid a$ and $d \mid b$, i.e., $a=m d$ and $b=n d$ for some $m, n \in \mathbb{D}$
- Any divisor of a and b divides d

Definition

$a, b \in \mathbb{D}$ are relatively prime if $\operatorname{gcd}(a, b)=1$

$$
\text { Relatively prime } \Leftrightarrow a \mathbb{D}+b \mathbb{D}=\mathbb{D}
$$

Primes in \mathbb{D}

Definition

An element $\phi \in \mathbb{D}$ is prime if ϕ is not a product of two non-units.

Properties

- If ϕ_{1} and ϕ_{2} are prime then

$$
\text { either } \phi_{1}=\text { unit } \times \phi_{2} \text { or } \operatorname{gcd}\left(\phi_{1}, \phi_{2}\right)=1
$$

- Any $M \in \mathbb{D}$ can be factorized into primes

$$
M=\text { unit } \times \phi_{1}^{k_{1}} \phi_{2}^{k_{2}} \cdots \phi_{n}^{k_{n}} \text { with } \operatorname{gcd}\left(\phi_{i}, \phi_{j}\right)=1
$$

- Say $M=$ unit $\times \phi_{1}^{k_{1}} \phi_{2}^{k_{2}} \cdots \phi_{n}^{k_{n}}$ and $N=$ unit $\times \rho_{1}^{k_{1}} \rho_{2}^{k_{2}} \cdots \rho_{m}^{k_{m}}$

$$
\operatorname{gcd}(M, N)=1 \text { iff } \operatorname{gcd}\left(\phi_{i}, \rho_{j}\right)=1 \text { for all } i, j
$$

Primes in $\mathbb{Z}[i]$ and $\mathbb{Z}[\omega]$

Tables of first few primes that are relatively prime

$$
\text { Primes in } \mathbb{Z}[i]
$$

Norm $\|\phi\|^{2}$	Prime ϕ
2	$1+i$
5	$1+2 i, 1-2 i$
9	3
13	$2+3 i, 2-3 i$
17	$1+4 i, 1-4 i$
29	$2+5 i, 2-5 i$
37	$1+6 i, 1-6 i$
41	$4+5 i, 4-5 i$
49	7
53	$2+7 i, 2-7 i$

Primes in $\mathbb{Z}[\omega]$

Norm $\|\phi\|^{2}$	Prime ϕ
3	$1-\omega$
4	2
7	$1+3 \omega, 1+3 \bar{\omega}$
13	$1+4 \omega, 1+4 \bar{\omega}$
19	$2+5 \omega, 2+5 \bar{\omega}$
25	5
31	$1+6 \omega, 1+6 \bar{\omega}$
37	$3+7 \omega, 3+7 \bar{\omega}$
43	$1+7 \omega, 1+7 \bar{\omega}$
61	$4+9 \omega, 4+9 \bar{\omega}$

Chinese Remainder Theorem (over \mathbb{Z})

Given relatively prime $M_{1}, \ldots, M_{K} \in \mathbb{Z}$, let $M=\prod_{k=1}^{K} M_{k}$.
Theorem
For any set of K elements $w_{k} \in \mathbb{Z} / M_{k} \mathbb{Z}, k=1, \ldots, K$, there exists a unique $x \in \mathbb{Z} / M \mathbb{Z}$ with

$$
x \bmod M_{1}=w_{1}, \quad x \bmod M_{2}=w_{2}, \quad \ldots, \quad x \bmod M_{K}=w_{K}
$$

The one-to-one correspondence is given by

$$
\begin{aligned}
\mathbb{Z} / M_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / M_{K} \mathbb{Z} & \rightarrow \quad \mathbb{Z} / M \mathbb{Z} \\
\left(w_{1}, \cdots, w_{K}\right) & \rightarrow w_{1} \frac{M}{M_{1}}+\cdots+w_{K} \frac{M}{M_{K}} \bmod M \mathbb{Z}
\end{aligned}
$$

This is an isomorphism between two rings
$\mathbb{Z} / M_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / M_{K} \mathbb{Z}$: component-wise addition and multiplication performed modulo M_{k} at the $\mathrm{k}^{\text {th }}$ comp. $\mathbb{Z} / M \mathbb{Z}$: arithmetic performed modulo M

$$
\left(M_{1}, M_{2}, M_{3}\right)=(2,3,5) \text { and } M=30
$$

Chinese Remainder Theorem (over \mathbb{D})

- Let $M_{1}, \ldots, M_{K} \in \mathbb{D}$ be relatively prime

$$
\operatorname{gcd}\left(M_{i}, M_{j}\right)=1 \text { for all } i \neq j
$$

- Let $M=M_{1} M_{2} \cdots M_{K}$, then ${ }^{M} / M_{i}=\prod_{j \neq i} M_{j}$

Theorem
The following map is a one-to-one correspondence between
$\mathbb{D} / M_{1} \mathbb{D} \times \mathbb{D} / M_{2} \mathbb{D} \times \cdots \times \mathbb{D} / M_{K} \mathbb{D} \rightarrow \mathbb{D} / M \mathbb{D}$

$$
\mathcal{M}\left(w_{1}, \ldots, w_{K}\right) \rightarrow w_{1} \frac{M}{M_{1}}+\cdots+w_{K} \frac{M}{M_{K}} \bmod M \mathbb{D}
$$

Remarks

- The constellation $\mathbb{D} / M \mathbb{D}$ encodes K messages taking values from the quotient rings $\mathbb{D} / M_{k} \mathbb{D}, k=1, \ldots, K$
- If M_{k} is prime in \mathbb{D}, then $\mathbb{D} / M_{k} \mathbb{D}$ is a finite field.

Lattices from Codes: Construction π_{A}

Construct a lattice using K linear codes, one each over $\mathbb{D} / \phi_{k} \mathbb{D}$

- Choose K relatively-prime primes $\phi_{1}, \ldots, \phi_{K} \in \mathbb{D}, M=\prod_{k=1}^{K} \phi_{k}$
- Each $\mathbb{D} / \phi_{k} \mathbb{D}$ is a finite field
- Construct K linear codes, $\mathcal{C}_{k} \subset\left(\mathbb{D} / \phi_{k} \mathbb{D}\right)^{n}, k=1, \ldots, K$
- Generate a code $\mathcal{C} \subset(\mathbb{D} / M \mathbb{D})^{n}$ using Chinese remainder theorem

$$
\begin{aligned}
\mathcal{M}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{K}\right) & =\mathcal{C} \\
\left(\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{K}\right) & \rightarrow \frac{M}{\phi_{1}} \boldsymbol{c}_{1}+\cdots+\frac{M}{\phi_{K}} \boldsymbol{c}_{K} \bmod M \mathbb{D}^{n}
\end{aligned}
$$

- Tile shifted copies of \mathcal{C} to obtain a lattice: $\Lambda=\mathcal{C}+M \mathbb{D}^{n}$

Lattice codes obtained from Construction π_{A} lattices can be used in compute-and-forward and to attain AWGN channel capacity under low-complexity multistage decoding.

