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Abelian Groups

Definition

An Abelian group G is a set endowed with an ‘addition’ operation
(a,b) > a+b

such that

@ G is closed under the addition operation

@ there exists an identity element 0 € G: a+0=aforalla € g
© for every a, there is a —a € G such that a + (—a) =0

O Associative: a+ (b+c¢) = (a+b)+cforalla,b,ce g

® Commutative: a +b=>b+a for all a,b € G

Example The set of all integers G = Z, with usual definition of addition
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Finite Abelian Groups

Example The finite binary group {0, 1} with addition mod 2 (or XOR @)

(@ [0]1]

010
141

1
0

Example The finite ternary group {0,1,2} with addition mod 3

[+lofi[2]
0J0]1]2
11][2]0
2 [2]0 1
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Subgroups of Abelian Groups

Definition
Let (G, +) be group. Then H is a subgroup of G if
® H C G, and is non-empty
® (H,+) is a group, i.e.,
» 7H is closed under addition and negation.

Example Multiples of 3, i.e., H = 3Z form a subgroup of G = Z

o For any integer M, MZ is a subgroup of Z.
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Cosets of a Subgroup in a Group

Definition

A coset is any set of the form a + H = {a+ h|h € H}, where a € G.

e Cosets are ‘translates’ of H in G.

o Notation: G/H = set of all cosets of H in G.

Example G/H =7/3Z = {0+ 3Z, 1+ 3Z, 2 + 3Z}

o

0+3
o

Z=3+3Z=--

o

o

o

o

-4

-3

o

-2

-1

0

L
1

2

3

1+3Z=4+43Z="-

[e]

o

[e]

4

-5

-4

-3

-2

L
-1

0

1

L
2

—143Z=2+43Z="-

o

o

o

o

-5

-4

-3

-2

-1

0

1

2
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Quotient Group

Definition
Quotient group is the group formed by the cosets G/H under the rules

(a+H)+b0+H)=(a+b)+H, —(a+H)=(—a)+H
Example

(1+32)+(1+32)=2+3Z, —(1+3Z)=-1+3Z=2+3Z

Coset Leaders

e Coset leader: a representative element of a coset (a + H).

Example Addition in Z/3Z
(0+3Z)— 0 +]o]1]2]
(1+432)— 1 = Z/3Z ={0,1,2} T ToTils
(2+3Z) - 2 1[[1]27]0

2 12101
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M-ary Pulse Amplitude Modulation

In general, for a fixed positive integer M,
e G =7, subgroup H = MZ
e Quotient group G/H =Z/MZ ={0,1,...,M — 1} = M-PAM

L] L] L] L] L] L] L] L] L]

0 1 --- M-—1

Addition and negation performed ‘modulo M’
e g mod M is the remainder when « is divided by M.
» l4dmod4=2sinceld=3x4+ 2

e Ifa,be{0,1,...,M —1} = Z/MZ, then

Addition: (a 4+ b) mod M
Negation: (—a) mod M =M —a

M-PAM has the additive structure of a group.
Are there multidimensional codes with group structure?
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Lattices

A Lattice is a discrete group of
points in R"

A={Gu|ueZ"}

G=1Ig1 - gn]isan . .

n x n full-rank matrix (in this . 91 .
tutorial). . 0< .
Lattice points are integer-linear . g2 .

combinations of basis vectors . .

{ulgl +"'+Ungn|u1a~~~7un € Z}

A is an abelian group under
usual addition of vectors.

e dnin(A) = min Euclidean distance between any two lattice points
= minyea\ oy |||l
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Lattices — Examples

10
o=[1 Y |
0 1 }
4, 0 g
o dpin =1
g2
g1 " |
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Voronoi Region

\

A\

Quantizer Q4 : R™ — A gives the lattice point Q4 (z) closest to &

The Voronoi region V4 = Q*(0)
Vol(A) £ Vol(Vy) = | det(G)|

Shifted Voronoi regions tile R™
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Modulo Lattice Operation

zmod A=z — Qx(x)

Modulo operation lends algebraic structure to the Voronoi region Vy

VA X VA — 2N
(z,y) — (x+y) mod A
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Nested Lattices

Nested Lattices
Vol(A)

e A; C A are lattices
e A is a subgroup of A
e A/As is a quotient group

and Lattice Codes

Lattice Codes
Vol(As) = 5Vol(A)

o Coset leaders are A N Vy,
o AJAs = ANV, is a group
Addition: (z +y) mod A
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Lattice Codes

Coding lattice (Fine lattice) A
e Provides noise resilience
e Want large dyin(A) & small Vol(A)

Shaping lattice (Coarse lattice) A
e Carves a finite code from A
e Constrains peak power
e Want small power & large Vol(As)

Lattice Code A/A
e Finite group under addition mod Ag

o |A/Ag| = Vol(As) fvol(a)

Vol(A,)
Vol(A)

e Rate R = 1log,

Lattice codes are good for many things: achieve capacity in AWGN
and dirty paper channel, DMT in MIMO channel, relay networks
(compute & forward), wiretap channels, interference channels,
quantization, cryptography, etc. etc. etc.
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The Sphere Packing Problem

How densely can we pack identical non-intersecting spheres of radius rpack in
n-dimensional space

Packing radius

T'puck(A) VOI(A)

(Tpack (A))"
Vol(A)
when the lattice is scaled to pack spheres of unit radius

Center density 6(A) = is the number of spheres per unit volume

Coding lattice A: pack many points in a given region with large min distance

min distance = dpin(A) = 2rpack(A) No. of codewords o< m
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The Sphere Covering Problem

How sparsely can we arrange identical overlapping spheres of radius 7cov with
every point in n-dimensional space covered by at least one sphere

Covering radius

Teov(As) = su(p ||| Vol(As)

(reov(As))"™
Vol(As)
volume when the lattice is scaled to use spheres of unit radius

Covering thickness §(As) = is the number of spheres per unit

Shaping lattice As: pack many codewords in Voronoi region using min power

A)?
power = Feov (As)” No. of codewords < Vol(As)
n
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The Quantization Problem

Quantization codebook must use as few codewords as possible while
minimizing the mean square error distortion

E _ 2
No. of codewords o< W(A) Distortion = M
e The quantization error z =2 — Qa(z) = mod A € V(A)
e For high resolution quantization

1 1 / 9
- — z||“dz
Vol(A) n 2€V(A) Iz

Distortion (per dimension) o%(A) =

\

Qal@)

z%
1
z

(=)

133
—

Choose A with small normalized second moment G(A)
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Coding for the Unconstrained AWGN Channel

Infinite Codebook: A Channel y = = + z, Gaussian noise power: o2

Decoder: y — Qa(y)  Error probability P(A,0?) = P(z ¢ V(A))

Vol(A)*/

3 defines the effective

The volume-to-noise ratio u(A,0?) =
SNR of the system

g

The problem of coding for unconstrained AWGN channel
Given 02 and € find a lattice A with P.(A,02) = € and as small a VNR
u(A, %) as possible
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Lattices from Codes: Construction A

Linear Codes over Z;,
A code C C ZY; is linear if it is closed under addition mod M

z,yeC= (x+y) mod M eC

e Addition is defined

M=t1f e oo o0 o component-wise modulo M
o e o . . o e Additive inverse exists:
—x=(M—-1)zmod M €C
L]
o o o o o ° ° Add|t|Ve |dent|ty eXiStS: 0 S C
1 ¢ e Cis a group.
0 ° o o o o o o
e Embed C into R™ using natural
o1 - - - M-1

map

Create a lattice A by tiling copies of C in R™
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Lattices from Codes: Construction A

A=CH+ MZ" = Uyezn (C+ Mu)

(SNeNoNeN NeNoileNoNeNoX Nole:{oNoNeNe
i0®0000CiO®00000i0e0
lbooooedicooooedicoo
0DO®000C00O®000000 e
(000000 &0 00000 8000
D00 @00 Ci000®O0 00000
900000 Ci® 000000

Mod-M lattice:
MZ"Cc ACZ™

O@®O000O0O0;

{oNoNoNoNoNoN

OO0O0O0O @00

0.0.0.00.00
)

0000 eo0G[0000®0 i

i0O®@0000C|o®0 000
{oNeNoNoNo} Ne:loNoNoNoNoN Yo |
i00@000C|o0 @000
0O00000EO000000 e
icooeoocdjoooeood
900000000000 d0®000:
ic DO@000000®0a000
i{0®@0000C0O®000O0 00 e0
00000 ®@C00000 ®@dio0 0
i00@000CG00®000C00e
000000 ®000000 0000
i000@@00C000@800 G000 @800
9000000@©000000C0000000

e Usually, M = prime, which
makes Z,s a field

o If A, = MZ" is used as shaping
lattice, then A/Ag &

OOOO
O0.00;OOO0.00

).9.0.0.0.0i0.0.0.0.0.0.0

Mod-2 lattices: M = 2 and, say, |C| = 2, wy = min Hamming distance
Vol(A) = 2" and dpnin(A) = min{2, /wg }

Several other constructions of lattices: Constructions B, D,
constructions from algebraic number fields, etc.
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Rings and Fields

Definition
A set D endowed with operations ‘4" and "
® (D, +) is a group = addition well defined.
® (D,-) is a monoid
» a(bc) = (ab)c for all a,b,c € D
» there exists a multiplicative identity 1€ D: 1-a=a-1=a

is a ring if

® a(b+ ¢) = ab+ ac = addition and multiplication interact nicely
Definition
A ring (D, +,-) is a field if (D \ {0},") is a group

Examples

e 7 — the set of integers with usual addition and multiplication
e R,C,Q — real, complex and rational numbers
» Further, can divide by any non-zero element = fields.
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Definition

A Euclidean domain D is a ring such that

©® No zero divisors
product of non-zero elements is non-zero

® Division with small remainder

Euclidean Domain

there is a function N : D — {0,1,2,...} such that

» for any a,d € D, there exists ¢, r such that

Example

a=qd+r and N(r) < N(d)

D = Z is a Euclidean domain: N(a) = |a] is the absolute value

— |d| |d]|
a=qd+r = 1%
5 = Irl< 3
1 1 1 1 I<_ 1 1
' _9d 1 —d ! 2d 1 3d

23/42



° °
—1+2i 0+ 2i
° °
—1+i 0+i
° °
—1+i0 0
° °
—1—i 0—i

°
1+2i

°
1+

°
1+i0

i=v-1

Zli) = {m +in|m,n € Z}

N(m4in) = |m+in|? = m?+n?

Gaussian Integers Z[i]

°
2+2i

.
2+

°
2+i0

o
(241)d
°
2d
L]
(1+1)d
°
d
°
id
°
0
° °
(—1+4)d —id
L]
—d
L]
(-1 —14)d .

[r] < 14|
V2
°
L]
(]
°
—2id

Division with small remainder

For a,d € Z]i
a=qd+r, with N(r) <

(d)

2
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Eisenstein Integers Z|w]

[ ] L] [ J [ ] [

-2 -1 0 1 2
® [ ] L] L

2-—w-1l-w —w 1l-w

(] (] L] L] [
[ [ L (] [ ]

o= exp (iQﬂ')
N 3

Zw] = {m +nw|m,n € Z}

N(m +nw) = |m + nw|?

:mzfmn+n2

|7‘| < M
V3
[
P (1+w)d e
2wd [
o wd [ 4
e 0 ®
PY —wd
® —d [
(-l1-w)d @
N
) @
) [
[
) [ ]
[ ]

Division with small remainder

a = qd+ r, with
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Hurwitz Quaternionic Integers H

Hyper-complex numbers with 4 components

1
H= {a+ib+jc+kd a,b,c,d € Zor a,b,c,d € Z+ 2}

Geometry
e (a+ib+ jc+ kd) — (a,b,c,d) generates the lattice D} C R*
o dmin(D}) =1 and Vol(Dy)* =1/
Algebra
o Non-commutative multiplication: i = j2 = k? = ijk = —1
e Norm N(a+ib+ je+kd) =a? +b2+c*+d> € Z

e Division with small remainder

d
a = qd+r with N(r) < #
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Gaussian and Eisenstein Lattices

A complex lattice is a discrete group of points in C”
o Gaussian lattice A = {Gu|u € Z[i]"}, G € C™*" full-rank
e Eisenstein lattice A = {Gu|u € Z[w]"}, G € C"*" full-rank

The real version is obtained by natural embedding
C" — RQn
A = (Re(A),Im(X))
Let A C C™ be a D-lattice where D = Z[i] or Z|w]

o MA is a sub-lattice of A for any M € D
o A/MA is a lattice code
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Ideals

Definition

An ideal 7 of a ring D is a subset Z C D such that
® (Z,+) is a group = a subgroup of (D, +)
® aZ C I foranyaecD

Property Every ideal of an Euclidean domain D is of the form Z = MD
for some M € D

D = Z[w] T = 2Z[w]

. . . . . . o o o o o o

28/42



Coset of MD in D: a+ MD,

Cosets of Ideals

0+ 2Z[w]

e o

o

where a € D

1+ 27Zw]

o e

e o

+

29/42



Quotient Ring D/MD

e D/MD = set of all cosets of MD in D.
Z|w]/2Z]w] = {0 + 2Z]w], 1 4 2Z|w], w + 2Z[w],1 + w + 2Z[w]}
e Can add, subtract and multiply cosets
(a+ MD)+ (b+ MD) = (a+b) + MD

(a+ MD) - (b+ MD) = ab+ MD

‘]D/MD forms a ring with this definition‘

D/MD is a field if M is prime in D.

Example
o (1+2Z[w]) + (1 + 2Z|w]) = 2 + 2Z|w] = 0 + 2Z|w)]
o (w+2Z[w]) - (w+ 2Z[w]) = w? + 2Z[w] = (1 + w) + 2Z|w]
o —(w+2Zw]) = —w+ 2Z[w] = w + 2Z[w]
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Coset Leaders of D/MD

Coset leader

e is a representative element of a coset.

e usually, it is an element with the smallest norm in a coset.

o Identify D/MD as the set of coset leaders.

Example Z[w]/2Z[w] ©o o o °
o 0+ 2Z[w] = 0 « o e ofe o

o 1427w =1 oo e o
o w+2Zw] s w ° e 0 @0 e

o l+w+2Zw] - 1+w

. o . o | ® o

—w

|2/22[w] = {0, 1, w, 1 + w} | o o o o
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Finite Constellations with Ring Structure

e For any a € D, a mod MD £ coset leader of (a + MD)

o Identify D/MD £ set of all coset leaders
e D/MD is a ring under modulo arithmetic

Addition: (a +b) mod MD
Multiplication: (ab) mod MD

Multiplication in Z[w]/2Z]w] = Fy o o o
(e} (e} w. .1+u)0
x o] 1 | w |l+4w]
0 O] o 0 0 1
1 0 1 ].“FUJ o o o o o
w 0 w 14w 1
14w ||0]| 14w 1 w © © °
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Finite Constellations with Ring Structure

Z[w) /(1 + 3w)Zlw] = F- Z[i]/3Z[i] = F3 x Fs
o o o o o o
° ° ° ° ° ° ] o o o o o
o o ° ° o o o o L] L] o o
o o L] L] o o o o ° ° o o

o o o o o o
o o o o o o

|M|? if D= Z[i] or Z]w]

ID/MD| = .
M| D=2
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e Units are elements with multiplicative inverse

a€Disaunitiffab=1 for some b c D
e Units of Z = {+1, -1}

e Units of Z[w] and Z[4]:

Units of D

o

In both cases, a € D is a unit iff |a| =1

o

o

o

o
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Greatest Common Divisor (GCD)

Given a,b € D

e Generate the ideal Z = aD 4 0D = {am + bn|m,n € D}
e This ideal can be generated by a single element d, i.e., Z = dD

d £ ged(a,b)

Properties

e d|a and d|b, i.e., a = md and b = nd for some m,n € D
e Any divisor of a and b divides d

Definition
a,b € D are relatively prime if ged(a,b) =1

Relatively prime < aD + bD = D
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Primes in D

Definition
An element ¢ € D is prime if ¢ is not a product of two non-units.
Properties

o If 1 and ¢ are prime then

either ¢; = unit x ¢y or ged(¢1, dp) = 1

e Any M € D can be factorized into primes

M = unit x ¢F* k2 .. pFn with ged (s, 9j) = 1

e Say M = unit x ¢’f1 gi)’;? - @Fn and N = unit x p’fl p’;2 o plm

ged(M, N) = 1iff ged(¢s, p;) =1 for all i, j
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Primes in Z[i] and Z[w]

Primes in Z[i]

Tables of first few primes that are relatively prime

Primes in Z]w]

Norm Prime
9] ¢
2 1+14
5 1+2i,1—2i
9 3
13 24 3i,2 — 3i
17 1+4+4i,1 — 44
29 24 50,2 — 5i
37 1+ 6,1 —6¢
41 4+ 5i,4—5i
49 7
53 24 70,2 —Ti

Norm Prime

61 ¢
3 1—w
4 2
7 1+3w,1+ 3w
13 1+4w,1+ 4w
19 2 + 5w, 2 + 5w
25 5

31 1+ 6w,1+ 6w
37 34 Tw,3+ 7w
43 14+7w,1+ 7w
61 44+ 9w, 4 + 9w
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Chinese Remainder Theorem (over Z)

Given relatively prime M,..., Mg € Z, let M = HkK:1 M.

Theorem
For any set of K elements wy, € Z/MyZ, k =1,..., K, there exists a
unique = € Z/MZ with

x mod M; =w;, x mod My =ws, ..., x mod Mg =wg

The one-to-one correspondence is given by
Z/M\Z X -+ X L/ MKZ — Z/MZ

M M
(w1, ,Wk) —>w1ﬁ1+-~-+wKM—K mod MZ

This is an isomorphism between two rings

Z/MIZ X -+ X L/ MKZ : component-wise addition and multiplication

performed modulo M;, at the k' comp.
Z/MZ : arithmetic performed modulo M
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(My, My, M3) = (2,3,5) and M = 30

1|27 L/3L 7|57
01 013 01231

z = (15w; 4+ 10wz + 6ws) mod 30

o1 - 29

7./30Z
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Chinese Remainder Theorem (over D)

o Let My,..., Mg € D be relatively prime
ged(M;, M;) =1 for all i # j

o let M = My My Mg, then M/n;, = Hj;éi M;

Theorem

The following map is a one-to-one correspondence between
D/MiD x D/MsD X -+ x D/MgD — D/MD

M M
M(wl,...,wK)—>w1M+-~-+wKM—K mod MD

Remarks

e The constellation D/MD encodes K messages taking values from
the quotient rings D/M;;D, k=1,..., K

o If My is prime in D, then D/M;D is a finite field.
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wy € Z[i)/(1 + 24)Z[i) = F5

o o o o
o o o o
o <] o o
o o o o

5= (1+2i)(1—2i)
ged(142i,1—2i) =1

ws € Z[i]/(1 — 2)Z[i] = Fs

o

<

)

x € Zi] /5Z[i]
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Lattices from Codes: Construction 74

‘Construct a lattice using K linear codes, one each over ]D)/gﬁk]D)‘

Choose K relatively-prime primes ¢1,...,¢0x €D, M = HkK:1 bk
» Each D/¢iD is a finite field

Construct K linear codes, Cr, C (D/¢xD)", k=1,..., K

Generate a code C C (D/MD)" using Chinese remainder theorem
M(C,....Ck)=C

M M
(e1,...,ex) = —e1 + -+ —cx mod MD"

®1 bK
Tile shifted copies of C to obtain a lattice: A =C + MD"

Lattice codes obtained from Construction m4 lattices can be used in
compute-and-forward and to attain AWGN channel capacity under
low-complexity multistage decoding.
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