
Lattice Index Coding
Part II - Mathematical Preliminaries

Emanuele Viterbo

European School of Information Theory
4 April 2016, Gothenburg

1 / 42



Based on..

2 / 42



References

• J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups.
New York, NY, USA: Springer-Verlag, 1999.

• G. D. Forney, “Multidimensional constellations. II. Voronoi constellations,”
IEEE Journal on Selected Areas in Communications, vol. 7, no. 6, pp. 941–958,
Aug 1989.

• R. Zamir, Lattice Coding for Signals and Networks. Cambridge, UK: Cambridge
University Press, 2014.

• B. Nazer and M. Gastpar, “Compute-and-Forward: Harnessing Interference
Through Structured Codes,” IEEE Transactions on Information Theory, vol. 57,
no. 10, pp. 6463-6486, Oct. 2011.

• C. Feng, D. Silva and F. R. Kschischang, “An Algebraic Approach to
Physical-Layer Network Coding,” IEEE Transactions on Information Theory, vol.
59, no. 11, pp. 7576-7596, Nov. 2013.

• Y.-C. Huang and K. R. Narayanan, “Construction πA and πD Lattices:
Construction, Goodness, and Decoding Algorithms,” arXiv:1506.08269,
Jun. 2015.

3 / 42



Abelian Groups

Definition
An Abelian group G is a set endowed with an ‘addition’ operation

(a, b)→ a+ b

such that

1 G is closed under the addition operation

2 there exists an identity element 0 ∈ G: a+ 0 = a for all a ∈ G
3 for every a, there is a −a ∈ G such that a+ (−a) = 0

4 Associative: a+ (b+ c) = (a+ b) + c for all a, b, c ∈ G
5 Commutative: a+ b = b+ a for all a, b ∈ G

Example The set of all integers G = Z, with usual definition of addition
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Finite Abelian Groups

Example The finite binary group {0, 1} with addition mod 2 (or XOR ⊕)

⊕ 0 1

0 0 1
1 1 0

Example The finite ternary group {0, 1, 2} with addition mod 3

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1
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Subgroups of Abelian Groups

Definition
Let (G,+) be group. Then H is a subgroup of G if

1 H ⊂ G, and is non-empty

2 (H,+) is a group, i.e.,

I H is closed under addition and negation.

Example Multiples of 3, i.e., H = 3Z form a subgroup of G = Z

• For any integer M , MZ is a subgroup of Z.
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Cosets of a Subgroup in a Group

Definition
A coset is any set of the form a+H = {a+ h |h ∈ H}, where a ∈ G.

• Cosets are ‘translates’ of H in G.

• Notation: G/H = set of all cosets of H in G.

Example G/H = Z/3Z = {0 + 3Z, 1 + 3Z, 2 + 3Z}
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Quotient Group

Definition
Quotient group is the group formed by the cosets G/H under the rules

(a+H) + (b+H) = (a+ b) +H, −(a+H) = (−a) +H

Example

(1 + 3Z) + (1 + 3Z) = 2 + 3Z, −(1 + 3Z) = −1 + 3Z = 2 + 3Z

Coset Leaders
• Coset leader: a representative element of a coset (a+H).

Example

(0 + 3Z)→ 0

(1 + 3Z)→ 1

(2 + 3Z)→ 2

⇒ Z/3Z = {0, 1, 2}

Addition in Z/3Z

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1
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M -ary Pulse Amplitude Modulation

In general, for a fixed positive integer M ,

• G = Z, subgroup H = MZ
• Quotient group G/H = Z/MZ = {0, 1, . . . ,M − 1} = M -PAM

Addition and negation performed ‘modulo M ’

• a mod M is the remainder when a is divided by M .

I 14 mod 4 = 2 since 14 = 3× 4 + 2

• If a, b ∈ {0, 1, . . . ,M − 1} = Z/MZ, then

Addition: (a+ b) mod M

Negation: (−a) mod M = M − a

M-PAM has the additive structure of a group.
Are there multidimensional codes with group structure?
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Lattices

• A Lattice is a discrete group of
points in Rn

Λ = {GuGuGu |uuu ∈ Zn}

• GGG = [ggg1 · · · gggn] is an
n× n full-rank matrix (in this
tutorial).

• Lattice points are integer-linear
combinations of basis vectors

{u1ggg1 + · · ·+ ungggn|u1, . . . , un ∈ Z}

• Λ is an abelian group under
usual addition of vectors.

• dmin(Λ) = min Euclidean distance between any two lattice points
= minλλλ∈Λ\{000} ‖λλλ‖
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Lattices – Examples
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Voronoi Region

.
0

• Quantizer QΛ : Rn → Λ gives the lattice point QΛ(xxx) closest to xxx

• The Voronoi region VΛ = Q−1
Λ (000)

• Vol(Λ) , Vol(VΛ) = |det(GGG)|

• Shifted Voronoi regions tile Rn
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Modulo Lattice Operation

xxx mod Λ = xxx−QΛ(xxx)

Modulo operation lends algebraic structure to the Voronoi region VΛ

VΛ × VΛ → VΛ

(xxx,yyy) → (xxx+ yyy) mod Λ
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Nested Lattices and Lattice Codes

Nested Lattices
Vol(Λ)

• Λs ⊂ Λ are lattices

• Λs is a subgroup of Λ

• Λ/Λs is a quotient group

Lattice Codes
Vol(Λs) = 5Vol(Λ)

• Coset leaders are Λ ∩ VΛs

• Λ/Λs = Λ ∩ VΛs is a group

Addition: (xxx+ yyy) mod Λs
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Lattice Codes

Coding lattice (Fine lattice) Λ

• Provides noise resilience

• Want large dmin(Λ) & small Vol(Λ)

Shaping lattice (Coarse lattice) Λs

• Carves a finite code from Λ

• Constrains peak power

• Want small power & large Vol(Λs)

Lattice Code Λ/Λs

• Finite group under addition mod Λs

• |Λ/Λs| = Vol(Λs)/Vol(Λ)

• Rate R = 1
n log2

Vol(Λs)
Vol(Λ)

Lattice codes are good for many things: achieve capacity in AWGN
and dirty paper channel, DMT in MIMO channel, relay networks
(compute & forward), wiretap channels, interference channels,
quantization, cryptography, etc. etc. etc.
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The Sphere Packing Problem

How densely can we pack identical non-intersecting spheres of radius rpack in

n-dimensional space

Center density δ(Λ) =
(rpack(Λ))n

Vol(Λ)
is the number of spheres per unit volume

when the lattice is scaled to pack spheres of unit radius

Coding lattice Λ: pack many points in a given region with large min distance

min distance = dmin(Λ) = 2rpack(Λ) No. of codewords ∝ 1
Vol(Λ)
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The Sphere Covering Problem

How sparsely can we arrange identical overlapping spheres of radius rcov with

every point in n-dimensional space covered by at least one sphere

Covering thickness θ(Λs) =
(rcov(Λs))

n

Vol(Λs)
is the number of spheres per unit

volume when the lattice is scaled to use spheres of unit radius

Shaping lattice Λs: pack many codewords in Voronoi region using min power

power =
rcov(Λs)

2

n
No. of codewords ∝ Vol(Λs)
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The Quantization Problem

Quantization codebook must use as few codewords as possible while

minimizing the mean square error distortion

No. of codewords ∝ 1

Vol(Λ)
Distortion =

E ‖xxx−QΛ(xxx)‖2

n

• The quantization error zzz = xxx−QΛ(xxx) = xxx mod Λ ∈ V(Λ)
• For high resolution quantization

Distortion (per dimension) σ2(Λ) =
1

Vol(Λ)
· 1

n

∫
zzz∈V(Λ)

‖zzz‖2dzzz

Choose Λ with small normalized second moment G(Λ) =
σ2(Λ)

Vol(Λ)2/n
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Coding for the Unconstrained AWGN Channel

Infinite Codebook: Λ Channel yyy = xxx+ zzz, Gaussian noise power: σ2

Decoder: yyy → QΛ(yyy) Error probability Pe(Λ, σ
2) = P

(
zzz /∈ V(Λ)

)
The volume-to-noise ratio µ(Λ, σ2) =

Vol(Λ)
2/n

σ2
defines the effective

SNR of the system

The problem of coding for unconstrained AWGN channel
Given σ2 and ε find a lattice Λ with Pe(Λ, σ

2) = ε and as small a VNR
µ(Λ, σ2) as possible
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Lattices from Codes: Construction A

Linear Codes over ZM
A code C ⊂ ZnM is linear if it is closed under addition mod M

xxx,yyy ∈ C ⇒ (xxx+ yyy) mod M ∈ C

• Addition is defined
component-wise modulo M

• Additive inverse exists:
−xxx = (M − 1)xxx mod M ∈ C

• Additive identity exists: 000 ∈ C

• C is a group.

• Embed C into Rn using natural
map

Create a lattice Λ by tiling copies of C in Rn
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Lattices from Codes: Construction A

Λ = C +MZn = ∪uuu∈Zn (C +Muuu)

• Mod-M lattice:
MZn ⊂ Λ ⊂ Zn

• Usually, M = prime, which
makes ZM a field

• If Λs = MZn is used as shaping
lattice, then Λ/Λs

∼= C

Mod-2 lattices: M = 2 and, say, |C| = 2k, wH = min Hamming distance

Vol(Λ) = 2(n−k) and dmin(Λ) = min{2,
√
wH}

Several other constructions of lattices: Constructions B, D,
constructions from algebraic number fields, etc.
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Rings and Fields

Definition
A set D endowed with operations ‘+’ and ‘·’ is a ring if

1 (D,+) is a group ⇒ addition well defined.

2 (D, ·) is a monoid

I a(bc) = (ab)c for all a, b, c ∈ D
I there exists a multiplicative identity 1 ∈ D: 1 · a = a · 1 = a

3 a(b+ c) = ab+ ac ⇒ addition and multiplication interact nicely

Definition
A ring (D,+, ·) is a field if (D \ {0}, ·) is a group

Examples

• Z – the set of integers with usual addition and multiplication

• R,C,Q – real, complex and rational numbers

I Further, can divide by any non-zero element ⇒ fields.
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Euclidean Domain

Definition
A Euclidean domain D is a ring such that

1 No zero divisors
product of non-zero elements is non-zero

2 Division with small remainder
there is a function N : D→ {0, 1, 2, . . . } such that

I for any a, d ∈ D, there exists q, r such that

a = qd+ r and N(r) < N(d)

Example
D = Z is a Euclidean domain: N(a) = |a| is the absolute value
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Gaussian Integers Z[i]

i =
√
−1

Z[i] = {m+ in |m,n ∈ Z}

N(m+in) = |m+in|2 = m2+n2

Division with small remainder

For a, d ∈ Z[i]

a = qd+ r, with N(r) ≤ N(d)

2
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Eisenstein Integers Z[ω]

ω = exp

(
i2π

3

)
Z[ω] = {m+ nω |m,n ∈ Z}

N(m+ nω) = |m+ nω|2

= m2 −mn+ n2

Division with small remainder

a = qd+ r, with

N(r) ≤ N(d)

3
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Hurwitz Quaternionic Integers H

Hyper-complex numbers with 4 components

H =

{
a+ ib+ jc+ kd

∣∣∣ a, b, c, d ∈ Z or a, b, c, d ∈ Z +
1

2

}
Geometry

• (a+ ib+ jc+ kd)→ (a, b, c, d) generates the lattice D∗4 ⊂ R4

• dmin(D∗4) = 1 and Vol(D4)∗ = 1/2

Algebra

• Non-commutative multiplication: i2 = j2 = k2 = ijk = −1

• Norm N(a+ ib+ jc+ kd) = a2 + b2 + c2 + d2 ∈ Z
• Division with small remainder

a = qd+ r with N(r) ≤ N(d)

2
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Gaussian and Eisenstein Lattices

A complex lattice is a discrete group of points in Cn

• Gaussian lattice Λ = {GuGuGu |uuu ∈ Z[i]n}, GGG ∈ Cn×n full-rank

• Eisenstein lattice Λ = {GuGuGu |uuu ∈ Z[ω]n}, GGG ∈ Cn×n full-rank

The real version is obtained by natural embedding

Cn → R2n

λλλ → (Re(λλλ), Im(λλλ))

Let Λ ⊂ Cn be a D–lattice where D = Z[i] or Z[ω]

• MΛ is a sub-lattice of Λ for any M ∈ D
• Λ/MΛ is a lattice code
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Ideals

Definition
An ideal I of a ring D is a subset I ⊂ D such that

1 (I,+) is a group ⇒ a subgroup of (D,+)

2 aI ⊂ I for any a ∈ D

Property Every ideal of an Euclidean domain D is of the form I = MD
for some M ∈ D

D = Z[ω] I = 2Z[ω]
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Cosets of Ideals

Coset of MD in D: a+MD, where a ∈ D
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Quotient Ring D/MD

• D/MD = set of all cosets of MD in D.

Z[ω]/2Z[ω] = {0 + 2Z[ω], 1 + 2Z[ω], ω + 2Z[ω], 1 + ω + 2Z[ω]}

• Can add, subtract and multiply cosets

(a+MD) + (b+MD) = (a+ b) +MD

(a+MD) · (b+MD) = ab+MD

D/MD forms a ring with this definition

D/MD is a field if M is prime in D.

Example

• (1 + 2Z[ω]) + (1 + 2Z[ω]) = 2 + 2Z[ω] = 0 + 2Z[ω]

• (ω + 2Z[ω]) · (ω + 2Z[ω]) = ω2 + 2Z[ω] = (1 + ω) + 2Z[ω]

• −(ω + 2Z[ω]) = −ω + 2Z[ω] = ω + 2Z[ω]
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Coset Leaders of D/MD

Coset leader

• is a representative element of a coset.

• usually, it is an element with the smallest norm in a coset.

• Identify D/MD as the set of coset leaders.

Example Z[ω]/2Z[ω]

• 0 + 2Z[ω]→ 0

• 1 + 2Z[ω]→ 1

• ω + 2Z[ω]→ ω

• 1 + ω + 2Z[ω]→ 1 + ω

Z/2Z[ω] = {0, 1, ω, 1 + ω}
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Finite Constellations with Ring Structure

• For any a ∈ D, a mod MD , coset leader of (a+MD)

• Identify D/MD , set of all coset leaders

• D/MD is a ring under modulo arithmetic

Addition: (a+ b) mod MD
Multiplication: (ab) mod MD

Multiplication in Z[ω]/2Z[ω] ∼= F4

× 0 1 ω 1 + ω

0 0 0 0 0
1 0 1 ω 1 + ω
ω 0 ω 1 + ω 1

1 + ω 0 1 + ω 1 ω
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Finite Constellations with Ring Structure

|D/MD| =

{
|M |2 if D = Z[i] or Z[ω]

|M | if D = Z
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Units of D
• Units are elements with multiplicative inverse

a ∈ D is a unit iff ab = 1 for some b ∈ D
• Units of Z = {+1,−1}

• Units of Z[ω] and Z[i]:
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Greatest Common Divisor (GCD)

Given a, b ∈ D
• Generate the ideal I = aD + bD = {am+ bn |m,n ∈ D}
• This ideal can be generated by a single element d, i.e., I = dD

d , gcd(a, b)

Properties

• d|a and d|b, i.e., a = md and b = nd for some m,n ∈ D
• Any divisor of a and b divides d

Definition
a, b ∈ D are relatively prime if gcd(a, b) = 1

Relatively prime ⇔ aD + bD = D
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Primes in D

Definition
An element φ ∈ D is prime if φ is not a product of two non-units.

Properties

• If φ1 and φ2 are prime then

either φ1 = unit× φ2 or gcd(φ1, φ2) = 1

• Any M ∈ D can be factorized into primes

M = unit× φk11 φk22 · · ·φknn with gcd(φi, φj) = 1

• Say M = unit× φk11 φk22 · · ·φknn and N = unit× ρk11 ρk22 · · · ρkmm

gcd(M,N) = 1 iff gcd(φi, ρj) = 1 for all i, j
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Primes in Z[i] and Z[ω]

Tables of first few primes that are relatively prime

Primes in Z[i]

Norm Prime
|φ|2 φ
2 1 + i
5 1 + 2i, 1− 2i
9 3
13 2 + 3i, 2− 3i
17 1 + 4i, 1− 4i
29 2 + 5i, 2− 5i
37 1 + 6i, 1− 6i
41 4 + 5i, 4− 5i
49 7
53 2 + 7i, 2− 7i

Primes in Z[ω]

Norm Prime
|φ|2 φ
3 1− ω
4 2
7 1 + 3ω, 1 + 3ω
13 1 + 4ω, 1 + 4ω
19 2 + 5ω, 2 + 5ω
25 5
31 1 + 6ω, 1 + 6ω
37 3 + 7ω, 3 + 7ω
43 1 + 7ω, 1 + 7ω
61 4 + 9ω, 4 + 9ω
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Chinese Remainder Theorem (over Z)

Given relatively prime M1, . . . ,MK ∈ Z, let M =
∏K
k=1Mk.

Theorem
For any set of K elements wk ∈ Z/MkZ, k = 1, . . . ,K, there exists a
unique x ∈ Z/MZ with

x mod M1 = w1, x mod M2 = w2, . . . , x mod MK = wK

The one-to-one correspondence is given by

Z/M1Z× · · · × Z/MKZ→ Z/MZ

(w1, · · · , wK) → w1
M

M1
+ · · ·+ wK

M

MK
mod MZ

This is an isomorphism between two rings

Z/M1Z× · · · × Z/MKZ : component-wise addition and multiplication

performed modulo Mk at the kth comp.

Z/MZ : arithmetic performed modulo M
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(M1,M2,M3) = (2, 3, 5) and M = 30
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Chinese Remainder Theorem (over D)

• Let M1, . . . ,MK ∈ D be relatively prime

gcd(Mi,Mj) = 1 for all i 6= j

• Let M = M1M2 · · ·MK , then M/Mi =
∏
j 6=iMj

Theorem
The following map is a one-to-one correspondence between
D/M1D× D/M2D× · · · × D/MKD→ D/MD

M(w1, . . . , wK)→ w1
M

M1
+ · · ·+ wK

M

MK
mod MD

Remarks
• The constellation D/MD encodes K messages taking values from

the quotient rings D/MkD, k = 1, . . . ,K

• If Mk is prime in D, then D/MkD is a finite field.
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Lattices from Codes: Construction πA

Construct a lattice using K linear codes, one each over D/φkD

• Choose K relatively-prime primes φ1, . . . , φK ∈ D, M =
∏K
k=1 φk

I Each D/φkD is a finite field

• Construct K linear codes, Ck ⊂ (D/φkD)
n, k = 1, . . . ,K

• Generate a code C ⊂ (D/MD)
n using Chinese remainder theorem

M (C1, . . . , CK) = C

(ccc1, . . . , cccK)→ M

φ1
ccc1 + · · ·+ M

φK
cccK mod MDn

• Tile shifted copies of C to obtain a lattice: Λ = C +MDn

Lattice codes obtained from Construction πA lattices can be used in
compute-and-forward and to attain AWGN channel capacity under
low-complexity multistage decoding.

42 / 42


