Lattice Coding for Signals & Networks Rami Zamir Information Theory School @ UniCamp

January 2015

Lattice: Definition Lattice = discrete subgroup of Euclidean space

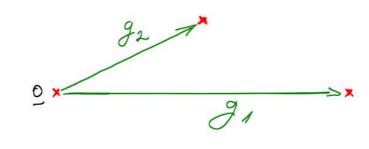
$$\Lambda = \left\{ \begin{array}{ll}
G \cdot i & i = vector of integers \\
(o, \pm 1, \pm 1, ...)
\end{array} \right\}$$
Lattice Generator

Mutrix

NXN

Closed under reflection & addition:

linearity: Cn, l, e A => lithe A



Lattice Codes in Signal Space square (Z)-lattice >> uncoded constellation More "interesting" lattice -> Coded constellation

What a Lattice Means?...

What a Lattice Means?...

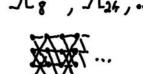
For my 8-year old kid:

-11- a physicist/crystallographer:

-11- a mathematician:

-11- a Computer Scientist:

-11- a coding theorist: 18, 124, ...



-11- an Information Theorist:

 $N \to \infty$

People Who Influences ...

Hermann Minkowski (1864 - 1909)

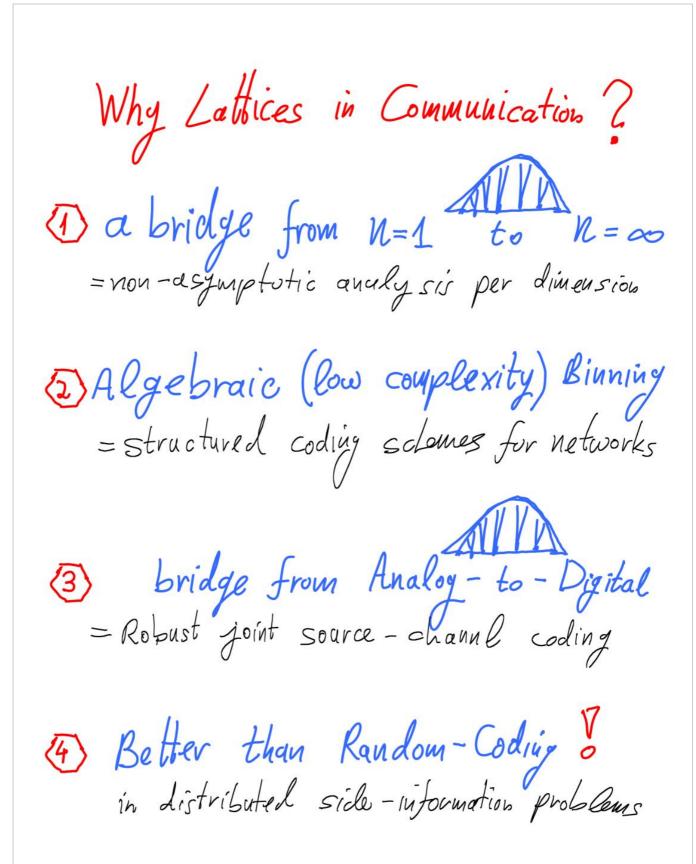
John

Dave Forney

also, Rudi de Buda, Gregory Poltyrev...

Why Lattices in Communication?

 $\langle 3 \rangle$



Lattices do things differently:

Randomness ->

Typicality ->

Binning ->

Special features: * Dither - why? how? is it critical? * MMSE - estimation or decoding? linear or not? * Volume & noise - soft sphere packing & covering * Lattices in high dimensions -> white Gayssian noise ? > non-Gaussian noise? * Nesting cosets & binning * AWGN + dither * Voronoi or Paralle piped? * Mixed dimensions * Noise-matched decoding

1. Definitions: Partition, Construction

Vol (A)

Modulo A

Lattice: Definition

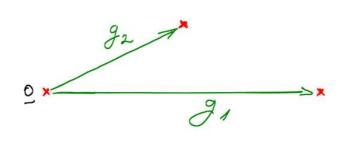
Let
$$f_1, ..., f_n - l_{nearly}$$
 independent vectors in \mathbb{R}^n

$$G = \begin{pmatrix} g_1 & \dots & g_n \end{pmatrix} = g_{nerator} \text{ matrix}$$

$$\Lambda(G) = \{i_{1}g_{n} + ... + i_{n}g_{n} : i_{1}...i_{n} \in \mathbb{Z}\}$$

$$= \{G \cdot i : i \in \mathbb{Z}^{n}\}$$

$$= G \cdot \mathbb{Z}^{n}$$



×

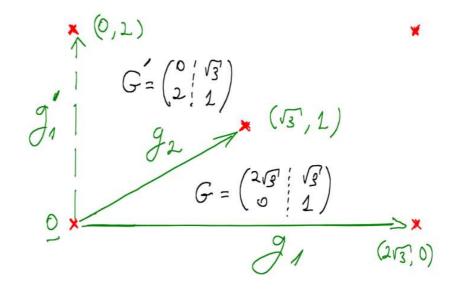
Lattice: Equivalent Representations

$$T = unimodular matrix$$

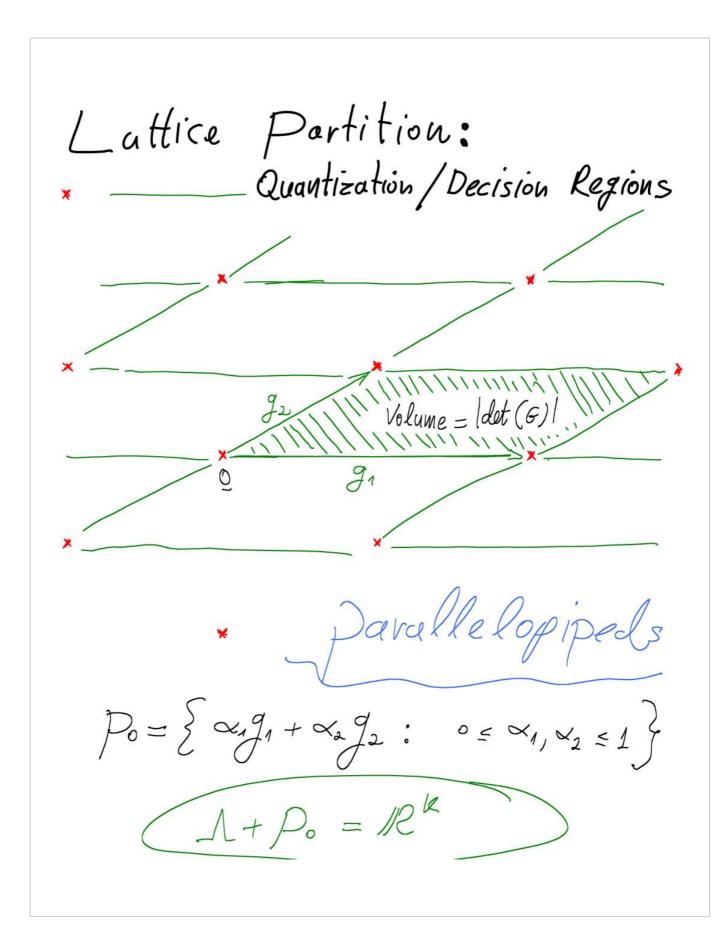
(integer elements, $subset (T) = \pm 1$)

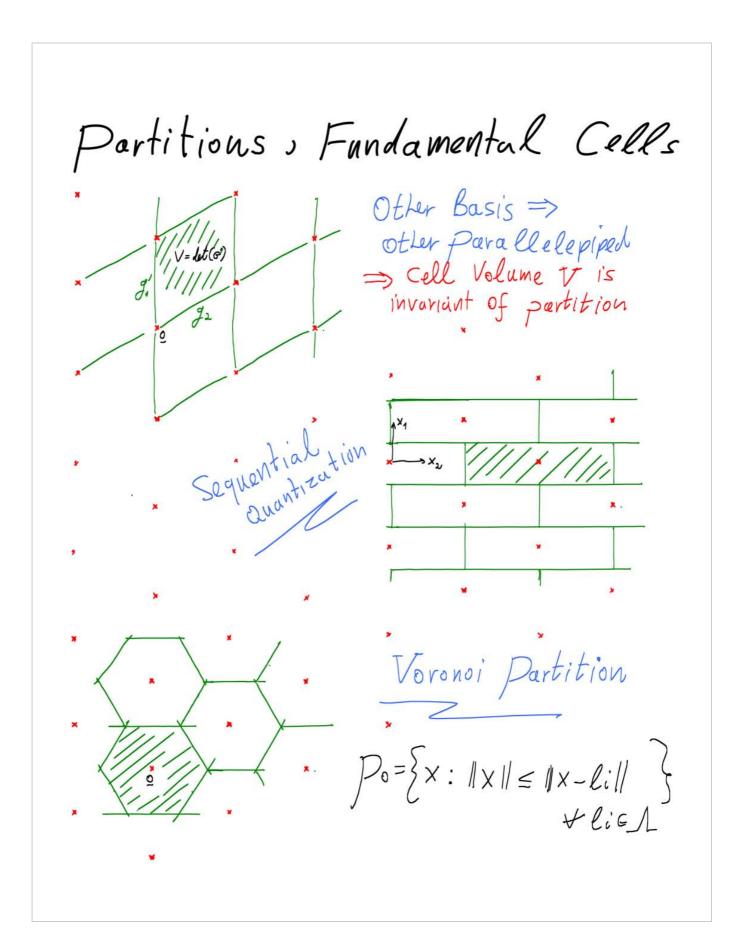
×

×



X

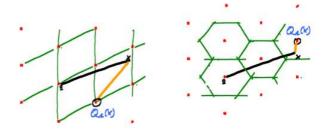




Lattice Quantization, Modulo Lattice

$$Q_{\Lambda,p_0}(x) = \lambda$$
 if $x \in (\lambda + p_0)$
 $x \mod_{p_0} \Lambda = x - Q_{\Lambda,p_0}(x)$

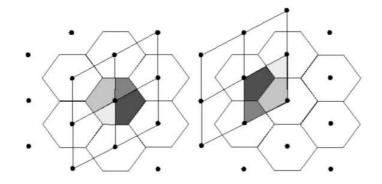
$$\times \text{ mod }_{p_0} \Lambda = X - Q_{\Lambda p_0}(x)$$



Modulo Laws:

$$\uparrow$$
 a mod $\Lambda = \alpha + \lambda(a)$, $\lambda(a) \in \Lambda$

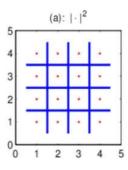
Fundamental Cells & Cosets

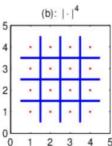


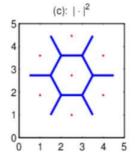
cells are "modulo equivalent"

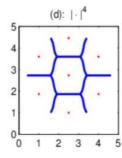
: Fundamental cell: a complete set of coset representatives

Non-Euclidean Voronoi partition









Lattices from Linear Codes ("Construction A")

Let
$$G = q$$
-ary (u,k) liner code over $Z_q = \{0,...q-1\}$

$$= \{G : \underline{i} : \underline{i} \in Z_q^k\}$$

$$u \times k$$

$$|\underline{M} = q^k$$

Let
$$\Lambda_{G} = \text{modulo}_{-q} \text{ lattice}$$

$$= \{\lambda \in \mathbb{R}^{n} : \lambda \text{ mod } q \in \mathbb{C} \}$$

e.g., Es (a lattice in R)

is a modulo-2 lattia

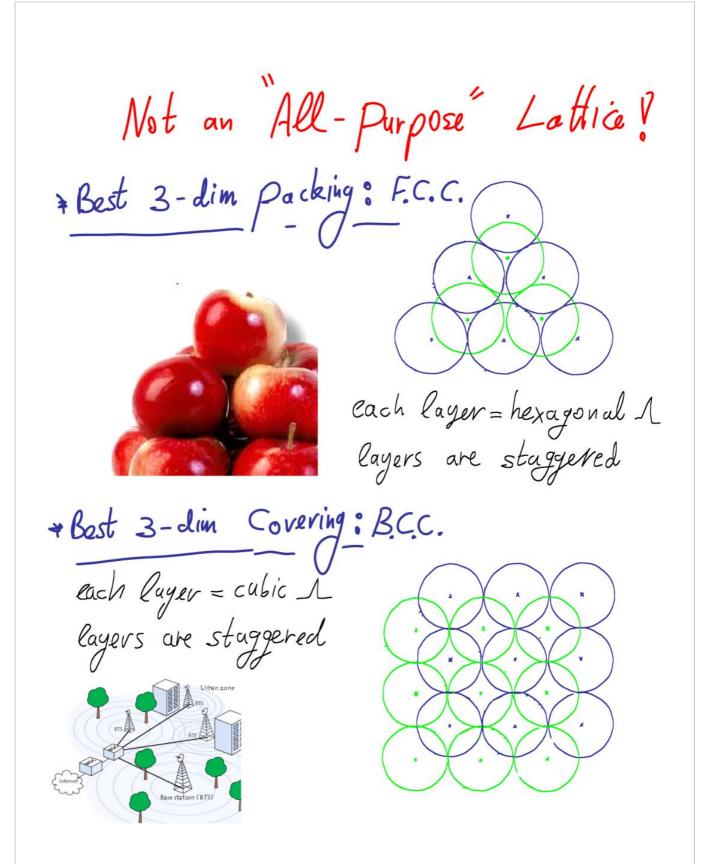
/ Hamming Code (8,4,4)

2. Figures of merit

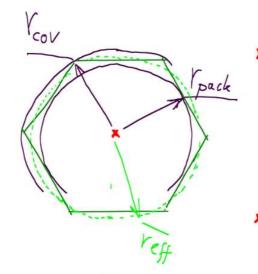
Ga), $\mu(\Lambda, pe)$

Covering, Packing, Kissing Number & More... Covering 12 with (few)

Spheres (Mang) Spheres good arrangements and AWGN channel Coding



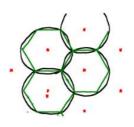
Figures of Merit



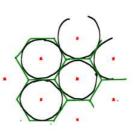
Radiuses:

· covering efficiency:

$$P_{cov}(\Lambda) = \frac{V_{cov}}{V_{eff}} > 1$$



· packing efficiency:



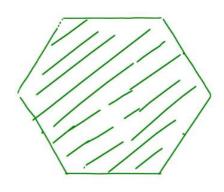
Figures of Merit (continued)

· Quantization efficiency:

X ~ Uniform (Vo)

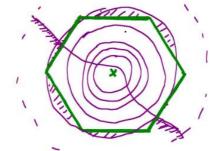
~ (A) \$\frac{1}{n} \in || \lambda || \frac{1}{n} \in || \lambda || \frac{1}{n} \in || \lambda || \frac{1}{n} \in || \frac{1}{n

 $G(\Lambda) \triangleq \frac{C^2(\Lambda)}{\sqrt{2/N}}$



= normalized Second moment

Figures of Merit (continued)



Example: One dimensional lattice (Voronoi cell = interval)

1. NSM

$$V = dither$$

$$V(\Lambda) = \Delta$$

$$V(\Lambda) = \Delta$$
on Voronui cell
$$-\Delta l\lambda + \Delta l\lambda$$

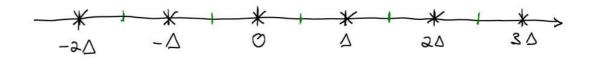
$$= (-\Delta l\lambda, + \Delta l\lambda)$$

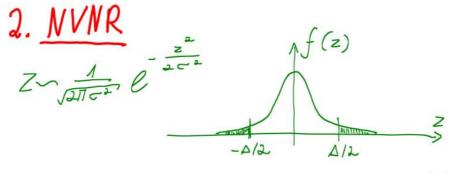
$$EU = \frac{\Delta^2}{12}$$

$$\Rightarrow G(\Box) = \frac{EU^2}{V^2(A)} = \frac{\Delta^2/12}{\Delta^2} = \frac{1}{12}$$

invariant of D

Example: One dinensional lattice (Voronoi cell = interval)

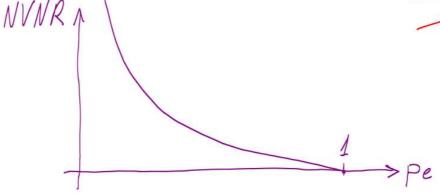


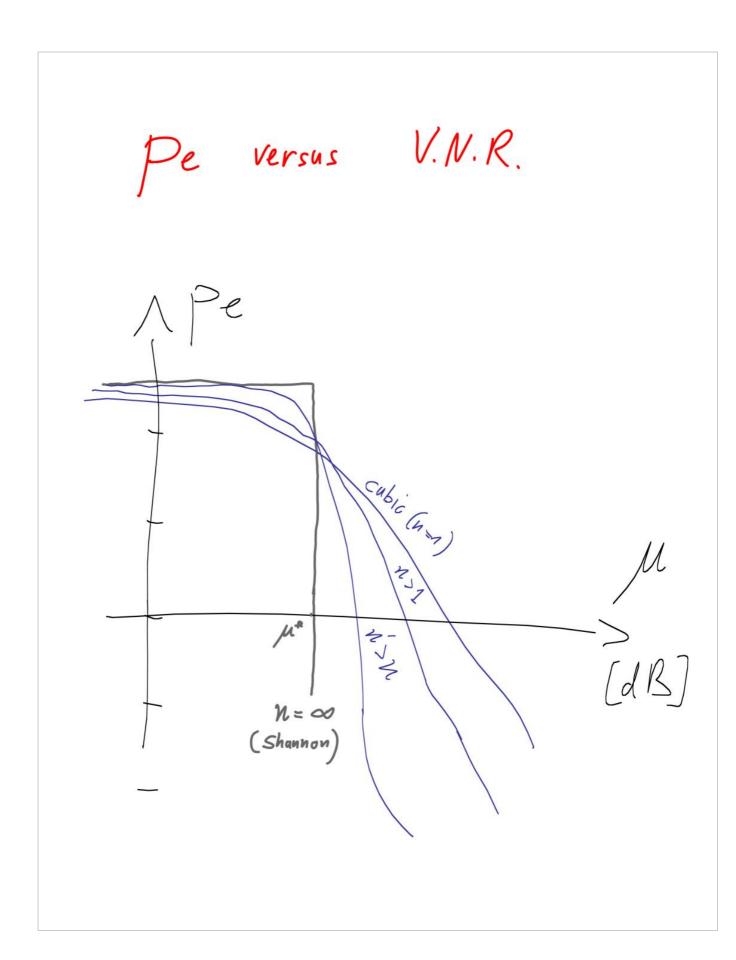


$$Pe = Pr\{|Z| > \frac{\Delta}{2}\} = 2 \cdot Q\left(\frac{\Delta/2}{C}\right)$$

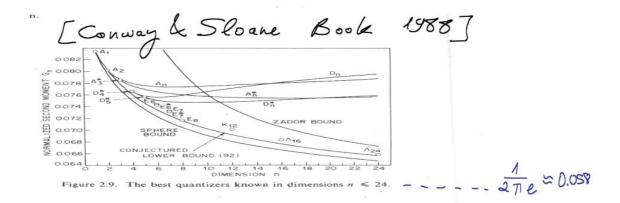
$$Pe = Pr\{|Z| > \frac{\Delta}{2}\} = 2 \cdot Q(\frac{\Delta/2}{C})$$

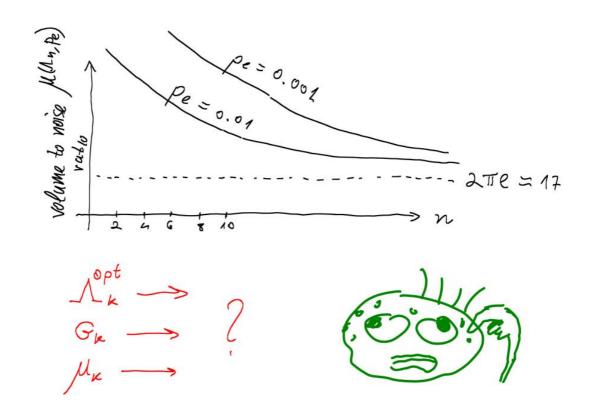
$$\Rightarrow M(\Lambda, \rho e) = \frac{V^{2}(\Lambda)}{C\rho e} = \left[\frac{\Delta}{Q^{-1}(\rho e/2)}\right]^{2} = \left[2 \cdot Q^{-1}(\frac{\rho e}{2})\right]^{2}$$
invariant of Δ





G(An) and M(An, Pe) as a function of n





Vector Quantization Gain of An, for N=1,2,3,...

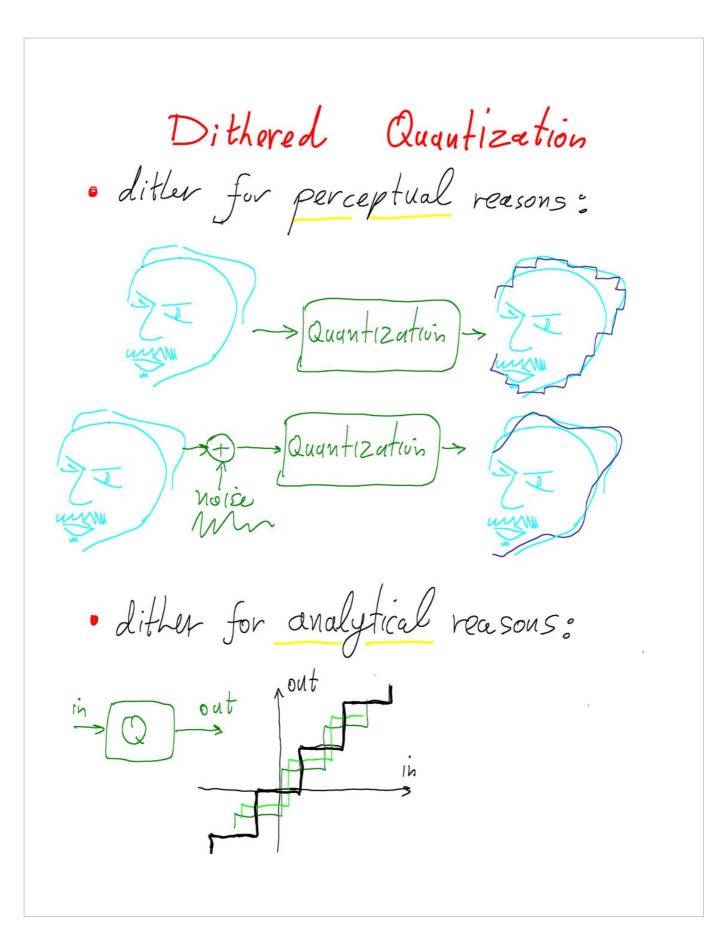
Dimension		Lattice	$\Gamma_q [dB]$	Sphere Bound	
1	\mathbb{Z}	integer	0	0	
2	A_2	hexagonal	0.17	0.20	
3	A_3	FCC	0.24	0.34	
3	A_3^*	BCC	0.26	0.34	
4	D_4	(Example 2.4.2)	0.36	0.45	
5	D_5^*		0.42	0.54	
6	E_6^*		0.50	0.61	
7	E_7^*		0.57	0.67	
8	E_8^*	Gosset*	0.65	0.72	
12	K_{12}		0.75	0.87	
16	BW_{16}	Barnes-Wall	0.86	0.97	
24	Λ_{24}^*	Leech*	1.03	1.10	
∞	?	?	1.53	1.53	

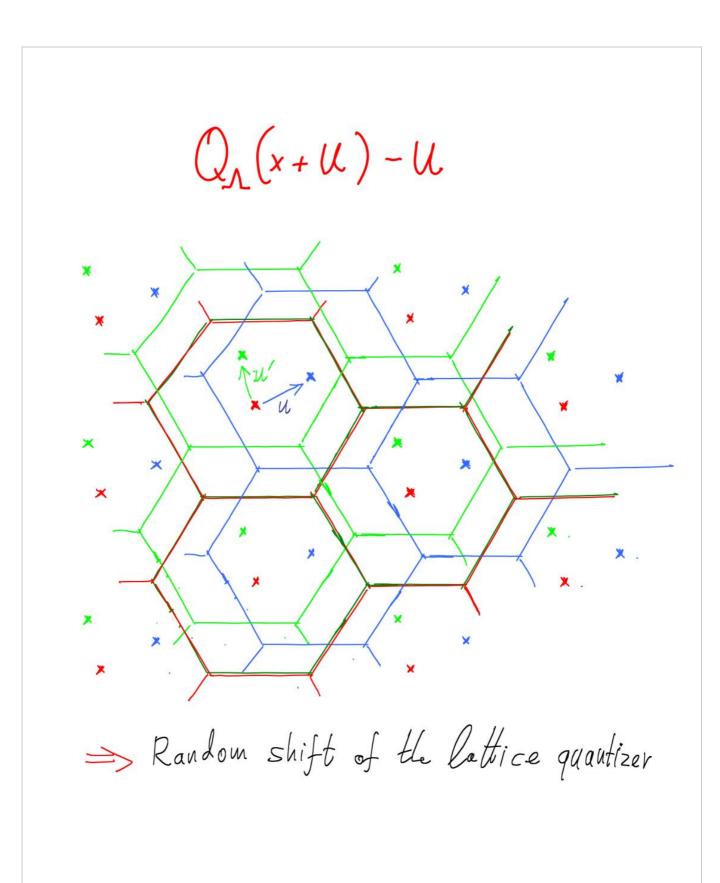
Coding Fain of An, for N=1,2,3,...

S	ER	10^{-1}	10^{-2}	10^{-3}	10^{-4}	10^{-5}
Dim.	Lattice					
1	\mathbb{Z}^1	0	0	0	0	0
2	A_2	0.14 (0.16)	0.27 (0.33)	0.33 (0.45)	$0.42 \ (0.54)$	0.46 (0.6)
3	A_3	0.20 (0.27)	$0.42 \ (0.56)$	0.55 (0.78)	0.65 (0.93)	0.72 (1.05)
	A_3^*	$0.20 \ (0.27)$	$0.40 \ (0.56)$	$0.52 \ (0.78)$	0.59 (0.93)	0.61 (1.05)
4	D_4	0.29 (0.36)	$0.60 \ (0.75)$	0.82 (1.03)	0.95 (1.24)	1.00 (1.40)
8	E_8	$0.50 \ (0.56)$	1.08 (1.2)	1.49 (1.68)	1.80 (2.04)	2.00 (2.30)
16	BW_{16}	$0.63 \ (0.75)$	1.47 (1.63)	2.09 (2.32)	2.52 (2.83)	2.80 (3.22)
24	Λ_{24}	0.75 (0.84)	1.76 (1.85)	2.51 (2.65)	3.08 (3.25)	3.50 (3.71)
∞	?	-2.0	1.9	4.0	5.5	6.6

3. Dither & estimation

noise (1)





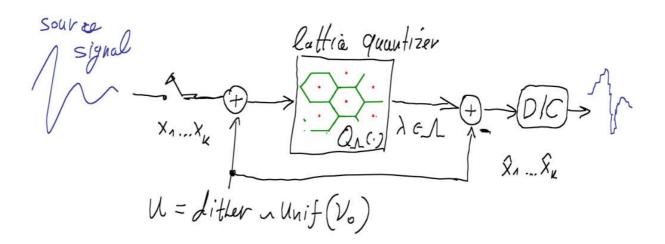
The Crypto-Lemma

Let $x \mod \Lambda \triangleq x - Q_{\Lambda}(x)$

If $U \sim unif(p_0)$, then $(x+U) \mod \Lambda \sim unif(p_0)$, $\forall x$

Proof: View as a modulo-additive noise channel, with a uniform noise,

Dithered Quantization Error



Crypto Lemma >>

Thm. 1: quantization error Q(x+U)-x-U is independent of input x, and uniform over (reflection of) lattice cell:

Generalized Dither

Def. U is G.D. if (S+U) mod 1 ~ Unif (Do) +s

Necessary condition on fu() for G.D.?

Generalized Dither

Def. U is G.D. if (s+U) mod 1 ~ Unif(po) +s

Necessary condition for G.D.?

- 1. U is G.D. iff U mod 1 ~ Unif (po)
- 2. U is G.D. iff furep(x) = constant where,

3. U is G.D. iff its characteristic function is zero on the dual lattice:

 $F\{f_u(\cdot)\}=0$ on $\Lambda^*\setminus 0$

where $\Lambda^{\sharp} = dual lattice = \Lambda (G^{-t})$

Generalized Dither

Def. U is G.D. if (s+U) mod 1 ~ Unif (po) +s

Necessary condition for G.D.?

claims

- 1. frep(x) is periodic- 1 in space
- 2. If X f(x), and Po = fundmental cell of 1, then

- 3. Xmod 1 ~ Unif (po) iff frep (x) = constant
- 4. U is generalized dither iff furep(x) = constant

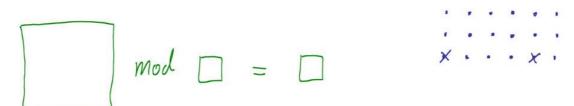
Generalized Dither: Examples

unif(Qo) modpo 1 ~ Unif (Po) where Qo, Po = fundmental cells of A.



2. Uniform over a nested coarse latia cell

Qo = fundmental cell of Ac C 1



3. Spreading $\left\{ f_{u}(\cdot) \right\}_{rep} = constant \implies \left\{ f_{u}(\cdot) * f_{(\cdot)} \right\}_{rep} = constant$

Generalized Dither => Zeroes on Dual Lattice

Def.
$$\Lambda^* = dual \ lattice \ of \ \Lambda (G)$$

$$= \Lambda (G^{-t})$$

$$= \Lambda (G^{$$

Claim: U is G.D. iff its characteristic function is zero on the dual lattice:

$$F\{f_u(\cdot)\}=0$$
 on $\Lambda^*\setminus 0$

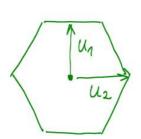
Good lattice - white dither

 $\mathbb{R}_{Q} \triangleq \text{dither auto-correlation} = \mathbb{E}\left\{ \mathcal{U} \cdot \mathcal{U}^{t} \right\}$

Mu \(\frace \) \

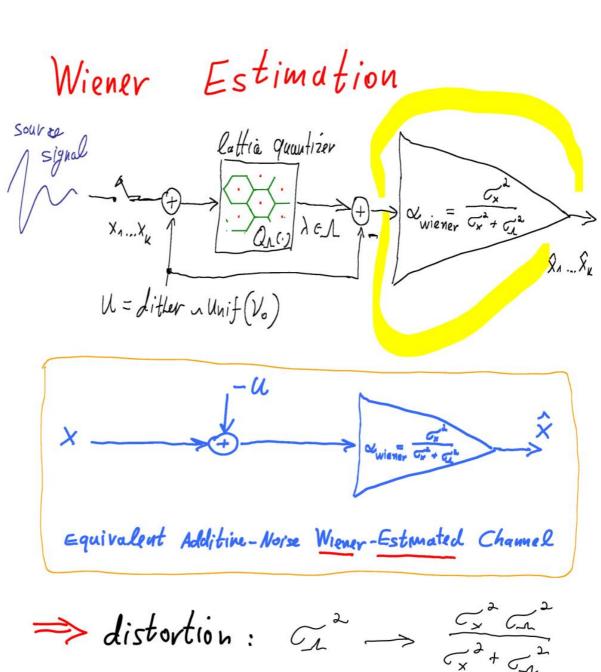
Thm: If I is an optimal lattice quantizer in 12" (minimizes NS.M. GCA)), then I is white:

Ro = 2"(1). In



 U_1 and U_2 are dependent but $Var(U_1) = Var(U_2)$ $\subseteq \{U_1 \cdot U_2\} = 0$

$$\Rightarrow$$
 $G(\Lambda) \ge G(\Lambda') \ge G(\Lambda'') \ge ...$
w. equality iff Λ is white γ



Over-Sampling for A/D and MD

Saturday, May 06, 2017

3:25 PM

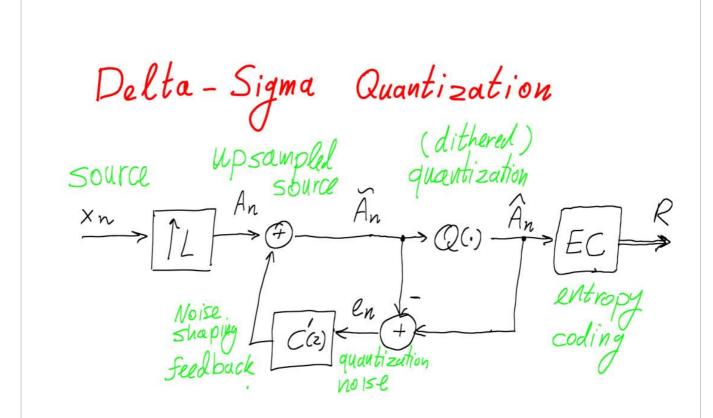
Over Sampling for

Analog - to - Digital Conversion

and

Multiple Descriptions

Ram Zamir Madrid School of Into-Theory



Coded Dithered Quantization

$$Z = dither \sim uniform \left(-\frac{\Delta}{\lambda}, \frac{\Delta}{\Delta}\right)$$

$$X \longrightarrow \bigoplus_{\Delta \subseteq \Delta} \left(\frac{Q(x)}{\Delta} \right) \longrightarrow \left(\frac{R}{\lambda} \right)$$

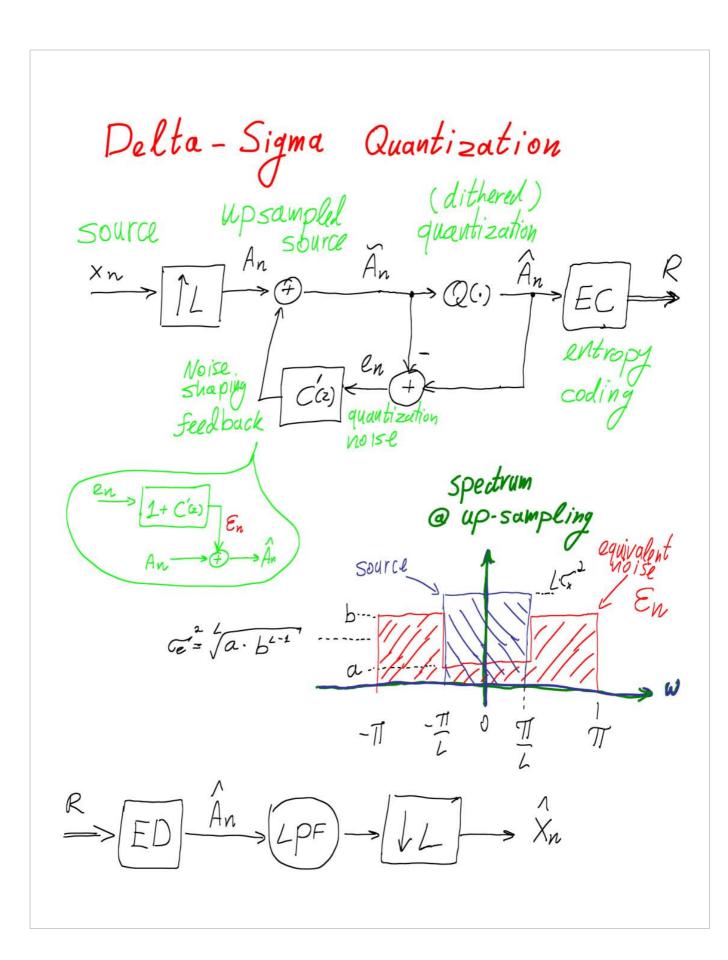
$$\hat{X} = Q(X+Z)-Z$$

$$R = H(Q(X+Z)/Z)$$

Observations · E ≜ S-S ~ Uniforom (-=, =) 1 S

o can be exteded to vector lattice quantizer

· Joint entropy coding, feedback ...



Single-Description DSQ analysis

*Distortion: (Wiener
$$\{\hat{A}_n\}$$
) $D = \frac{\sigma_{\times}^2 \cdot \alpha_{/L}}{\sigma_{\times}^2 + \alpha_{/L}}$

- independent of HPF b and oversampling L. ?

 (for a fixed a/L)
- * Rate: 1. with joint entropy coding

$$\begin{aligned} R_{joint} &= L \cdot \vec{I}(A_n ; A_n + \epsilon_n) \\ &= L \cdot \vec{I}(A_n ; A_n + \epsilon_{inband}) + \epsilon_{out.ofband} \\ &= L \cdot \ell_{out.ofband} \\ &=$$

→ independent of b and L?

Gaussian

Single-Description DSQ analysis

* Rate: II. with memoryless entropy coding

$$= \frac{\int_{a}^{b} \int_{a}^{b} \int_{a}^{b}$$

$$> L \cdot \overline{I}(A_n; A_n + \mathcal{E}_n) = R_{joint}$$

equality iff

source + noise = white

Source equivalent

Source

Source

The second of the secon

Source coding w multiple descriptions

Saturday, May 06, 2017 6:10 PM

Source Coding with Multiple Descriptions

Single - Description Source Coding

message = "description"

source | Enc | Dec | S

Rate = R

Distortion =
$$E\{(\hat{s}-s)^2\}$$

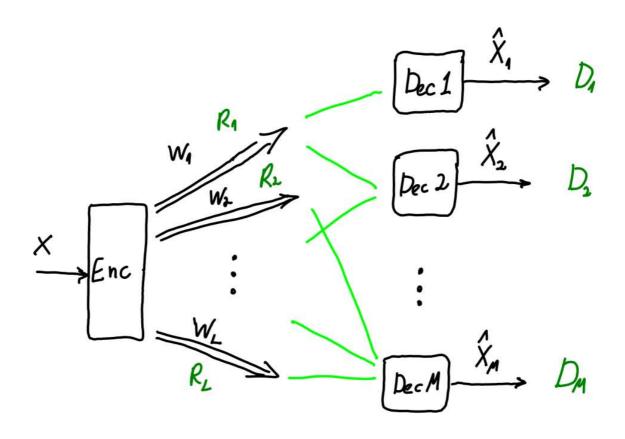
R = $R(0) = \frac{1}{2}\log\left(\frac{c_x^2}{D}\right)$

Source $M(0,c_x^2)$

Multiple-Description Source Coding

L descriptions

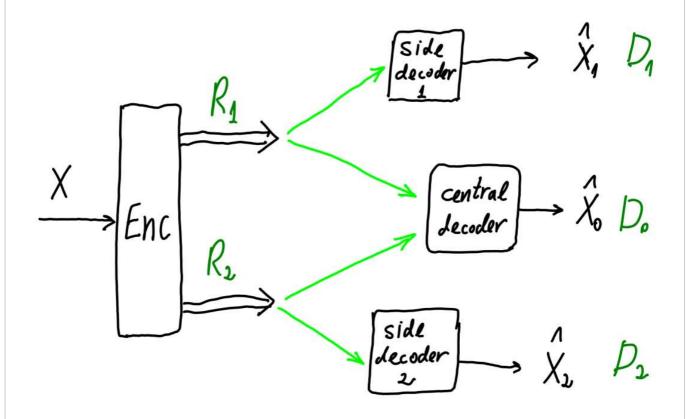
M=2-1 receivers = all subsets of {1,..., L}



parameters: (R1, ..., RL; D1, ..., Dm)

2 Descriptions

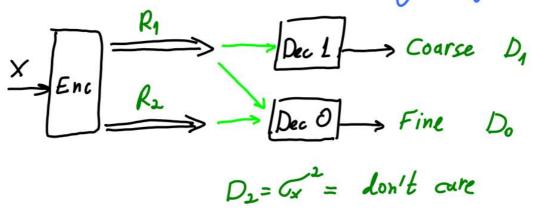
L=2 , M=3 receivers



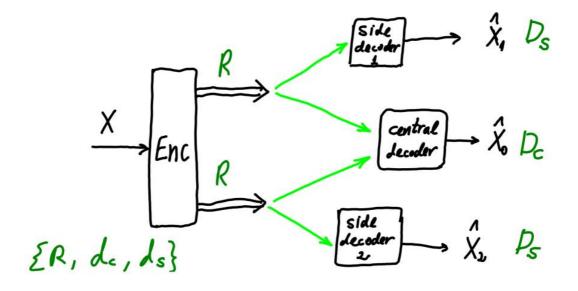
5 Parameters: (R1, R2, D1, D2, D0)

Important Special Cases

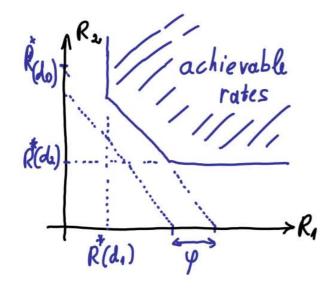
1 Successive refinement (totally asymmetric)



2. symmetric descriptions: R=R=R, D=D=Ds



Rate-Distortion Region



$$R_1 \ge R^*(d_1)$$
, $R_2 \ge R^*(d_2)$

excess sum rate

$$\varphi = \begin{cases} 0 & \text{(no excess sum rate)} & \text{if } d_0 < d_{\text{omin}} \\ \frac{1}{2} \log \left(\frac{\sigma_x^2 d_0}{d_1 d_2} \right) & \text{(no excess marginal rate)} & \text{if } d_0 > d_{\text{omax}} \end{cases}$$

$$\frac{1}{2} \log \left(\frac{(\sigma_x - d_0)^2}{[\sqrt{(d_2 - d_0)(\sigma_x^2 - d_1)}]^2} \right) \qquad \text{o. } \omega,$$

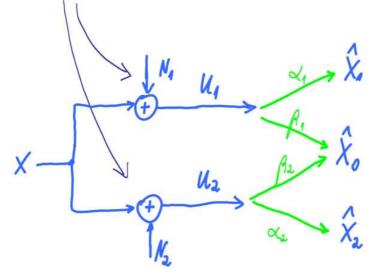
domin =
$$d_1 + d_2 - C_x^2$$

(can be negative)

$$d_{omex} \triangleq \left(\frac{1}{d_1} + \frac{1}{d_2} - \frac{1}{c_x^2}\right)^{-1}$$

Optimal "Test Channel"

$$(N_1, N_2) \sim \mathcal{N}\left(0, \begin{pmatrix} c_1^2 & pr_1c_1 \\ pr_1c_2 & c_2^2 \end{pmatrix}\right)$$



$$I(X;U_1) = R^*(d_1)$$

$$I(X; U_2) = R^*(d_2)$$

$$I(x;u_1u_2)=R^*(d_0)$$

$$I(u_1; u_2) = \underbrace{excess}_{sum-rate}$$
(central)

Noise correlation p is negative p'= p = 0

- · p=0 N1 IL N2, no excess marginal, high excess central
- ·pzo do is reduced
- ·p=p* (most negative) no excess central

Practical MD coding schemes

- · MD quantization with index assignment [Vaishampayan 1993], [V & sloane 2002]
- o Even / odd speach coding [Jayant 1981]
- Ovrelating trunsforms [wang, Orchard, Reiman 1997]
- channel coding Un Equal Error Protection [Witsenhausen 1982, Puri Rumchandran 1999]

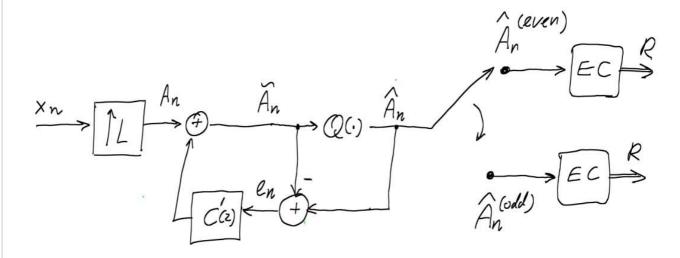
DSQ for MD?

Saturday, May 06, 2017

6:10 PM

How can 1-5-Q be used for multiple descriptions

Two-Description DSQ (2=2)



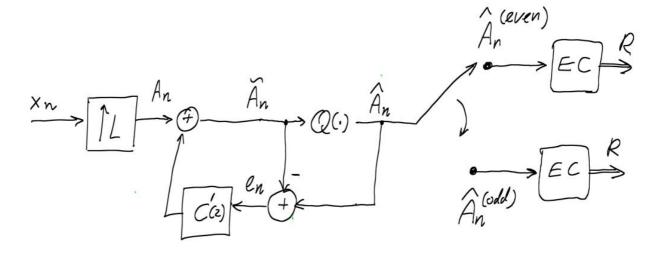
* Entropy rate

$$R = R_{\text{memoryless}} = \frac{1}{2} log \left(\frac{Var(\hat{A}_n)}{c_e^2} \right) = \frac{1}{2} log \left(\frac{c_x^2 + \frac{\alpha + b}{2}}{\sqrt{ab^7}} \right)$$

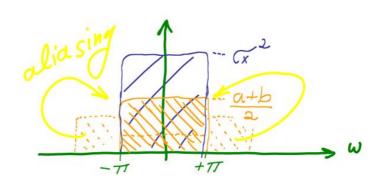
$$Faussian \ dither$$

Two-Description DSQ (2=2)

$$A_n$$
 A_n
 A



* Side Decoder



$$d_{s} = \frac{G_{x}^{2} \cdot \frac{a+b}{2}}{G_{x}^{2} + \frac{a+b}{2}} \times \frac{a+b}{2}$$

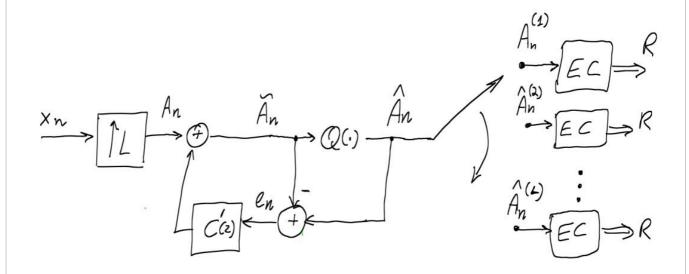
$$HR, G_{x} \Rightarrow a, b$$

* Simple characterization @ high resolution:

dc= a/2 geometric

ds/dc = a+b => ba controls operation point

L-Description DSQ



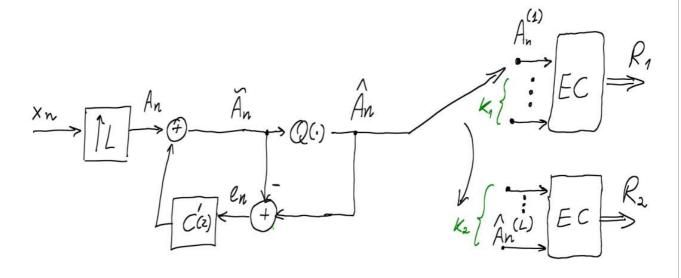
- * Optimal for the "1-or-L problem" [Mashiach - Ostergaard - Zamir 2010]
- * With random binning, optimal for the

 "K-or-L problem" [M-0-2 2013]

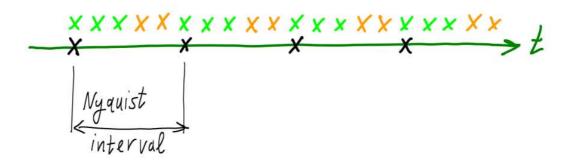
Creating asymmetric descriptions grouping of many symmetric descriptions Adam Mashiach - TAU Yuval Kochman - HUJI Jan Østergäard - Aalborg U., Denmerk Ram Zamir

How MD-DSQ can be extended to Asymmetric case How MD-DSQ can be extended to Asymmetric case Asymmetric Sample allocation?

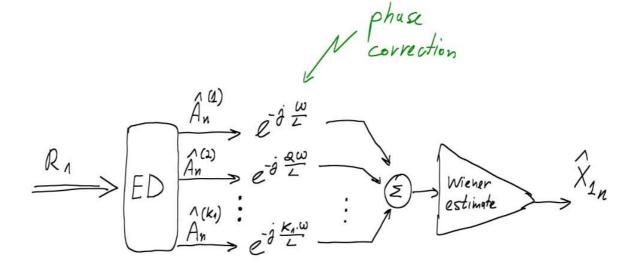
Asymmetric 2-descriptions via grouping
$$L = K_1 + K_2$$



description 1= x description 2= x X = Nyquist (source)



Decoding



* Similar for 2nd and common receivers.

Asymmetric MD-DSQ: Performance

· Distortions:

$$d_0 = \frac{C_{\times}^{\frac{1}{2}} \cdot \alpha_{/L}}{C_{\times}^{\frac{1}{2}} + \alpha_{/L}} \qquad d_i = \frac{C_{\times}^{\frac{1}{2}} \cdot \left(\frac{\alpha}{L} + \frac{L - k_i}{k_i} \cdot \frac{b}{L}\right)}{C_{\times}^{\frac{1}{2}} + \frac{\alpha}{L} + \frac{L - k_i}{k_i} \cdot \frac{b}{L}}$$

$$i = 1, 2$$

·Rate:

$$R_{i} = \frac{1}{2} log \left(\frac{k_{i} \cdot c_{x}^{2} + k_{i} \cdot \frac{a}{L} + (L-k_{i}) \cdot \frac{b}{L}}{\sqrt{a^{k_{i}} \cdot b^{L-k_{i}}}} \right)$$

$$i=1,2$$

o Both rates & distortions depend only on the sample subset sizes K, & k, not on the specific patterns:

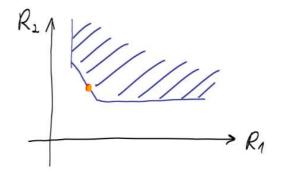
$$\frac{\times \times \times \times}{\times} = \frac{\times \times \times \times}{\times}$$

Main Result

Theorem: The asymmetric MD-DSQ can arbitrarily approach any distortion triplet (do, d1, d2)

(by safficiently large L, k1, k2).

The resulting rate-sum is optimal: $R_1 + R_2 = R^*(do) + P(do, d1, d2)$ (for Gaussian dither and optimal noise shaping)



Summary

- O General idea: Asymmetric descriptions by grouping several symmetric descriptions
- O Asymmetric 2-description MD-DSQ scheme is optimal.
- o Successive refinement case,
- O Scalar (finite dim) quantization: Rate loss L L.
- O Extention to many (more than 2) descriptions

