

Lattice: Definition
Lattice $=$ discrete subgroup of Euclidean space

$$
\Omega=\left\{\underline{\underline{G}} \cdot \underline{i}: \quad \underline{i}=\underset{(0, \pm 1, \pm 2, . .)}{ } \begin{array}{l}
\text { vector of integers }
\end{array}\right\}
$$

$$
\begin{gathered}
\text { Leticia } \\
\text { Generator } \\
\text { in } \mathbb{R}^{n} \\
n \times n, v i x \\
n \times n
\end{gathered}
$$

Closed under reflection \& addition:
linearity: $l_{1}, l_{\mu} \in \Lambda \Rightarrow l_{1}+l_{2} \in \Lambda$ $\underset{0}{x} \underset{g_{1}}{ } \quad i \cdot l \in \Lambda$
\times

Lattice Codes in Signal Space square (\mathbb{Z})-lattice \Rightarrow uncoded constellation

$$
\begin{array}{llllllll}
x & x & x & x & x & x & & \\
x & x & x & x & x & x & \\
x & x & x & x & x & x & \cdots \\
x & x & x & x & x & x & \\
x & x & x & x & x & x & &
\end{array}
$$

More "interesting" lattice \Rightarrow coded constellation

What a Lattice Means?...

What a Lattice Means?...
For my 8-year old kid:
-/I- a physicist/crystallographer:

- II- a mathematician:
-II- a Computer Scientist:

-II- a coding theorist: $\Lambda_{8}, \Lambda_{21}, \ldots$㸞…
-ll an Information Theorist:

$$
n \rightarrow \infty
$$

People Who Influenced...

Neil Sloane

John conway

Dave Forney
also, Rudi de Bud, Gregory poltyrev...

1

Why Lattices in Communication?
(1) a bridge from $n=1$ to $_{\text {to }} n=\infty$ = non-asymptutic ancly sis per dimension
(2) Algebraic (low complexity) Binning =structured coding solomes for networks
(3) bridge from Analog - to -Digital = Robust joint soarce-channl coding
(4) Better than Random-Coding \square in distributed side-viformation problems

Lattices do things differently:
Randomness \longrightarrow
Typicality \rightarrow Binning \rightarrow

Special features:

* Dither - why? how? is it critical?
*MMSE - estimation or decoding? linear or not?
* Volume \& noise \rightarrow "soft" sphere packing \& covering
* Lattices in high dimensions
\longrightarrow white Gaussian noise?
\longrightarrow non -Gaussian noise?
* Nesting, cosets \& binning
* AWGN + dither
* Voronoi or Paralle piped?
* Mixed dimensions
* Noise-matched decoding

1. Definitions: Petition, Construction

$$
\begin{aligned}
& \text { Lattice: Definition } \\
& \text { Let } g_{-1}, \ldots, g_{n} \text { - limerly indpeakert vecturs in } R^{n} \\
& \underline{\underline{E}}=\left(\begin{array}{l:l|l}
g_{1} & \cdots & g_{n}
\end{array}\right)=\text { generemor matrix } \\
& \Lambda(G)=\left\{\operatorname{li}_{1} \underline{g}_{1}+\ldots+i_{n} g_{n}: i_{1} \ldots i_{n} \in \mathbb{Z}\right\} \\
& =\left\{\underline{=} \cdot \underline{i}: \quad \underset{G}{\in} \mathbb{Z}^{n}\right\} \\
& =\underline{\underline{G}} \cdot \mathbb{Z}^{n} \\
& \times \\
& \times \\
& \times \\
& \times
\end{aligned}
$$

$$
\begin{aligned}
& \text { Lattice: Equivalent Representations } \\
& T=\text { unimodular matrix } \\
& \text { (integer elements, } \operatorname{det}(T)= \pm 1 \text {) } \\
& \Rightarrow \Lambda(G \cdot T)=\Lambda(G) \\
& { }_{\uparrow}^{x}(0,2) \\
& \sigma^{\prime} G^{\prime}=\left(\begin{array}{l}
0 \\
2 \\
2
\end{array} 1 \begin{array}{l}
3 \\
1
\end{array}\right) \\
& x
\end{aligned}
$$

$$
\begin{aligned}
& \text { x } x
\end{aligned}
$$

Partitions, Fundamental Cells

Other Basis \Rightarrow
other Parallelepiped
\Rightarrow Cell Volume V is

Lattice Quantization, Modulo Lattice

$$
\begin{aligned}
& Q_{\Lambda, \rho_{0}}(x)=\lambda \quad \text { if } \quad x \in\left(\lambda+p_{0}\right) \\
& x \bmod _{\rho_{0}} \Lambda=x-Q_{\Omega, \rho_{0}}(x)
\end{aligned}
$$

$\Rightarrow x \in \mathbb{R}^{n}$ uniquely written as $\underbrace{Q_{\Lambda}(x)}+(x$ modulo $\Lambda)$ quantization'

Modulo Laws:

*a mod $\Lambda=a+\lambda(a), \quad \lambda(a) \in \Omega$

* $(a+\lambda) \bmod \Lambda=a \bmod \Lambda, \forall \lambda \in \Omega$
$*[(a \bmod \Lambda)+b] \bmod \Lambda=(a+b) \bmod \Lambda$
* $\left(a \bmod p_{0} \Lambda\right) \bmod _{Q_{0}} \Lambda=a \bmod _{Q_{0}} \Lambda$

Fundamental Cells \& Coset

all fundamental cells are "modulo equivalent"!

Coset: shift of $\Lambda=$ points identical modulo Λ

$$
\begin{aligned}
\Lambda_{V} & =v+\Lambda \\
& =\left\{x \in \mathbb{D}^{n}: X \bmod p_{0}=v\right\}, v \in \rho_{0}
\end{aligned}
$$

\therefore Fundamental cell: a complete set of coset representatives
Non - Euclidean Voronoi partition
(a): $1 \cdot 1^{2}$

(b): $1 \cdot 1^{4}$

(c): 1.1^{2}

(d): $1 \cdot 1^{4}$

Tiling \& Tranformation

$$
\left.\begin{array}{rl}
x \cdot & x \\
A \cdot & x \\
x & x \\
x & x
\end{array}\right)=
$$

parallelepiped $(A \cdot \Lambda)=A \cdot$ parallelepiped (Λ)
But ...
$\operatorname{Voronoi}(A \cdot \Omega) \neq A \cdot \operatorname{Voronoi}(\Omega) \prod_{0}$ because $\|x\|>\|y\| \nRightarrow\|A \cdot \underline{x}\|>\|A \cdot y\|$

Lattices from Linear Codes ("Construction A")
Let $\mathbb{C}_{1}=q$-arg (n, k) liner cole over $\mathbb{Z}_{9}=\left\{\begin{array}{l}0, \ldots-1-1\}\end{array}\right.$

$$
=\left\{G \cdot i: \quad i \in \mathbb{Z}_{q}^{k}\right\}
$$

Let $\Lambda_{\mathbb{a}_{1}}=$ modulo-q attic

$$
=\left\{\lambda \in \mathbb{R}^{n}: \lambda \bmod q \in \mathbb{C}\right\}
$$

e.g., E8 (a lattice in \mathbb{R}^{8})
 is a modulo-2 lattice

$$
\Lambda_{\text {Hamming Code }}(8,4,4)
$$

2. Figures of merit $G(\Omega), \mu\left(\Lambda, p_{e}\right)$

Covering, Packing, kissing Number Covering \mathbb{R}^{n} with (few)
spheres

packing (many) spheres in 12^{2}
kissing by (many) spheres

\& good arran aments for quartic aton and AWGN daniel coding

Not an "All-Purpose" Lattice!
F Best 3-dim packing: F.c.C.

each layer = hexagonal Λ
lagers are staggered

* Best 3-dim Covering: B.C.C.
each layer $=$ cubic Λ
layers are staggered

Figures of Merit

x

Radiuses:
$\times r_{\text {Cob }}=$ min sphere coutaing v_{0}
$r_{\text {pack }}=$ max sphere contained in V_{0} $=d$ min $/ 2$
$r_{\text {eff }}=$ Sphere with same volume

- packing efficiency:

$$
\rho_{\text {pack }}(\Omega)=\frac{r_{\text {pack }}}{r_{\text {eff }}}<1
$$

Figures of Merit (Contmued)

- Quantization efficiency:

$$
\begin{aligned}
& \text { X~Uniform }\left(V_{0}\right) \\
& \sigma^{2}(\Lambda) \triangleq \frac{1}{n} E\|X\|^{2} \\
& G(\Omega) \triangleq \frac{C^{2}(\Lambda)}{V^{2 / n}}=\text { normalized second }
\end{aligned}
$$

Figures of Merit (Contmued)

- ANGN coding efficeincy: $\geqq \sim A W G N N\left(0, \sigma^{2}\right)$

$$
\begin{aligned}
& \mu\left(\Lambda, \sigma^{2}\right) \triangleq \frac{V^{2 / n}}{\sigma^{2}}=V_{0} \text { lume-to-Noia Ratio } \\
& P_{e} \triangleq \operatorname{pr}\left\{\geqq \notin V_{0}\right\}: \\
& \mu\left(\Lambda, p_{e}\right) \triangleq \frac{V^{2 / n}}{\sigma^{2}} @ p_{e}
\end{aligned}
$$

Example: One dimensional lattice (Voronoi cell $=$ interval)

1. NSM

$$
U=\text { dither }
$$

uniform
on Voronui cell

$$
V(\Lambda)=\Delta
$$

$$
=(-\Delta / 2,+\Delta / 2)
$$

$$
E U^{2}=\frac{\Delta^{2}}{12}
$$

$$
\Rightarrow G(F)=\frac{E U^{2}}{V^{2}(\Omega)}=\frac{\Delta^{2} / 12}{\Delta^{2}}=\frac{1}{12}
$$

invariant of Δ

$$
\operatorname{Pe}=\operatorname{Pr}\left\{|z|>\frac{\Delta}{2}\right\}=2 \cdot Q\left(\frac{\Delta / 2}{\widetilde{ }}\right)
$$

$G\left(\Lambda_{n}\right)$ and $\mu\left(\Lambda_{n}, p_{e}\right)$ as a function of x
" [Conway \& Sloane Book 1988]

Figure 2.9. The best quantizers known in dimensions $n<24 . \ldots \frac{1}{2 \pi} e^{\approx} \approx 0.058$
 $\Lambda_{k}^{\Delta p t} \longrightarrow$
$G_{k} \longrightarrow$
$\mu_{k} \longrightarrow$

Vector Quantization Gain of Λ_{n}, for $n=1,2,3, \ldots$.

Dimension	Lattice		$\Gamma_{q}[\mathrm{~dB}]$	Sphere Bound
1	\mathbb{Z}	integer	0	0
2	A_{2}	hexagonal	0.17	0.20
3	A_{3}	FCC	0.24	0.34
3	A_{3}^{*}	BCD	0.26	0.34
4	D_{4}	(Example 2.4.2)	0.36	0.45
5	D_{5}^{*}		0.42	0.54
6	E_{6}^{*}		0.50	0.61
7	E_{7}^{*}		0.57	0.67
8	E_{8}^{*}	Gosset *	0.65	0.72
12	K_{12}		0.75	0.87
16	$B W_{16}$	Barnes-Wall	0.86	0.97
24	Λ_{24}^{*}	Leech *	1.03	1.10
∞	$?$	$?$	1.53	1.53

Coding Gain of Λ_{n}, for $n=1,2,3, \ldots$

SER		100^{-1}	10^{-2}	10^{-3}	10^{-4}	10^{-5}	
Dim.	Lattice						
1	\mathbb{Z}^{1}	0	0	0	0	0	
2	A_{2}	$0.14(0.16)$	$0.27(0.33)$	$0.33(0.45)$	$0.42(0.54)$	$0.46(0.6)$	
3	A_{3}	$0.20(0.27)$	$0.42(0.56)$	$0.55(0.78)$	$0.65(0.93)$	$0.72(1.05)$	
	A_{3}^{*}	$0.20(0.27)$	$0.40(0.56)$	$0.52(0.78)$	$0.59(0.93)$	$0.61(1.05)$	
4	D_{4}	$0.29(0.36)$	$0.60(0.75)$	$0.82(1.03)$	$0.95(1.24)$	$1.00(1.40)$	
8	E_{8}	$0.50(0.56)$	$1.08(1.2)$	$1.49(1.68)$	$1.80(2.04)$	$2.00(2.30)$	
16	$B W_{16}$	$0.63(0.75)$	$1.47(1.63)$	$2.09(2.32)$	$2.52(2.83)$	$2.80(3.22)$	
24	Λ_{24}	$0.75(0.84)$	$1.76(1.85)$	$2.51(2.65)$	$3.08(3.25)$	$3.50(3.71)$	
∞	$?$	-2.0	1.9	4.0	5.5	6.6	

3. Dither \& estimation
noise (1)

Dithered Quantization

- dither for perceptual reasons:

- dither for analytical reasons:

$$
\frac{\text { The Crypto-Lemma }}{\text { Let } \times \bmod \Lambda \triangleq x-Q_{\Omega}(x)}
$$

If $U \backsim$ unif(p_{0}), then
$(x+U) \bmod \Lambda \sim \operatorname{unif}\left(p_{0}\right), \forall x$
proof: View as a modulo-additive noise channel, with a uniform noise,

Dithered Quantization Error
sour se

$$
u=\operatorname{dither} \backsim U_{n i f}\left(V_{0}\right)
$$

Crypto Lemma \Rightarrow
The. 1: quantization error $Q(x+U)-x-U$ is independent of input x, and uniform over (reflection of) lattice cell:

Equivalent Additine-Noise Channel

$$
\begin{aligned}
& \text { Generalized Dither } \\
& \text { Def. } U \text { is } G . D \text { if }(s+U)_{\bmod } \Lambda \backsim u_{n i f}\left(p_{0}\right) \quad \forall s \\
& \text { Necessary condition on fu}(\cdot) \text { for G.D.? }
\end{aligned}
$$

Generalized Dither
Def. U is $G . D$. if $(s+U)_{\bmod } \Omega \backsim \operatorname{Unif}\left(p_{0}\right) \quad \forall s$ Necessary condition for G.D.?

1. U is G.D. if $U \bmod \Omega \backsim U \operatorname{nif}\left(p_{0}\right)$
2. U is G.D. iff $f u_{\text {rep }}(x)=$ constant Where, $f_{\text {rep }}(x) \triangleq$ periodic replication $f(x) \triangleq \sum_{\lambda \in \Omega} f(x-\lambda)$

3. U is G.D. iff its characteristic function is zero on the dual lattice:

$$
\mathcal{F}\left\{f_{u}(\cdot)\right\}=0 \text { on } \Lambda^{*} \backslash \underline{o}
$$

where $\Lambda^{*}=$ dual lattice $=\Lambda\left(G^{-t}\right)$

Generalized Dither
Def. U is G.D. if $(s+U) \bmod \Lambda \backsim U_{\text {if }}\left(p_{0}\right) \quad \forall s$ Necessary condition for G.D.?

$$
f_{\text {rep }}(x) \triangleq \text { periodic replication } f(x) \triangleq \sum_{\lambda \in \Lambda} f(x-\lambda)
$$

claims

1. $\operatorname{Frep}(x)$ is periodic- Λ in space
2. If $X \cup f(x)$, and $p_{0}=f$ andmental cell of Λ, then

$$
f_{X \bmod \Lambda}(x)= \begin{cases}f_{\text {rep }}(x), & x \in p_{0} \\ 0, & 0 . \omega,\end{cases}
$$

3. $X \bmod \Lambda \backsim u_{n i f}\left(p_{0}\right)$ iff $f_{\text {rep }}(x)=$ constant
4. u is generalized dither iff $f u_{\text {rep }}(x)=$ constant

Generalized Dither: Examples

1. Uniform over any_fundmental cell
$\operatorname{unif}\left(Q_{0}\right) \bmod _{p_{0}} \Omega \backsim \operatorname{Unif}\left(\rho_{0}\right)$ where $Q_{0}, P_{0}=$ fundmental calls of Ω.

2. Uniform over a nested coarse lattia cell $Q_{0}=$ fundmental cell of $\Lambda_{C} \subset \Lambda$

$$
\square \bmod \square=\square
$$

3. Spreading

$$
\begin{aligned}
& \left\{f_{u}(\cdot)\right\}_{\text {rep }}=\text { constant } \Rightarrow\left\{f_{u}(\cdot) * f^{n}(\cdot)\right\}_{\text {rep }}=\text { constant } . \text {... }
\end{aligned}
$$

Generalized Dither \Rightarrow Zeroes on Dual Lattice

Def. $\Lambda^{*}=$ dual lattice of $\Lambda(G)$

$$
=\Omega\left(G^{-t}\right)
$$

Claim: U is G.D. iff its characteristic function is zero on the dual lattice:

$$
\begin{aligned}
& F\left\{f_{u}(\cdot)\right\}=0 \text { on } \Lambda^{*} \backslash \underline{o} \\
& \\
& x+L_{*} \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \text { GoOd } R a H i C e \Rightarrow \text { white dither } \\
& \underline{R_{Q}} \triangleq \text { dither auto-correlation }=E\left\{\underline{u} \cdot \underline{u}^{t}\right\} \\
& \text { matrix } \\
& M_{u} \triangleq \frac{1}{n} \text { trace }\left\{R_{Q}\right\} \geqslant \sigma^{2}(\Omega) \\
& \text { equally if voronui cells }
\end{aligned}
$$

The.: If Λ is an optimal lattice quantizer in \mathbb{R}^{n} (minimizes NS.M. $G(\Omega)$), then \underline{U} is white:

$$
\mathbb{R}_{Q}=\sigma^{2}(\Omega) \cdot I_{n}
$$

U_{1} and U_{2} are dependent
but $\operatorname{Var}\left(u_{1}\right)=\operatorname{Var}\left(u_{2}\right)$

$$
E\left\{u_{1} \cdot u_{2}\right\}=0
$$

$$
\begin{aligned}
& \text { Proof: } \\
& \text { 1. } \Lambda, \nu_{0} \rightarrow \underset{\text { witieming (erthonomel) }}{\text { tranufumantoin }} \rightarrow \Lambda^{\prime}, P_{0}^{\prime} \\
& \text { 2. } \Lambda^{\prime}, P_{0}^{\prime} \rightarrow \text { Voronoi Patition } \rightarrow \Lambda^{\prime}, V_{0}^{\prime} \\
& \text { and repeat... } \\
& \Rightarrow G(\Lambda) \geqslant G\left(\Lambda^{\prime}\right) \geqslant G\left(\Lambda^{\prime \prime}\right) \geqslant \ldots \\
& w \text {. equality if } \Lambda \text { is white? }
\end{aligned}
$$

$$
\Rightarrow \text { distortion: } \sigma_{L}^{2} \rightarrow \frac{\sigma^{2}+\sigma^{2}}{\alpha_{x}^{2}+\sigma_{a}^{2}}
$$

Over-Sampling for A / D and $M D$

Over Sampling for
Analoy-to-Digital conversion and

Multiple Descriptions
Ram Zamir
Madrid School of Into-Theory

Entropy-Coded Dithered Quantization

$$
\begin{aligned}
& \hat{X}=Q(x+z)-z \\
& R=H(Q(x+z) \mid z)
\end{aligned}
$$

- $E \triangleq \hat{S}-S \backsim$ Uniform $\left(-\frac{\Delta}{2}, \frac{\Delta}{2}\right) \mathbb{S}$
- $R=I(S ; S+E)$
$-C$ an be exteded to vector lattice quantized
- Dither \rightarrow Gaussian as dimension $\rightarrow \infty$ (good)
- Joint entropy coding, feedback ...

Single-Description DSQ analysis
*Distortion: (Wiener $\left.\left\{\hat{A}_{n}\right\}\right) \quad D=\frac{\sigma_{x}^{2} \cdot a / L}{\sigma_{x}^{2}+a / L}$
\Rightarrow independent of ups b and oversampling $<$? (for a fixed a / L)

* Rate: I. with joint entropy coding

$$
\begin{aligned}
R_{\text {joint }} & =L \cdot \bar{I}\left(A_{n} ; A_{n}+\varepsilon_{n}\right) \\
& =L \cdot \bar{I}\left(A_{n} ; A_{n}+\varepsilon_{\text {inband }}+\varepsilon_{\text {outroftant }}\right) \\
& =1 / 2 \cdot \log \left(\frac{\sigma^{2}+a / L}{a / L}\right) \quad \text { Onusrais }
\end{aligned}
$$

Gaussian dither
\Rightarrow independent of b and $<$?

Single-Description DSQ analysis

* Rate: II. with memoryless entropy cooling

$$
\begin{aligned}
& R_{\text {memengeres }}=L \cdot I\left(\tilde{A}_{n} ; \tilde{A}_{n}+l_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \geqslant L \cdot \bar{I}\left(A_{n} ; A_{n}+\varepsilon_{n}\right)=R_{\text {jonht }}
\end{aligned}
$$

equality iff
source tho ise = white

$$
\therefore b=a+\angle \sigma_{x}^{2}
$$

Source coding w multiple descriptions

Single - Description Source Coding message = "description"

source $\sim N\left(0, \sigma_{x}^{2}\right)$

Multiple-Description Source Coding
L descriptions
$M=2^{L}-1$ receivers $=$ all subsets of $\{1, \ldots, L\}$

parameters: $\left(R_{1}, \ldots, R_{L} ; D_{1}, \ldots, D_{m}\right)$

2 Descriptions
$L=2, M=3$ receivers

5 parameters: $\left(R_{1}, R_{2}, D_{1}, D_{2}, D_{0}\right)$

Important Special Cases
1 successive refinement (totally a symmetric)

$$
D_{2}=\sigma_{x}^{2}=\text { don't care }
$$

2. symmetric descriptions: $R_{1}=R_{2} \triangleq R, D_{1}=D_{2} \triangleq D_{S}$

Rate-Distortion Region

$$
\begin{array}{r}
R_{1} \geq R^{*}\left(d_{1}\right), \\
R_{1}+R_{2} \geq R^{*}\left(d_{0}\right)+\underbrace{R_{2} \geqslant R^{*}\left(d_{2}\right)}_{\substack{\text { excess sum } \\
\text { rate }}}
\end{array}
$$

$$
\varphi= \begin{cases}0 & \left(n_{0} \text { excess sum rate }\right) \\ \frac{1}{2} \log d_{0} \leqslant d_{0}\left(\frac{\sigma_{x}^{2} d_{0}}{d_{1} d_{2}}\right)\left(\text { no excess } \frac{\text { marginal }}{} \text { rate }\right) & \text { if } d_{0} \geqslant d_{\text {oman }} \\ \left.\frac{1}{2} \log \left(\frac{\left(\sigma_{x}-d_{0}\right)^{2}}{\left[\sqrt{\left(d_{2}-d_{0}\right)\left(x_{x}-2\right.}-d_{1}\right)}+\sqrt{\left(d_{1}-d_{0}\right)\left(\sigma_{x}^{2}-d_{0}\right)}\right]^{2}\right) & \text { o. } \omega_{1}\end{cases}
$$

$$
d_{\text {min }} \triangleq d_{1}+d_{2}-\sigma_{x}^{2}
$$

$$
d_{\text {max }} \triangleq\left(\frac{1}{d_{1}}+\frac{1}{d_{2}}-\frac{1}{\sigma_{x}^{2}}\right)^{-1}
$$

(can be negative)

Optimal "Test Channel"

$$
\left(N_{1}, N_{2}\right) \backsim N\left(\left(\underline{O},\left(\begin{array}{cc}
\sigma_{1}^{2} & \rho \pi_{\pi} \tau_{2} \\
\rho_{1} \sigma_{2} & \sigma_{\sigma}^{2}
\end{array}\right)\right)\right.
$$

$$
\begin{array}{r}
I\left(X ; u_{1}\right)=R^{*}\left(d_{1}\right) \\
I\left(X_{;} u_{2}\right)=R^{*}\left(d_{2}\right) \\
I\left(X_{;} ; u_{1} u_{2}\right)=R^{*}\left(d_{0}\right) \\
I\left(u_{1} ; u_{2}\right)=\begin{array}{c}
\text { excess } \\
\text { sum-rate } \\
\text { (central) }
\end{array}
\end{array}
$$

Noise correlation ρ is negative $\rho^{*} \leqslant \rho \leqslant 0$ - $\rho=0 \quad N_{1} \Perp N_{2}$, no excess marginal, high excess central - $\rho<0$ do is reduced

- $\rho=\rho^{*}($ most negative $)$ - no excess central

Practical MD coding schemes

- MD quantization with index assignment [Vaishampayan 1993], [V \& sloane 2001]
- Even/odd speach coding [Jayant 1981]
- Correlating transforms [wang, Orchard, Reiman 1997]
- Channel coding un Equal Error Protection [Witsenhausen 1982, Puri Ramchandran 19gy]

DSQ for MD?
Saturday, May 06, 2017

Two-Description DSQ (L=2)

* Entropy rate

$$
R=R_{\text {memoryless }}=\frac{1}{2} \log \left(\frac{\operatorname{Var}\left(\hat{A}_{n}\right)}{r_{e}^{2}}\right)=\frac{1}{2} \log \left(\frac{\sigma_{x}^{2}+\frac{a+b}{2}}{\sqrt{a b}}\right)
$$

Gaussian dither

Two-Description DSQ $\quad(L=2)$

$$
\therefore d_{c}=\frac{1}{2} \cdot \frac{2 \sigma_{x}^{2} \cdot a}{2 \sigma_{x}^{2}+a} \approx a / 2
$$

* Side Decoder

$$
\therefore d_{s}=\frac{\sigma_{x}^{2} \cdot \frac{a+b}{2}}{\sigma_{x}^{2}+\frac{a+b}{2}} \sim \frac{a+b}{2}
$$

Optimality of Symmeric MD-DSQ © $L=2$
[Ostergaard - Zamir 2009]

$$
\left\{R, d_{c}, d_{s}\right\}_{\substack{\text { Gaussian } \\ \text { dither }}}=\text { Ozarow's symmetric }_{R D \text { region }}
$$

* Simple characterization @ high resolution:

$$
\begin{aligned}
R & =\frac{1}{2} \log \left(\frac{\sigma_{x}^{2}}{\sqrt{a b}}\right) \\
d_{c} & =a / 2 \\
d_{s} & =\frac{a+b}{2} \longleftarrow \text { geometric } \\
d_{s} / d_{c} & =\frac{a+b}{a} \Rightarrow \frac{b}{a} \text { controls operithmetic average }
\end{aligned}
$$

L-Description DSQ

* Optimal for the "1-or-L problem"
[Mashiach-Ostergaard-Zamir 2010]
* With random binning, optimal for the
"K-or-L problem" [M-O-Z 2013]

Creating Asymmetric descriptions $b y$ Grouping of many symmetric descriptions

Adam Mashiach - TAU
yuval Kochman - HUJI
Jan Фstergäard - Aalborg U., Denmark
Ram Zamir - TAll

How MD-DSQ can be extended to Asymmetric cos ?

Asymmetric Sample allocation?

Asymmetric 2-descriptions via grouping

$$
L=k_{1}+k_{2}
$$

Example: $L=5, k_{1}=3, k_{2}=2$
description $1=x \quad$ description $2=x \quad x=$ Nyquist (source)

* Similar for and and common receivers.

Asymmetric MD-DSQ: Performance - Distortions:

$$
d_{0}=\frac{\sigma_{x}^{2} \cdot a / h}{\sigma_{x}^{2}+a / h} \quad, \quad d_{i}=\frac{\sigma_{x}^{2} \cdot\left(\frac{a}{L}+\frac{L-k_{i}}{k_{i}} \cdot \frac{b}{L}\right)}{\sigma_{x}^{2}+\frac{a}{L}+\frac{L-k \cdot 2}{k_{i}, \frac{b}{L}}}
$$

- Rate:

$$
R_{i}=\frac{1}{2} \log \left(\frac{k_{i} \cdot \sigma_{x}^{2}+k_{i} \cdot \frac{a}{L}+\left(L-k_{i}\right) \cdot \frac{b}{L}}{\sqrt[4]{a^{k_{i}} \cdot b^{L-k_{i}}}}\right)
$$

- Both rates \& distortions depend only on the sample subset sizes $k_{1} \& k_{2}$, not on the specific patterns:

Main Result

Theorem: The asymmetric MD
can arbitrarily approach any distortion triplet $\left(d_{0}, d_{1}, d_{2}\right)$
(by sufficiently large L, k_{1}, k_{2}).
The resulting rate-sam is optimal:

$$
R_{1}+R_{2}=R^{*}\left(d_{0}\right)+\varphi\left(d_{0}, d_{1}, d_{2}\right)
$$

(for Gaussian dither and optimal nods shapiro)

Summary

- General idea: Asymmetric descriptions by grouping several symmetric descriptions - Asymmetric 2-description MD-DSQ scheme is optimal.
- Successive refinement case.
- Scalar (finite dim) quantization: Rate loss $\propto L$.

O Extention to many (more than 2) descriptions

