On the Optimality of Beamforming for Multi-User MISO Interference Channels with Single-User Detection

Xiaohu Shang¹, Biao Chen², and H. Vincent Poor¹

- 1: Department of EE, Princeton University
- 2: Department of EECS, Syracuse University

Multi-user MISO Interference Channel (IC) Model

$$Y_i = \sum_{j=1, j
eq i}^m oldsymbol{h}_{ji}^T oldsymbol{x}_j + N_i$$

- m transmitter-receiver pairs.
- \boldsymbol{x}_i : $t_i \times 1$ transmitted signal at transmitter i. $\|\boldsymbol{x}_i\|^2 \leq P_i$.
- Y_i : received scalar signal at receiver i.
- $N_i \sim \mathcal{N}(0,1)$.
- h_{ji} : $t_j \times 1$ channel vector from transmitter j to receiver i.
- Transmitter i knows all channel states, receiver i only knows h_{ii} .

Single-User Detection Rate Region

max
$$\sum_{i=1}^{m} \mu_{i} R_{i} \qquad (\mu_{i} \geq 0)$$
subject to
$$R_{i} = \frac{1}{2} \log \left(1 + \frac{\boldsymbol{h}_{ii}^{T} \mathbf{S}_{i} \boldsymbol{h}_{ii}}{1 + \sum_{j=1, j \neq i}^{m} \boldsymbol{h}_{ji}^{T} \mathbf{S}_{j} \boldsymbol{h}_{ji}} \right)$$

$$\operatorname{tr}(\mathbf{S}_{i}) \leq P_{i}, \quad \mathbf{S}_{i} \succeq \mathbf{0}, \quad i = 1, \dots m.$$

- $ullet oldsymbol{x}_i \sim \mathcal{N}\left(\mathbf{0}, \mathbf{S}_i\right).$
- Receiver i decodes x_i from Y_i by treating interference as noise.
- Single-user detection (SUD) rate region is defined as

$$\bigcup_{\text{all }\boldsymbol{\mu}=[\mu_1,\cdots,\mu_m]} \{R_1,\cdots,R_m\}$$

Problem Reformulation

• Why: Non-convex optimization problem.

$$\mu_1 \log \left(1 + \frac{\mathbf{h}_{11}^T \mathbf{S_1} \mathbf{h}_{11}}{1 + \mathbf{h}_{21}^T \mathbf{S_2} \mathbf{h}_{21}} \right) + \mu_2 \log \left(1 + \frac{\mathbf{h}_{22}^T \mathbf{S_2} \mathbf{h}_{22}}{1 + \mathbf{h}_{12}^T \mathbf{S_1} \mathbf{h}_{12}} \right)$$

• How: non-convex problem \Rightarrow convex problem

maximize
$$\mu_1 \log \left(1 + \frac{\mathbf{h}_{11}^T \mathbf{S}_1 \mathbf{h}_{11}}{1 + z_2^2} \right) + \mu_2 \log \left(1 + \frac{\mathbf{h}_{22}^T \mathbf{S}_2 \mathbf{h}_{22}}{1 + z_1^2} \right)$$

subject to $\mathbf{h}_{12}^T \mathbf{S}_1 \mathbf{h}_{12} = z_1^2$, $\mathbf{h}_{21}^T \mathbf{S}_2 \mathbf{h}_{21} = z_2^2$, $\operatorname{tr}(\mathbf{S}_i) \leq P_i$, $\mathbf{S}_i \succeq 0$, $i = 1, 2$.

New Convex Optimization Problem

max
$$\boldsymbol{h}_{ii}^T \mathbf{S}_i \boldsymbol{h}_{ii}$$

subject to $\boldsymbol{h}_{ij}^T \mathbf{S}_i \boldsymbol{h}_{ij} \leq z_{ij}^2,$
 $\operatorname{tr}(\mathbf{S}_i) \leq P_i, \quad \mathbf{S}_i \succeq 0$
 $i, j = 1, \dots, m, \quad i \neq j,$

- Preselect z_{ji}^2 as the interference power caused by the *j*th transmitter to the *i*th receiver.
- Maximize useful signal power with the interference constraint.
- \bullet Obtain the optimal covariance matrix for user i.

Comparison of the Complexity

• Old problem

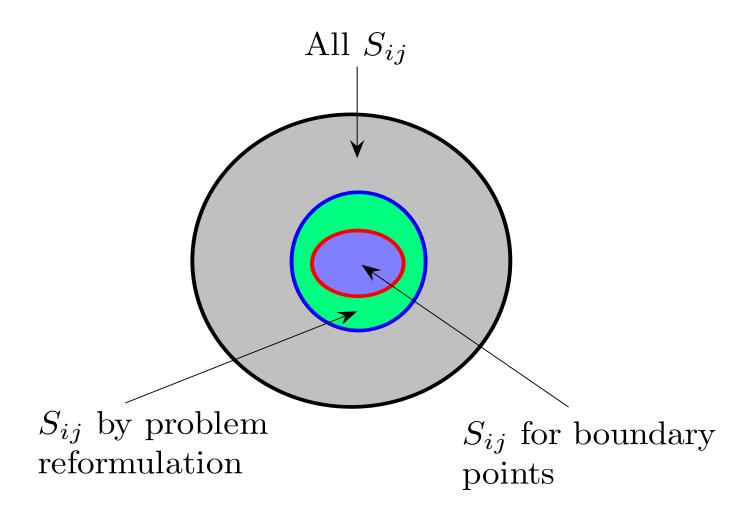
$$\prod_{i=1}^{m} (\text{num of } \mu_i) \text{ non-convex problems}$$

• New problem

$$\sum_{i=1}^{m} \sum_{j=1, j\neq i}^{m} (\text{num of } z_{ij}) \text{ convex problems}$$

- Advantage of problem reformulation
 - Non-convex \Rightarrow convex
 - Decoupling reduces complexity.

Covariance Matrices



Matrix Optimization Lemma

If

$$\mathbf{K} = \begin{bmatrix} \mathbf{K}_{11} & \mathbf{K}_{21}^T \\ \mathbf{K}_{21} & \mathbf{K}_{22} \end{bmatrix} \succeq \mathbf{0}, \quad \operatorname{tr}(\mathbf{K}) \leq P$$

and $\mathbf{K}_{11} \succeq \mathbf{0}$ is a preselected sub-matrix, then

$$egin{bmatrix} m{x} \\ m{y} \end{bmatrix}^T \mathbf{K} egin{bmatrix} m{x} \\ m{y} \end{bmatrix} \leq \left(\sqrt{m{x}^T \mathbf{K}_{11} m{x}} + \| m{y} \| \sqrt{P - \operatorname{tr}(\mathbf{K}_{11})} \right)^2$$

and there exists \mathbf{K}^* that achieves the equality with

$$\operatorname{rank}(\mathbf{K}^*) = \operatorname{rank}(\mathbf{K}_{11}).$$

Problem Simplification

$$\max \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{y} \end{bmatrix}^T \mathbf{K} \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{y} \end{bmatrix}$$
subject to
$$h_i(\mathbf{K}_{11}) = 0, \quad g_j(\mathbf{K}_{11}) \leq 0$$
$$\operatorname{tr}(\mathbf{K}) \leq P, \quad \mathbf{K} \succeq \mathbf{0},$$

 \Leftrightarrow

max
$$\left(\sqrt{\boldsymbol{x}^T \mathbf{K}_{11} \boldsymbol{x}} + \|\boldsymbol{y}\| \sqrt{P - \text{tr}(\mathbf{K}_{11})}\right)^2$$

subject to $h_i(\mathbf{K}_{11}) = 0$, $g_j(\mathbf{K}_{11}) \leq 0$, $\text{tr}(\mathbf{K}_{11}) \leq P$, $\mathbf{K} \succeq \mathbf{0}$.

• Reduce the dimension of the matrix and vectors.

A Revisit of the Problem

max
$$\boldsymbol{h}_{mm}^T \mathbf{S}_m \boldsymbol{h}_{mm}$$

subject to $\boldsymbol{h}_{mj}^T \mathbf{S}_i \boldsymbol{h}_{mj} \leq z_{mj}^2, \quad j = 1, \dots, m-1$
 $\operatorname{tr}(\mathbf{S}_m) \leq P_m, \quad \mathbf{S}_m \succeq 0.$

$$\Rightarrow$$

max
$$\begin{bmatrix} \boldsymbol{h} \\ \widehat{\boldsymbol{h}} \end{bmatrix}^T \widetilde{\mathbf{S}} \begin{bmatrix} \boldsymbol{h} \\ \widehat{\boldsymbol{h}} \end{bmatrix}$$

subject to $\begin{bmatrix} \boldsymbol{h}_j \\ \mathbf{0} \end{bmatrix}^T \widetilde{\mathbf{S}} \begin{bmatrix} \boldsymbol{h}_j \\ \mathbf{0} \end{bmatrix} \le z_{mj}^2, \quad j = 1, \dots, m-1,$
 $\operatorname{tr}(\widetilde{\mathbf{S}}) \le P_m, \quad \widetilde{\mathbf{S}} \succeq \mathbf{0},$

A Revisit of the Problem (continue)

 \Rightarrow

$$\max \quad \boldsymbol{h}^T \tilde{\mathbf{S}}_{11} \boldsymbol{h}$$
subject to
$$\boldsymbol{h}_j^T \tilde{\mathbf{S}}_{11} \boldsymbol{h}_j \leq z_{mj}^2, \quad j = 1, \dots, m-1$$
$$\operatorname{tr}(\tilde{\mathbf{S}}_{11}) \leq P_m, \quad \tilde{\mathbf{S}}_{11} \succeq 0,$$

where

$$\dim(\boldsymbol{h}) = \dim(\boldsymbol{h}_j) = \min\{t_m, m - 1\} \triangleq \bar{m}$$

$$\tilde{\mathbf{S}} = \begin{bmatrix} \tilde{\mathbf{S}}_{11} & \tilde{\mathbf{S}}_{21}^T \\ \tilde{\mathbf{S}}_{21} & \tilde{\mathbf{S}}_{22} \end{bmatrix}.$$

Problem Simplification Procedure

• Step 1:

- Singular value decomposition

$$m{h}_{m1} = \mathbf{U}_1 egin{bmatrix} \|m{h}_{m1}\| \ \mathbf{0}_{(t_m-1) imes 1} \end{bmatrix}, \quad ext{where } \mathbf{U}_1^T \mathbf{U}_1 = \mathbf{I}$$

- then update

$$\mathbf{h}_{mj}^{(1)} = \mathbf{U}_1^T \mathbf{h}_{mj}, \quad j = 1, \cdots, m.$$
 $\mathbf{S}_m^{(1)} = \mathbf{U}_1^T \mathbf{S}_m \mathbf{U}_1.$

Problem Simplification Procedure (continue)

• Step 2:

$$\mathbf{h}_{m2}^{(1)} = \begin{bmatrix} \begin{pmatrix} \mathbf{h}_{m2}^{(1)} \end{pmatrix}_1 \\ \begin{pmatrix} \mathbf{h}_{m2}^{(1)} \end{pmatrix}_{2,\dots,t_m} \end{bmatrix} = \begin{bmatrix} 1 & \mathbf{0} \\ \mathbf{0} & \mathbf{U}_2 \end{bmatrix} \begin{bmatrix} \begin{pmatrix} \mathbf{h}_{m2}^{(1)} \end{pmatrix}_1 \\ \begin{pmatrix} \mathbf{h}_{m2}^{(1)} \end{pmatrix}_{2,\dots,t_m} \end{bmatrix}, \quad \mathbf{U}_2^T \mathbf{U}_2 = \mathbf{I}$$

$$\mathbf{h}_{mj}^{(2)} = \begin{bmatrix} 1 & \mathbf{0} \\ \mathbf{0} & \mathbf{U}_2 \end{bmatrix}^T \mathbf{h}_{mj}^{(1)}, \quad j = 1, \dots m.$$

$$\mathbf{S}_m^{(2)} = egin{bmatrix} 1 & \mathbf{0} \\ \mathbf{0} & \mathbf{U}_2 \end{bmatrix}^T \mathbf{S}_m^{(1)} egin{bmatrix} 1 & \mathbf{0} \\ \mathbf{0} & \mathbf{U}_2 \end{bmatrix}$$

Final State

$$\max \quad \begin{bmatrix} \boldsymbol{h} \\ \widehat{\boldsymbol{h}} \end{bmatrix}^T \begin{bmatrix} \widetilde{\mathbf{S}}_{11} & \widetilde{\mathbf{S}}_{21}^T \\ \widetilde{\mathbf{S}}_{21} & \widetilde{\mathbf{S}}_{22} \end{bmatrix} \begin{bmatrix} \boldsymbol{h} \\ \widehat{\boldsymbol{h}} \end{bmatrix}$$

subject to
$$\begin{bmatrix} \boldsymbol{h}_j \\ \boldsymbol{0} \end{bmatrix}^T \begin{bmatrix} \tilde{\mathbf{S}}_{11} & \tilde{\mathbf{S}}_{21}^T \\ \tilde{\mathbf{S}}_{21} & \tilde{\mathbf{S}}_{22} \end{bmatrix} \begin{bmatrix} \boldsymbol{h}_j \\ \boldsymbol{0} \end{bmatrix} \leq z_{mj}^2, \quad j = 1, \dots, \bar{m},$$

$$\operatorname{tr} \left(\begin{bmatrix} \tilde{\mathbf{S}}_{11} & \tilde{\mathbf{S}}_{21}^T \\ \tilde{\mathbf{S}}_{21} & \tilde{\mathbf{S}}_{22} \end{bmatrix} \right) \leq P_m, \quad \begin{bmatrix} \tilde{\mathbf{S}}_{11} & \tilde{\mathbf{S}}_{21}^T \\ \tilde{\mathbf{S}}_{21} & \tilde{\mathbf{S}}_{22} \end{bmatrix} \succeq \boldsymbol{0},$$

Optimality of Beamforming

• Theorem:

There exist an $S^* \succeq 0$ and rank $(S^*) \leq 1$ that is optimal for

max
$$\boldsymbol{h}_{mm}^T \mathbf{S}_m \boldsymbol{h}_{mm}$$

subject to $\boldsymbol{h}_{mj}^T \mathbf{S}_i \boldsymbol{h}_{mj} \leq z_{mj}^2, \quad j = 1, \dots, m-1$
 $\operatorname{tr}(\mathbf{S}_m) \leq P_m, \quad \mathbf{S}_m \succeq 0.$

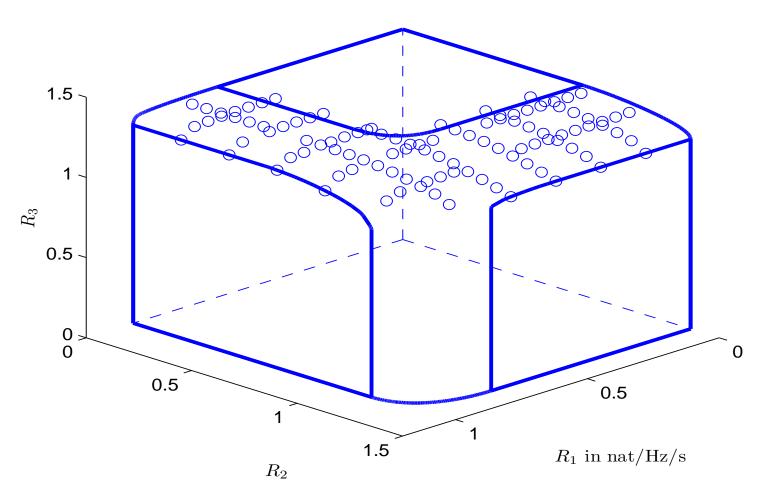
• Proof:

- Karush-Kuhn-Tucker conditions.
- Extension of Sylvester's Law of Inertia.

Conclusion

For an *m*-user MISO interference, the boundary points of the single-user detection rate region can be achieved by restricting each transmitter to implementing beamforming.

Numerical Example



The convex hull of the SUD rate regions of a three-user MISO IC.