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1)  Cooperative Communications


2)  Relaying is the core concept (1979-)


3)  Relaying via Quantization (2011-)


4)  Network Coding (2000-) via Relaying
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Network communication where nodes cooperate, rather than 
compete, to transmit data for themselves and others


§  Classic networks: TDM/FDM, admission control, routing


§  Question: how should devices best operate? 
To answer this question fundamentally we need … 



1) What is Cooperative Communications?
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§  Two Pioneers: Ahlswede and Cover


§  Two of their many important contributions:


1)  Network Coding (2000) … see examples on next pages

2)  Relaying strategies (1979)
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Network Information Theory


2006 Shannon Lecturer


Rudolf Ahlswede (15.9.38 – 18.12.10)


1990 Shannon Lecturer


Thomas Cover (7.8.38 - 26.3.12)
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§  Consider a traffic network with capacities in cars/minute. 
How many cars can flow between nodes 1 and 2 per minute?


§  The bottleneck is clearly street (3,4). 
The answer is 10 cars per minute, either red or blue.


§  But the answer is different for digital communication networks
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Example: Traffic Network
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§  Bottleneck: 10 Mbit/sec (say) but now both nodes can send 
10 Mbit/sec simultaneously by using network coding


§  Trick: node 3 takes bits B1 and B2 from nodes 1 and 2, 
respectively, and sends bit C=B1⨁B2 to node 4


§  Node 1 computes B2=C⨁B1 and Node 2 computes B1=C⨁B2


§  Many recent (2000-) results using Galois field algebra
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Example: Communication Network
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§  Nodes 1 & 2 send B1 & B2 to node 3 that broadcasts C=B1⨁B2 


§  Savings: ¾ time resources or large energy gains via coding


§  Demonstrator: TUM-DLR-IQW collaboration
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Example: Two-Way Satellite Network
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The core of cooperative communications is relaying


§  Examples: amplification and multi-hop


§  Question: are there other good strategies? 
To answer this question fundamentally we first study a basic … 



2) Relaying


8


M
 Ḿ 


Source

Destination


Relay




Technische Universität München


Institute for

Communications Engineering
 9


Relay Channel (Capacity an Open Problem)


n  Problem: maximize R for reliability (B and n can be large)


n  Network coding doesn’t seem to play a role, does it?
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n channel uses

R = B/n bits/use
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Example: Gaussian Relay Channel


n  Gaussian noise Zt , t=2,3


n  Cost: Σi|Xti|
2/n ≤ Pt , t=1,2 

(or use total power, peak power, etc.)
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Known Relaying Strategies


Basic Methods and Recent Method


①  Amplify-Forward (AF): amplify Y2 
Symbol Relaying: forward f(Y2) with optimized f(.)


②  Decode-Forward (DF): decode message and re-encode


③  New: Compute-Forward with Lattices 



Compression-Based Methods


①  Classic Compress-Forward (CF), 1979


②  Quantize-Map-and-Forward (QMF), 2007


③  Noisy Network Coding (NNC), 2010


④  Short-Message NNC (SNNC), 2010
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Channel Coding Review (Warning: Some IT Math!) 


X

Source
 Encoder
 P(y|x)
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B message bits 
n channel uses

R = B/n bits/use
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n  Cost constraint for n symbols: ∑i s( Xi
 ,Yi ) ≤ nS


n  Problem: find the maximum R for reliable communications 
(small Pr[M≠Ḿ]) under the cost constraint


n  Shannon’s Capacity-Cost Function:


Channel


C(S) = max
P(x) :E[s(X,Y)] ≤ S

I(X;Y)
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Source Coding Review


M

Encoder


Xn


B compression bits 
n symbols

R = B/n bits/symbol


Sink
Decoder


Compression Bits


Xn

∧


P(x)
Source


R(D) = min
P(x̂ | x) :E[d(X,X̂)] ≤D

I(X;X̂)

n  Distortion constraint for n symbols: ∑i d( Xi
 , Xi ) ≤ nD


n  Problem: find the minimum R under the distortion constraint


n  Shannon’s Rate-Distortion Function:


∧
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Two-Way Channel Review


X1

Source/ 
Sink


Encoder/ 
Decoder


P(y|x)

M1


R1 = B1/n bits/use

R2 = B2/n bits/use
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Source
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n  Shannon’s Capacity Bound: given P(x1,x2) we have





n  Cut Bound: partition network nodes into 2 sets (S,Sc) and 
develop similar bound. Method applies to any information 
network (biological, physical, financial, social, etc.)


Channel


R1 ≤ I(X1;Y2 X2 ) R2 ≤ I(X2 ;Y1 X1)

Y1
 X2
 M2
Ḿ2
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Example: Relay Channel Cut Bounds


n  Two cuts: (S,Sc)=({1},{2,3}) and (S,Sc)=({1,2},{3}) 

R < max min [ I(X1; Y2Y3|X2), I(X1X2; Y3) ] 

where the max is over all P(x1,x2)


1
 3
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Full-Duplex vs. Half-Duplex





n  Claim: Half-duplex rates are special full-duplex rates


n  The trick is to model properly: a half-duplex channel is a 
“Discrete Memoryless Network”


n  But coding for half-duplex nodes is easier to explain
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① Classic QF (here with a Half-Duplex Relay)





n  Relay quantizes Y2 to bits q representing Ŷ2 and transmits X2(q)


n  Simple: use scalar quantization (good for high-rate quantization)


n  Better: use vector quantization after canceling effect of X2. 
Quantization: I( Y2; Ŷ2 | X2 ) < RQ(D) where, e.g., E[(Y2-Ŷ2)

2] ≤ D


n  FEC Coding: RQ(D) < I( X2; Y3 )
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3) Relaying via Quantization
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Classic CF





n  Improvement #1: relay hashes q (aka Wyner-Ziv coding) 
Quantization bound improves to:   I(Y2; Ŷ2|X2Y3) < RQ(D)


n  Improvement #2: bursty transmission helps at low SNR, i.e., 
use high power for short time intervals. Formally take into 
account via a “time-sharing” random variable T.
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CF Rate


n  Final CF Rate*: with a cut-set interpretation for 2 error events 

R < max min [ I(X1; Ŷ2Y3|X2T), I(X1X2; Y3|T) - I(Y2; Ŷ2|X1 X2Y3T) ]


Block 1
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*Cover-El Gamal (1979), El Gamal-et al (2006)
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②③ QMF/NNC*





n  Source repetitively encodes a long message m 
Relay quantizes only (no hashing) 
Destination decodes m and q jointly


n  Advantage: theory extends nicely to many sources and relays


n  Issues: long (en/de)coding delay, limited DF possibilities 
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* Avestimehr et al. (Allerton 2007), Lim et al. (ITW 2010) 
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n  Results (since late 2010): 
(1) classic short messages achieve same rates* 
(2) can use a mixed joint/backward decoding strategy* 
(3) can use per-block processing via a multi-hop initialization** 
(4) enables DF which improves flexibility, rates, and reliability** 
(5) extension to multiple multicast***
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④ SNNC*


* Wu-Xie (2010), ** K-Hou (2011), *** Hou-K (2012)
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(1) Proof of Equivalence for 1 Relay



n  Fix the coding distribution. NNC rate with joint decoding:



R < max{ I(X1; Y3|T)* , 


  min [ I(X1; Ŷ2Y3|X2T),  I(X1X2; Y3|T) - I(Y2; Ŷ2|X1 X2Y3T) ] }  (1)


§  Additional bound for SNNC with backward decoding:



   0 ≤ I(X2; Y3|X1T) - I(Y2; Ŷ2|X1 X2Y3T)      (2)


§  If (2) is violated, subtract (2) from 3rd expression in (1) to get:


R < I(X1; Y3|T)*


§  Proof method generalizes to many relays and sources **


* Destination treats X2 as noise, ** Hou-K (2012)
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n  Added: superposition encode ŷ2b(qb | qb-1) on x2b(qb-1)


n  At block 3: q3 is known and decode m3 and q2 jointly


n  NNC: don’t care about qb if m is recovered; get 2 bounds


n  SNNC: need q2 for the next backward step; get 3 bounds 
(To initialize: can send q3 to destination using various methods)


(2)(3) Full-Duplex SNNC and Backward Decoding


Block 1
 Block 2


x11(m1)
 x12(m2)


x22(q1)

Relay


Source


ŷ21(q1 | 1)


Block 3


x13(m3)


x23(q2)


ŷ22(q2 | q1)


x21(1)


ŷ23(q3 | q2)




Technische Universität München


Institute for

Communications Engineering
 24


(4) Enabling DF


n  Single-relay, d12=0.3


n  Attenuation exponent 3, 
slow Rayleigh fading, 
Gaussian noise


n  Per-node power: relay 
power P, source power 2P


n  Rate target =2 bit/symbol


n  SNNC gains 1 dB over NNC
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Discussion: Deterministic and Gaussian Channels


n  R < max min [ I(X1; Ŷ2Y3|X2T), I(X1X2; Y3|T) - I(Y2; Ŷ2|X1 X2Y3T) ]


n  Deterministic channels: Y2=f(X1,X2) so choose Ŷ2=Y2 and 
achieve cut-bound with independent inputs 
(Note: capacity known and achieved by “Partial DF”)


n  Gaussian channel: choose Ŷ2=Y2+Ẑ2 where Ẑ2~N(0,N2). Get


n  I(Y2; Ŷ2|X1 X2Y3T=1) = I(Z2; Z2+Ẑ2) = log(2N2/N2) = 1 bit


n  I(X1; Y2Y3|X2T=1) - I(X1; Ŷ2Y3|X2T=1) ≤ log(2) = 1 bit


n  R is within 1 bit of the cut-set bound with indep. X1 and X2


n  High SNR: beamforming gains are small so virtually optimal 
Low SNR: bursty signals mimic high SNR, but no beamforming
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4) Network Coding via Relaying
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n  Classic networks: for each edge (i,j), network coding chooses 
fi,j(.) to uniformly map {yi} to xi,j


n  Linear coding: xi,j = Ai,j yi where Ai,j is often taken to be random


Ahlswede-Cai-Li-Yeung  (2000)


Interface: Discrete, Uniform Mapping, Independent across Nodes
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Network Coding for Wireless
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n  Nodes with interference and broadcast constraints*: 
For each node i, choose fi(.) to map yi to an xi


n  Non-linear fi(.) needed in general


x1
x2

x3

xi = f i yi( )
Node i 

€ 

y
i

Interference
 Broadcast


Interface: Uniform Mapping. But what if the yi are continuous?


* Model includes classic networks as a special case
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Noisy (Digital) Network Coding
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n  Two-step: (1) compress (quantize/hash) and (2) channel code


n  Method is digital (binary interface) and non-linear in general


n  Surprise(?): includes classic network coding as a special case


x1
x2

x3

xi = f i yi( )
Node i 

€ 

y
i

Interference
 Broadcast


C
om

pr
es

s 

C
ha

n.
 c

od
e 

Interface: Digital, Uniform Mapping, Independent across Nodes
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Many Nodes, either Sources or Relays





n  NNC properly extends classic network coding


n  SNNC achieves same rates


n  Relation to Monday’s talk:


n  theory was based on layered networks so that non-layered 
networks require “time expansion”


n  layered analysis is useful, but is not needed


Block b
 Block b+1


X1b(m1b)
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xk(b+1)(mk(b+1),qkb)

Source/Relay k


Source
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Layered Networks vs. General Networks


n  Time-unfolded graph to get a layered network:
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Experiment with 2 Relays (Full Duplex)


n  Source (node 1), Relays (nodes 2 and 3), Destination (node 4)


n  AWGN, unit-variance noise, attenuation exponent 3


n  Common, per-node, per-symbol power constraint
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Experiment with 2 Relays (continued)
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Experiment (cont’d)


n  Attenuation exponent 3, 
slow Rayleigh fading, 
Gaussian noise


n  Per-node power: common 
power constraint


n  Rate target =2 bit/symbol


n  SNNC gains 1 dB over 
NNC
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Discussion* (1 Source/Many Relays)


n  RS < max min(S,Ŝ) I(XS; ŶŜYd|XŜT) - I(YS; ŶS|XS XŜYŜYdT)


n  Deterministic (e.g. classic) networks: choose Ŷi=Yi and achieve 
cut-set bound with independent inputs


n  Gaussian networks: choose Ŷk=Yk+Ẑk, Ẑk~CN(0,N), optimize N, 
to get within 0.63|V| bits of the cut-set bound 
(a true upper bound with dependent inputs)


n  Can use short messages and multi-hop/backward decoding to 
enable DF and per-block processing


n  Results extend to many sources & many relays
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Experiment with 2 Sources, 1 Relay (Full Duplex)


n  2 Sources (nodes 1 and 2), 1 Relay (node 3)


n  AWGN, unit-variance noise, attenuation exponent 3


n  Per-node, per-symbol power constraint, P1=5P, P2=2P, P3=P
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Experiment


n  Attenuation exponent 3, 
slow Rayleigh fading, 
Gaussian noise


n  Per-node power: common 
power constraint


n  Rate target 1=2 bit/symbol 
Rate target 2=1 bit/symbol


n  SNNC gains 1-2 dB over 
NNC
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Application Question

Does SNNC have a practical future?


§  relays can operate in a distributed and autonomous fashion


§  achieves the “multi-output” gains of MIMO


§  SNNC with DF achieves “multi-input” gains of MIMO


§  method applies to more than radio, e.g., classic & optical networks


§  Difficulty and Research: how to design practical codes and decoders?


SNNC


SNNC


Transmitter Cooperation
Receiver Cooperation
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Extra Slides
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Proof* of Equivalence for 1 Source/Many Relays



n  Fix a coding distribution. Let V be the set of relays. 
Let S⊆T⊆V and Ŝ be the complement of S in T. Define



RT(S) = I(X1XS; YŜY | XŜ) - I(YS; ŶS|X1XT YŜY) 

QT(S) = I(XS; YŜY | X1XŜ) - I(YS; ŶS|X1XT YŜY)


n  QF/NNC bounds:      R ≤ maxT minS RT(S)                            (1)


§  Backward decoding: T must satisfy 0 ≤ QT(S) for all S⊆T  (2)


§  Suppose (2) is violated for some S. Then for all B with S⊆B⊆T 
we have R ≤ RT(B) < RT(B) - QT(S) = RT\S(B\S)


§  This means the destination can treat the Xk with k∈S as noise


§  Repeat argument until all bounds (2) satisfied


§  Proof method generalizes to many sources (ISIT 2012)


* Kramer-Hou (ITW 2011) 



