

# Short Message Noisy Network Coding

Gerhard Kramer

Institute for Communications Engineering Technische Universität München, Germany

2013 European School of Information Theory Ohrid, Republic of Macedonia April 22-26, 2013

Unterstützt von / Supported by

Alexander von Humboldt
Stiftung / Foundation



#### **Outline**

- 1) Cooperative Communications
- 2) Relaying is the core concept (1979-)
- 3) Relaying via Quantization (2011-)
- 4) Network Coding (2000-) via Relaying

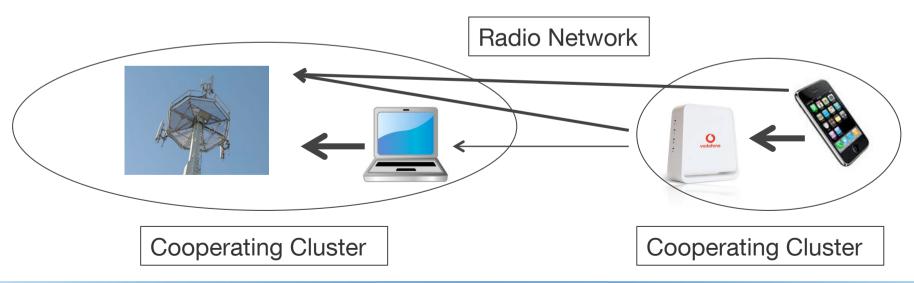




## 1) What is Cooperative Communications?

Network communication where nodes cooperate, rather than compete, to transmit data for themselves and others

- Classic networks: TDM/FDM, admission control, routing
- Question: how should devices best operate?
   To answer this question <u>fundamentally</u> we need ...





#### **Network Information Theory**

- Two Pioneers: Ahlswede and Cover
- Two of their many important contributions:
  - 1) Network Coding (2000) ... see examples on next pages
  - 2) Relaying strategies (1979)

Thomas Cover (7.8.38 - 26.3.12) Rudolf Ahlswede (15.9.38 - 18.12.10)



1990 Shannon Lecturer

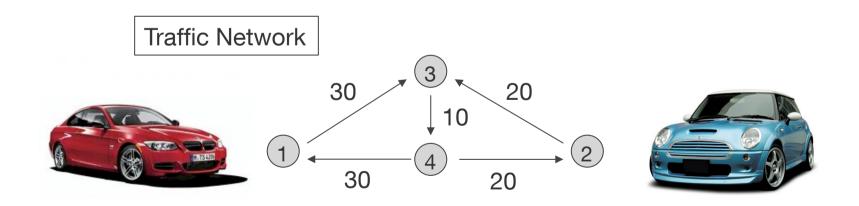


2006 Shannon Lecturer



#### **Example: Traffic Network**

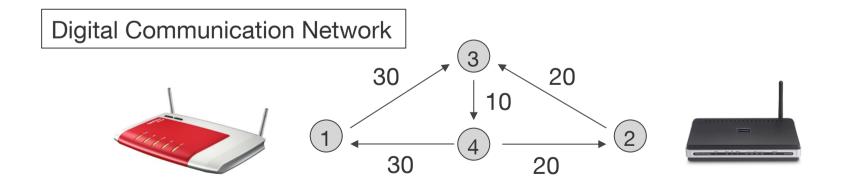
- Consider a traffic network with capacities in cars/minute.
  How many cars can flow between nodes 1 and 2 per minute?
- The bottleneck is clearly street (3,4).
   The answer is 10 cars per minute, either red or blue.
- But the answer is <u>different</u> for <u>digital communication</u> networks





#### **Example: Communication Network**

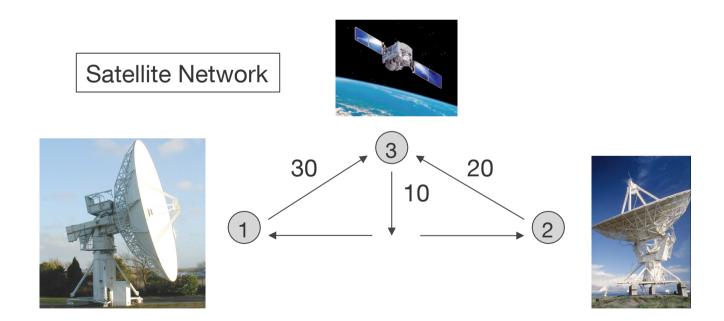
- Bottleneck: 10 Mbit/sec (say) but now both nodes can send
   10 Mbit/sec simultaneously by using network coding
- Trick: node 3 takes bits B₁ and B₂ from nodes 1 and 2, respectively, and sends bit C=B₁⊕B₂ to node 4
- Node 1 computes  $B_2 = C \oplus B_1$  and Node 2 computes  $B_1 = C \oplus B_2$
- Many recent (2000-) results using Galois field algebra





#### **Example: Two-Way Satellite Network**

- Nodes 1 & 2 send B<sub>1</sub> & B<sub>2</sub> to node 3 that broadcasts C=B<sub>1</sub>⊕B<sub>2</sub>
- Savings: ¾ time resources or large energy gains via coding
- Demonstrator: TUM-DLR-IQW collaboration

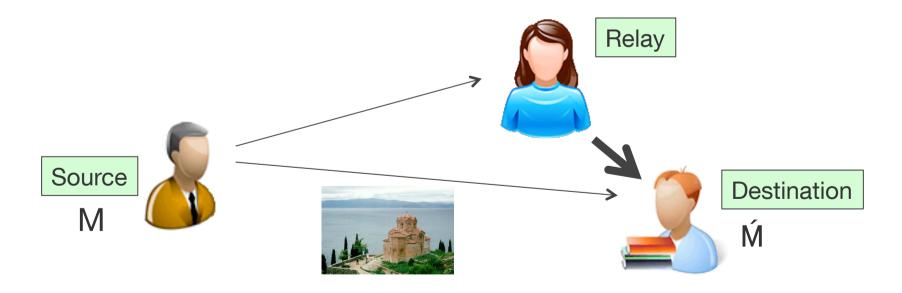




## 2) Relaying

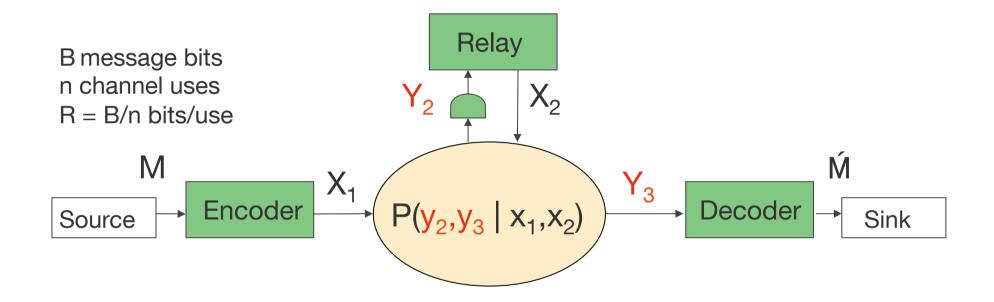
The core of cooperative communications is relaying

- Examples: amplification and multi-hop
- Question: are there other good strategies?
   To answer this question <u>fundamentally</u> we first study a basic ...





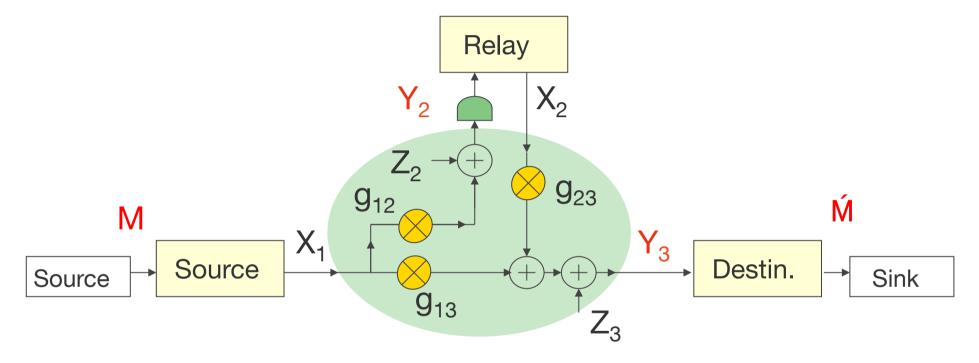
#### Relay Channel (Capacity an Open Problem)



- Problem: maximize R for reliability (B and n can be large)
- Network coding doesn't seem to play a role, does it?



#### Example: Gaussian Relay Channel



- Gaussian noise Z<sub>t</sub>, t=2,3
- Cost:  $\Sigma_i |X_{ti}|^2 / n \le P_t$ , t=1,2 (or use total power, peak power, etc.)



#### **Basic Methods and Recent Method**

- 1 Amplify-Forward (AF): amplify Y<sub>2</sub> Symbol Relaying: forward f(Y<sub>2</sub>) with optimized f(.)
- 2 Decode-Forward (DF): decode message and re-encode
- 3 New: Compute-Forward with Lattices

#### **Compression-Based Methods**

- 1 Classic Compress-Forward (CF), 1979
- 2 Quantize-Map-and-Forward (QMF), 2007
- 3 Noisy Network Coding (NNC), 2010
- 4 Short-Message NNC (SNNC), 2010



### Channel Coding Review (Warning: Some IT Math!)

B message bits n channel uses R = B/n bits/use

Channel

Source MEncoder M MSink

- Cost constraint for n symbols:  $\sum_i s(X_i, Y_i) \le nS$
- Problem: find the maximum R for reliable communications (small Pr[M≠M]) under the cost constraint
- Shannon's Capacity-Cost Function:

$$C(S) = \max_{P(x) : E[s(X, Y)] \le S} I(X; Y)$$



### Source Coding Review

B compression bits n symbols R = B/n bits/symbolCompression Bits

Source P(x)Encoder DecoderSink

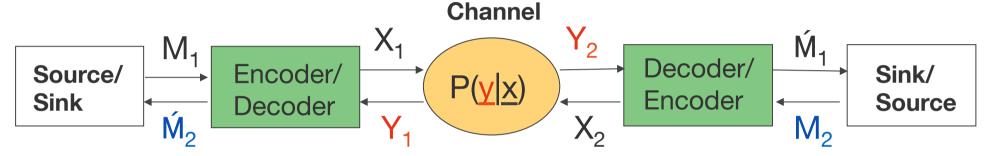
- Distortion constraint for n symbols:  $\sum_i d(X_i, X_i) \le nD$
- Problem: find the minimum R under the distortion constraint
- Shannon's Rate-Distortion Function:

$$R(D) = \min_{P(\hat{x} \mid x) : E[d(X, \hat{X})] \le D} I(X; \hat{X})$$



### **Two-Way Channel Review**

 $R_1 = B_1/n$  bits/use  $R_2 = B_2/n$  bits/use



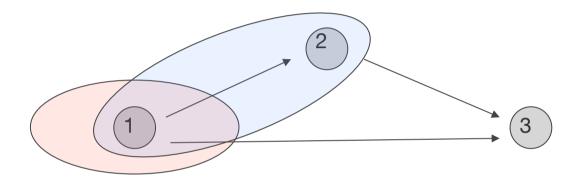
■ Shannon's Capacity Bound: given P(x<sub>1</sub>,x<sub>2</sub>) we have

$$R_1 \le I(X_1; Y_2 | X_2)$$
  $R_2 \le I(X_2; Y_1 | X_1)$ 

 Cut Bound: partition network nodes into 2 sets (S,S<sup>c</sup>) and develop similar bound. Method applies to any information network (biological, physical, financial, social, etc.)



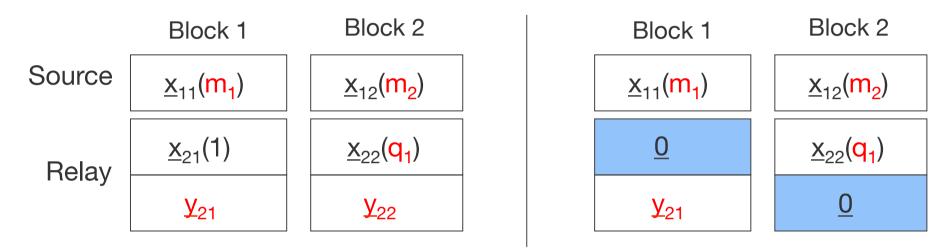
### Example: Relay Channel Cut Bounds



Two cuts: (S,S<sup>c</sup>)=({1},{2,3}) and (S,S<sup>c</sup>)=({1,2},{3})
 R < max min [ I(X<sub>1</sub>; Y<sub>2</sub>Y<sub>3</sub>|X<sub>2</sub>), I(X<sub>1</sub>X<sub>2</sub>; Y<sub>3</sub>) ]
 where the max is over all P(x<sub>1</sub>,x<sub>2</sub>)



#### Full-Duplex vs. Half-Duplex

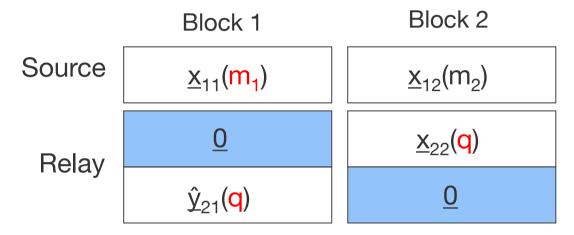


- Claim: Half-duplex rates are special full-duplex rates
- The trick is to model properly: a half-duplex channel is a "Discrete Memoryless Network"
- But coding for half-duplex nodes is easier to explain

## 3) Relaying via Quantization



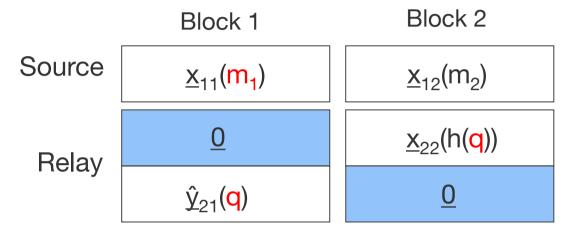
1 Classic QF (here with a Half-Duplex Relay)



- Relay quantizes  $\underline{Y}_2$  to bits q representing  $\underline{\hat{Y}}_2$  and transmits  $\underline{X}_2(q)$
- Simple: use scalar quantization (good for high-rate quantization)
- Better: use vector quantization after canceling effect of  $X_2$ . Quantization:  $I(Y_2; \hat{Y}_2 | X_2) < R_0(D)$  where, e.g.,  $E[(Y_2 - \hat{Y}_2)^2] \le D$
- FEC Coding:  $R_Q(D) < I(X_2; Y_3)$



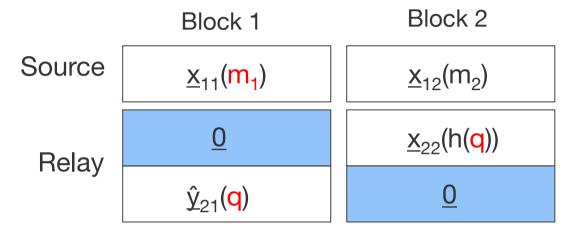
#### Classic CF



- Improvement #1: relay hashes q (aka Wyner-Ziv coding) Quantization bound improves to:  $I(Y_2; \hat{Y}_2|X_2Y_3) < R_Q(D)$
- Improvement #2: bursty transmission helps at low SNR, i.e., use high power for short time intervals. Formally take into account via a "time-sharing" random variable T.

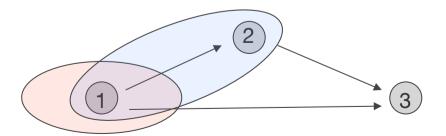


#### **CF Rate**



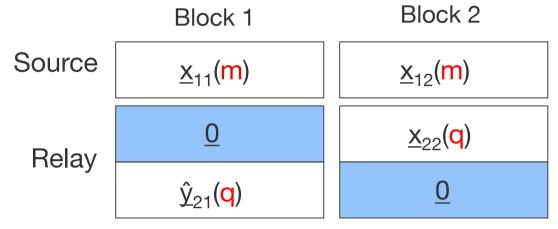
■ Final CF Rate\*: with a cut-set interpretation for <u>2 error events</u>

 $R < \max \min \left[ \ I(X_1; \ \hat{Y}_2Y_3|X_2T), \ I(X_1X_2; \ Y_3|T) - I(Y_2; \ \hat{Y}_2|X_1 \ X_2Y_3T) \ \right]$ 





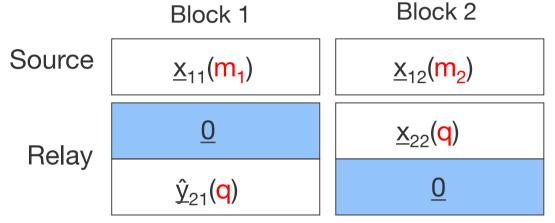
## 23 QMF/NNC\*



- Source repetitively encodes a <u>long message</u> m Relay <u>quantizes</u> only (no hashing)
   Destination decodes m and q <u>jointly</u>
- Advantage: theory extends nicely to many sources and relays
- Issues: long (en/de)coding delay, limited DF possibilities







- Results (since late 2010):
  - (1) classic short messages achieve same rates\*
  - (2) can use a mixed joint/backward decoding strategy\*
  - (3) can use per-block processing via a multi-hop initialization\*\*
  - (4) enables DF which improves flexibility, rates, and reliability\*\*
  - (5) extension to multiple multicast\*\*\*



### (1) Proof of Equivalence for 1 Relay

Fix the coding distribution. NNC rate with joint decoding:

$$R < \max\{ I(X_1; Y_3|T)^*,$$

$$\min[I(X_1; \hat{Y}_2Y_3|X_2T), I(X_1X_2; Y_3|T) - I(Y_2; \hat{Y}_2|X_1 X_2Y_3T) ] \} (1)$$

Additional bound for SNNC with backward decoding:

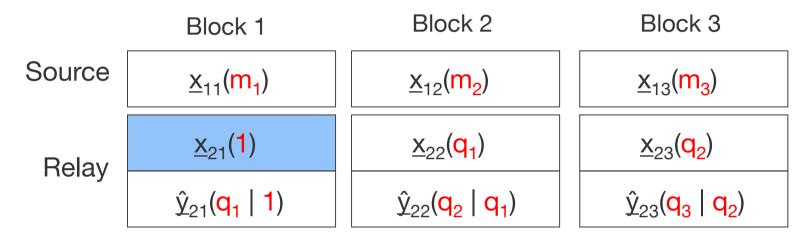
$$0 \le I(X_2; Y_3 | X_1 T) - I(Y_2; \hat{Y}_2 | X_1 X_2 Y_3 T)$$
 (2)

If (2) is violated, subtract (2) from 3<sup>rd</sup> expression in (1) to get:
R < I(X<sub>1</sub>; Y<sub>3</sub>|T)\*

Proof method generalizes to many relays and sources \*\*



### (2)(3) Full-Duplex SNNC and Backward Decoding

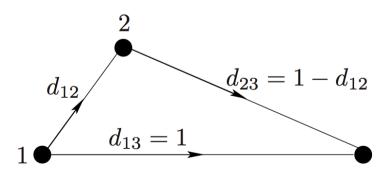


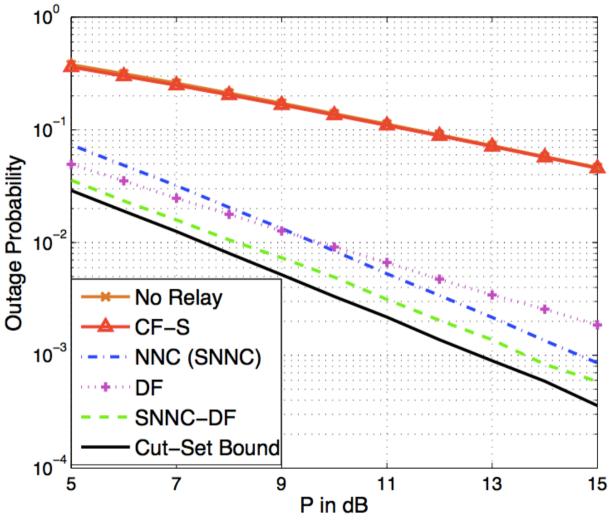
- Added: superposition encode  $\hat{y}_{2b}(q_b \mid q_{b-1})$  on  $\underline{x}_{2b}(q_{b-1})$
- At block 3: q<sub>3</sub> is known and decode m<sub>3</sub> and q<sub>2</sub> jointly
- NNC: don't care about q<sub>b</sub> if m is recovered; get 2 bounds
- SNNC: need q<sub>2</sub> for the next backward step; get 3 bounds
   (To initialize: can send q<sub>3</sub> to destination using <u>various</u> methods)



## (4) Enabling DF

- Single-relay, d<sub>12</sub>=0.3
- Attenuation exponent 3, slow Rayleigh fading, Gaussian noise
- Per-node power: relay power P, source power 2P
- Rate target =2 bit/symbol
- SNNC gains 1 dB over NNC







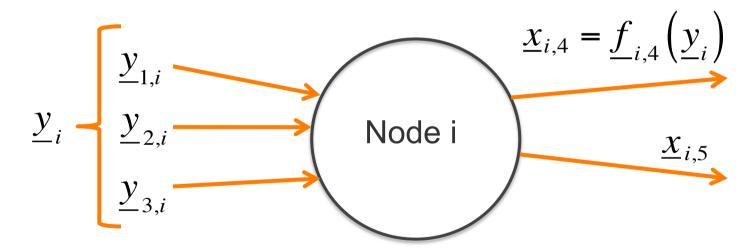
#### Discussion: Deterministic and Gaussian Channels

- R < max min [  $I(X_1; \hat{Y}_2Y_3|X_2T)$ ,  $I(X_1X_2; Y_3|T)$   $I(Y_2; \hat{Y}_2|X_1X_2Y_3T)$  ]
- Deterministic channels: Y<sub>2</sub>=f(X<sub>1</sub>,X<sub>2</sub>) so choose Ŷ<sub>2</sub>=Y<sub>2</sub> and achieve cut-bound with <u>independent</u> inputs
  (Note: capacity known and achieved by "Partial DF")
- Gaussian channel: choose  $\hat{Y}_2 = Y_2 + \hat{Z}_2$  where  $\hat{Z}_2 \sim N(0, N_2)$ . Get
  - $I(Y_2; \hat{Y}_2|X_1X_2Y_3T=1) = I(Z_2; Z_2+\hat{Z}_2) = log(2N_2/N_2) = 1 bit$
  - $I(X_1; Y_2Y_3|X_2T=1) I(X_1; \hat{Y}_2Y_3|X_2T=1) \le log(2) = 1 bit$
- $\blacksquare$  R is within 1 bit of the cut-set bound with indep.  $X_1$  and  $X_2$
- High SNR: beamforming gains are small so virtually optimal Low SNR: bursty signals mimic high SNR, but no beamforming



## 4) Network Coding via Relaying

- Classic networks: for each edge (i,j), network coding chooses  $\underline{f}_{i,j}(.)$  to uniformly map  $\{\underline{y}_i\}$  to  $\underline{x}_{i,j}$
- Linear coding:  $\underline{x}_{i,j} = A_{i,j} \underline{y}_i$  where  $A_{i,j}$  is often taken to be random

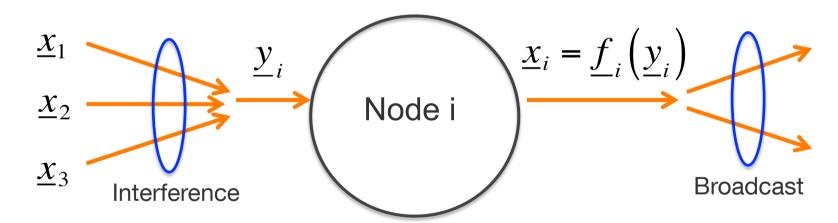


Interface: Discrete, Uniform Mapping, Independent across Nodes



## **Network Coding for Wireless**

- Nodes with interference and broadcast constraints\*: For each node i, choose  $\underline{f}_i(.)$  to map  $\underline{y}_i$  to an  $\underline{x}_i$
- Non-linear  $\underline{f}_i(.)$  needed in general

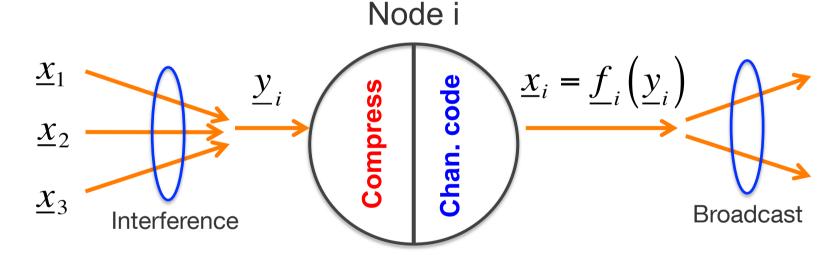


Interface: Uniform Mapping. But what if the  $\underline{y}_i$  are continuous?



## Noisy (Digital) Network Coding

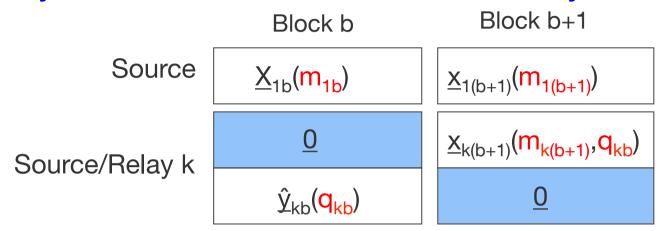
- Two-step: (1) compress (quantize/hash) and (2) channel code
- Method is digital (binary interface) and non-linear in general
- Surprise(?): includes classic network coding as a special case



Interface: Digital, Uniform Mapping, Independent across Nodes



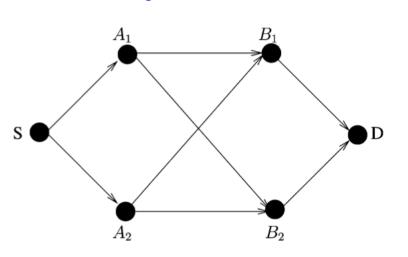
#### Many Nodes, either Sources or Relays

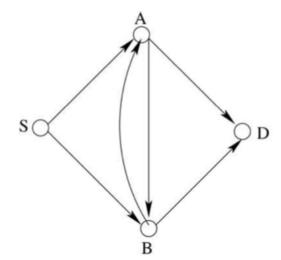


- NNC properly extends classic network coding
- SNNC achieves same rates
- Relation to Monday's talk:
  - theory was based on layered networks so that non-layered networks require "time expansion"
  - layered analysis is useful, but is not needed

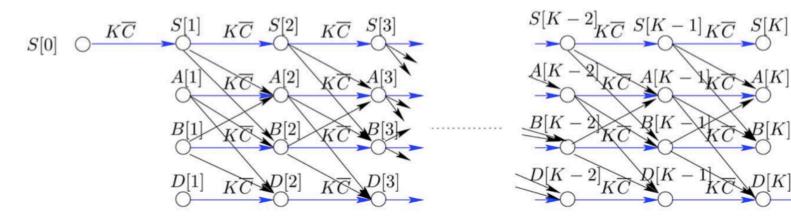


### Layered Networks vs. General Networks





Time-unfolded graph to get a layered network:



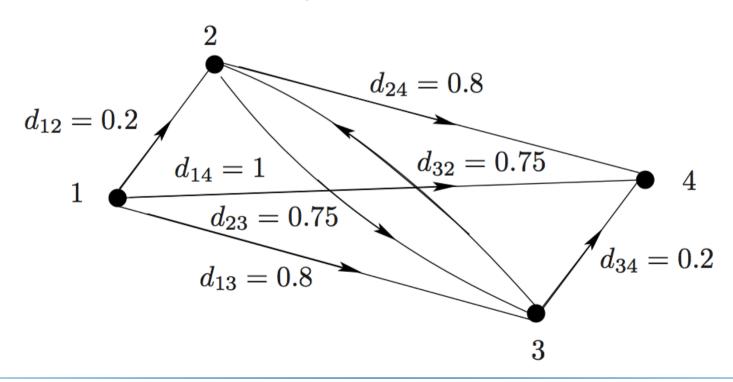
 $\bigcirc D[K+1]$ 

 $D[K] K\overline{C}$ 



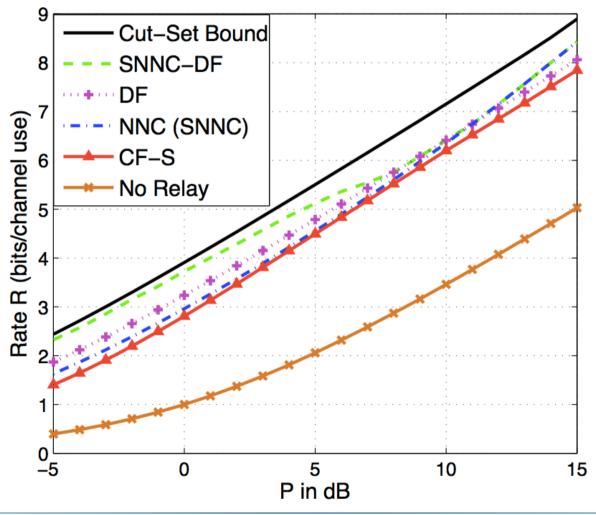
### Experiment with 2 Relays (Full Duplex)

- Source (node 1), Relays (nodes 2 and 3), Destination (node 4)
- AWGN, unit-variance noise, attenuation exponent 3
- Common, per-node, per-symbol power constraint





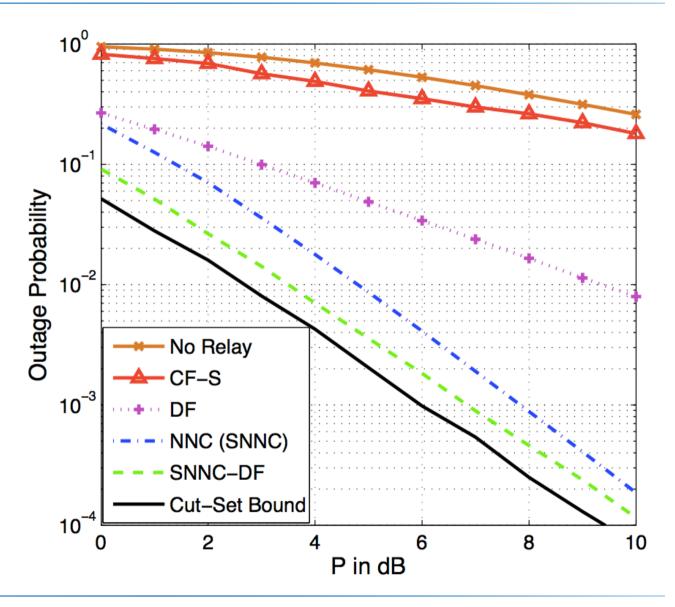
## Experiment with 2 Relays (continued)





## Experiment (cont'd)

- Attenuation exponent 3, slow Rayleigh fading, Gaussian noise
- Per-node power: common power constraint
- Rate target =2 bit/symbol
- SNNC gains 1 dB over NNC





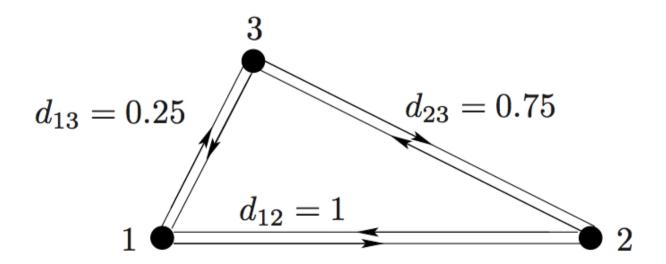
### Discussion\* (1 Source/Many Relays)

- $= R_S < \max \min_{(S,\hat{S})} I(X_S; \hat{Y}_{\hat{S}}Y_d|X_{\hat{S}}T) I(Y_S; \hat{Y}_S|X_SX_{\hat{S}}Y_{\hat{S}}Y_dT)$
- Deterministic (e.g. classic) networks: choose Ŷ<sub>i</sub>=Y<sub>i</sub> and achieve cut-set bound with independent inputs
- Gaussian networks: choose  $\hat{Y}_k = Y_k + \hat{Z}_k$ ,  $\hat{Z}_k \sim CN(0,N)$ , optimize N, to get within 0.63|V| bits of the cut-set bound (a true upper bound with <u>dependent</u> inputs)
- Can use short messages and multi-hop/backward decoding to enable DF and per-block processing
- Results extend to many sources & many relays



### Experiment with 2 Sources, 1 Relay (Full Duplex)

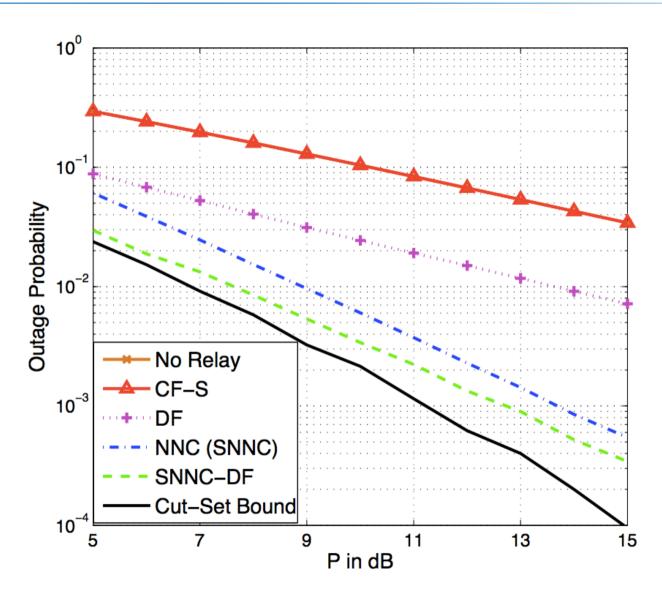
- 2 Sources (nodes 1 and 2), 1 Relay (node 3)
- AWGN, unit-variance noise, attenuation exponent 3
- Per-node, per-symbol power constraint, P<sub>1</sub>=5P, P<sub>2</sub>=2P, P<sub>3</sub>=P





## **Experiment**

- Attenuation exponent 3, slow Rayleigh fading, Gaussian noise
- Per-node power: common power constraint
- Rate target 1=2 bit/symbol
   Rate target 2=1 bit/symbol
- SNNC gains 1-2 dB over NNC

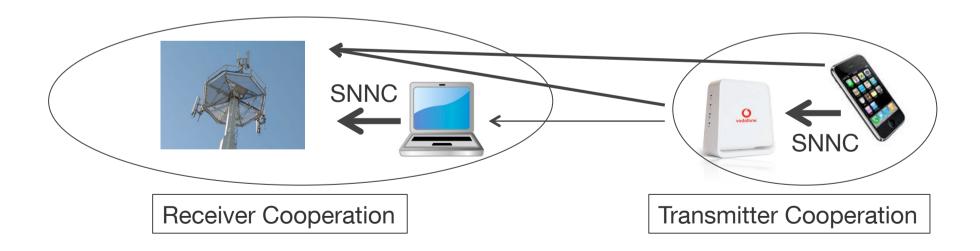




### **Application Question**

#### Does SNNC have a practical future?

- relays can operate in a distributed and autonomous fashion
- achieves the "multi-output" gains of MIMO
- SNNC with DF achieves "multi-input" gains of MIMO
- method applies to more than radio, e.g., classic & optical networks
- Difficulty and Research: how to design practical codes and decoders?





## Extra Slides



### Proof\* of Equivalence for 1 Source/Many Relays

Fix a coding distribution. Let V be the set of relays. Let S⊆T⊆V and Ŝ be the complement of S in T. Define

$$R_{T}(S) = I(X_{1}X_{S}; Y_{\hat{S}}Y \mid X_{\hat{S}}) - I(Y_{S}; \hat{Y}_{S}|X_{1}X_{T}Y_{\hat{S}}Y)$$

$$Q_{T}(S) = I(X_{S}; Y_{\hat{S}}Y \mid X_{1}X_{\hat{S}}) - I(Y_{S}; \hat{Y}_{S}|X_{1}X_{T}Y_{\hat{S}}Y)$$

- QF/NNC bounds:  $R \le \max_{T} \min_{S} R_{T}(S)$
- Backward decoding: T must satisfy 0 ≤ Q<sub>T</sub>(S) for all S⊆T (2)
- Suppose (2) is violated for some S. Then for all B with  $S \subseteq B \subseteq T$  we have  $R \le R_T(B) < R_T(B) Q_T(S) = R_{T \setminus S}(B \setminus S)$
- This means the destination can treat the  $X_k$  with  $k \in S$  as noise
- Repeat argument until all bounds (2) satisfied
- Proof method generalizes to many sources (ISIT 2012)