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1) Phase Noise Models
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= Phase noise due to (1) oscillator instability; (2) fiber non-linearities

= Phase noise statistics:
» phase-locked loops (PLLs) residual noise: von Mises/Tikhonov

distribution

= satellite (DVB-S2): white Gaussian process filtered by IIR filters

= fiber-optic lasers: Wiener process
= Raman amplification: large bandwidth Gaussian process




White Phase Noise TLTI
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= Simplified model (Barletta-Kramer, 2014)
R(t)=X(t) e + N(t)

O (t) is white* and N(t) is white Gaussian* (both are idealizations)
= Motivation: phase noise bandwidth much larger than receiver bandwidth

= Mathematically: let {g,,(t)} be an orthonormal basis of L?[0,T]
and project X(t), N(t), and R(t) onto the g_(t)

*We use E[O (1) O (t+7)] = 025, and E[N({)N(t+1)]= 0 25(t) 4




Discretization (1)
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Discretization (2)
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= Samples: f oo
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1t /@(t(L )
=lim—-) ¢ t/(L g t/( | ti(L)
Barletta-Kramer, 2014: L= [ E’=1 m( ) k( )
Almost sure convergence | o)
for white phase noise with | _ E[e ], m=K
uncorrelated samples of 0. else

process {el®®}




Discretization (3)
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Model: Y, =X, E[e®7]+N,
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An AWGN channel (!) but with SNR penalty |ug|?

Penalty called spectral loss™: “lost” power is spread across all
frequencies as white noise

Proof: use Borel-Cantelli lemma with a classic trick and a simplified
step via assumed boundedness of [|a,(t) @,(t)*| dt

| expect this insight to be useful for fiber channels

* Barletta-Kramer 2014, ** Goebel et al. 2011 7




m

2) Fiber Channel(s)

Single-Mode Fiber (SMF): a small core that carries one mode of light
Here one mode has 2 complex dimensions: two polarizations

Theory papers often consider one complex dimension;
the general case is interesting too of course (see below)

In fact, a hot topic in the fiber community is MIMO fiber

Single-mode Multi-mode Multi-core
fiber (SMF) fiber (MMF) fiber (MCF)




SMF Pulse Propagation Equation TUM

e Maxwell’s equations and low-order approximations™® result in a
generalized nonlinear Schrodinger equation (GNSE):

Linear Nonlinear
E oo i, dE
0Z 2 22972
Distance l Dispersion ] Kerr Noise
Evolution Nonlinearity (Gaussian,
Fiber Dispersion Bandlimited)
Loss/Gain Slope
E : Electromagnetic field, function of zand T n, : Fiber nonlinear coefficient
z: Distance w: Angular frequency
T: Retarded time t-f,z c: Speed of light
a

. Fiber loss coefficient (~ 3 dB/15 km)
B;: Inverse of group velocity
B, : Fiber group velocity dispersion
Bs: Fiber dispersion slope (include if B, small)
y : Fiber nonlinear parameter (n, w)/(c A

A, Fiber effective area

Figure courtesy of R.-J. Essiambre

*See Ch. 2 in G.P. Agrawal, “Nonlinear Fiber Optics”, 3rd ed., 2001




m

e To simulate, split the fiber length z* into K small steps (Az) and the
time T into L small steps (At)

e Split-step Fourier method at distance z,, k=0,1,...,K ve Ct(t)i:n Vsif;:gl_n er:ﬂries
o) EnZeiq) | é'( \
E(z, E\Zy
F > By | > FT L Dy D>
Fiber Linear Nonlinear N_OiSe
Loss/Gain

¢ |[deal Raman amplification: removes the loss and adds noise
e F = Fourier transform
e D, = diagonal matrix with fixed entries of unit amplitude (all-pass filter)

e D, = diagonal matrix with unit amplitude entries; the (¢,£)-entry phase
shift is proportional to the magnitude-squared of the £'" entry of E\(z,,+)

10



3) Upper Bound TLT

But First More IT Preliminaries

= Consider a complex column vector X = X, + j X, with covariance and
pseudo-covariance matrices

Q, - E[(X-E[X))(x-E[X])"

X<
X<

~

Q, - E[(x-E[X])(x-E[X])

s Forinterest: X is called proper if its pseudo-covariance matrix is 0
= Example: Consider a complex, zero-mean, scalar X = X_+ j X, .

X is proper if E[X 2]=E[X.?] and E[X_X.]=0.

Note: circularly symmetric X are proper, but proper X are not

necessarily circularly symmetric (e.g. QAM signal sets)

11
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Maximum Entropy

= Maximum Entropy: consider the correlation matrix Ry=E[X X'] where X
has L entries. Then -

h(X) < Iog[(ne)L det RK]

with equality if and only if X is Gaussian and proper (or circularly
symmetric)

s For a complex square matrix M we have
h(M X) = h(X)+2log|det(M)|

In particular, if M is unitary then h( M X) = h( X)

12



Entropy Power Inequality

= Entropy Power:

V(X) =" (ze)

= Entropy Power Inequality: for independent X and Y we have

V(X+Y)=V(X)+V(Y)

= Conditional version: for conditionally independent X and Y we have
V(X|U) = " /(e)
V(X+YIU)=V(XU)+V (YY)

13
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Energy and Entropy Conservation
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Main Observations
e The linear step conserves energy and entropy
e The non-linear step also conserves energy and entropy (the key result)

jarg(a) + jf(al)) _ h

h||ale a

,arg(a) +f(ja))) + E[log|a|]

- h(jal) + h(arg(a) + ()| [a)) + E [logla]] = h(a)
h(

a ,evlrg(a))
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Energy Recursion
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* Energy after K steps: Energy, ,,ncn + KN . We thus have:
h(E(zy)) = Iog[(ne)L det(R(E(zK)))] ... maximum entropy

< Y log|we R, (E(z))| ... Hadamard's inequality

<L -log|we(Energy, ..., + KN)/L] ... Jensen's inequality

15



Entropy Recursion
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e Entropy recursion:

V(E(2..)

E(2,)) =V (E(2,)|E(20))+ N/L
¢ \We thus have:

V(E(z z,))= KN/L
or h(E( )\E(zo)) = Llog(we KN/L)

16
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So for every step we have:

* Signal energy grows by the noise variance: can upper bound h( E(zy) )

e Entropy power grows by at least the noise variance:
can lower bound h( E(zx) | E(zo) )

e Result™:

I(E(Zo);E(ZK)) = h(E(ZK)) - h(E(ZK)|E(Zo))
=L -log(1+ SNR)

*SNR = receiver signal-to-noise ratio 17



= %/(E(ZO);E(ZK)) <log(1+ SNR)

e | et B = 1/At be the “bandwidth” of the simulation
e So L =T/At = TB is the time-bandwidth product
¢ The spectral efficiency is thus bounded by

n <log(1+ SNR) [bits/sec/Hz]
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5) Conclusions

1) Spectral efficiency of (an idealized model of) SMF with linear
polarization is < log(1+SNR)

2) Many extensions are possible:
- lumped amplification, 3"9-order dispersion, delayed Kerr effect
— uniform loss, linear filters (for capacity results)
- MIMO fiber (MMF or MCF)
3) More difficult:
- better bounds and understanding at high SNR
- frequency-dependent loss, dispersion, non-linearity
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