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(Thanks to Vahid Aref, who brought this question to my attention.)
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Prelude: A Scattering Medium



A scattering medium

𝜓𝜓1(0, 𝑡𝑡) 

𝜓𝜓2(0, 𝑡𝑡) 

𝜓𝜓1(𝐿𝐿, 𝑡𝑡) 

𝜓𝜓2(𝐿𝐿, 𝑡𝑡) 

𝑥𝑥 

• Two waves interact in a scattering medium: ψ1(x, t) and
ψ2(x, t), where x denotes location and t time

• ψ1 travels to the right, ψ2 to the left



Interaction over an infinitesimal amount of space
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The profile q(x) describes the medium [Bruckstein et al., 1985].



Evolution of the waves in the time domain
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dψ
dx

=

[
− ∂
∂t q(x)

−q∗(x) ∂
∂t

]
ψ, ψ(x, t) =

[
ψ1(x, t)
ψ2(x, t)

]



Evolution of the waves in the Laplace domain

𝜙𝜙1(0, 𝑠𝑠) 
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dϕ
dx

=

[
−s q(x)

−q∗(x) s

]
ϕ, ϕ(x, s) = Laplace{ψ(x, t)}



Probing the medium
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𝑥𝑥 

We probe the medium with the inputs

ϕ1(0, s) = 1 and ϕ2(L, s),

where the latter is specified indirectly through ϕ2(0, s) = 0.



Reconstruction of the medium

1 

0 

𝜙𝜙1(𝐿𝐿, 𝑠𝑠) 

𝜙𝜙2(𝐿𝐿, 𝑠𝑠) 

𝑥𝑥 

The profile q(x) can be reconstructed from the scattering data:

1 the reflection coefficient ϕ2/ϕ1 for s = jω,

2 the unstable poles of the reflection coefficient, and

3 the residuals of the reflection coefficient at these poles,

all taken at the right end of the medium, x = L.



Fiber-Optic Communication Using NFTs



Channel model

𝑢𝑢(𝜒𝜒 = 0, 𝜏𝜏) 𝑢𝑢(𝜒𝜒1, 𝜏𝜏) 

Normalized nonlinear Schrödinger equation:

j
∂u
∂χ

=
∂2u
∂τ2

+ 2|u|2u, u = u(χ, τ)

• Models ideal, loss- and noise-free single-mode fiber

• u = complex envelope, χ = location, τ = retarded time



Nonlinear Fourier transform (of a vanishing signal)
Consider the scattering problem

dϕ
dτ

=

[
−s u(χ0, τ)

u∗(χ0, τ) s

]
ϕ, lim

τ→−∞
ϕ(s, τ) =

[
e−sτ

0

]
We normalize the wave functions as

α(s) := lim
τ→∞

esτϕ1(τ, s), β(s) := lim
τ→∞

e−sτϕ2(τ, s)

Nonlinear Fourier transform of u(τ) = u(χ0, τ):

û(jω) :=
β(jω)
α(jω)

; α(sk) = 0, ℜ(sk) > 0; ũk := β(sk)
/dα

ds

∣∣∣
s=sk

This is essentially the scattering data of an imaginary scattering
medium with profile q(x) = u(χ0, τ)|τ=x.
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Fiber-optic communication using NFTs
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Fiber-optic communication using NFTs
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Problem: The impact of noise on the NFT is difficult to assess.



Some Known Results



The soliton
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The soliton

The soliton

u(χ, τ) = 2jηe−j(2ξτ−4(ξ2−η2)χ+ψ)sech(2ητ − 8ξηχ− δ)

is determined by the parameters
• η → amplitude, phase, time-scale and velocity

• ξ → phase and velocity

• ψ → phase-shift

• δ → time-shift

The NFT of u(χ0, τ) is q̂(χ0, jω) = 0, s1, q̃1(χ0) and satistifies

ξ = ℜ{s1}, η = ℑ{s1}, eδ =
|q̃1(0)|
2η

, eiψ =
q̃1(0)
|q̃1(0)|
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The soliton

The evolution of a soliton in non-ideal fiber is quite well-studied.

Two classic results:
• Kaup (1976): Decay of the amplitude η in lossy fiber.
“A perturbation expansion for the Zakharov-Shabat inverse
scattering transform,” SIAM J. Appl. Math. 31(1)

• Gordon & Haus (1986): Model for the variance of the
parameter ξ under periodic amplification (“timing jitter”).
“Random walk of coherently amplified solitons in optical
fiber transmission,” Optics Lett. 11(10)

The main tool in these derivations is perturbation theory.
See the book of Hasegawa (1995) for an overview.
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(Some) recent work

Much recent work on noise modeling for more general types
of signals in works on capacity estimates. Some examples:

• Meron, Shtaif & Feder (arXiv, 2012)

• Zhang & Chen (ISIT 2015)

• Shevchenko et al. (ITW, 2015)

• Kazakopoulos & Moustakas (ISIT 2016)

• Derevyanko, Prilepsky & Turitsyn (Nature Commun., 2016)

All of these works rely on perturbation theory.

Issues: High SNR only, restricted signal sets (e.g., multisolitons),
often more assumptions (well-separated solitons, short fiber, ...)



A New Result



Why we need another noise model for the NFT

Current results are all based on perturbation theory

⇒ Only valid for high SNR

• The high SNR regime is interesting for capacity estimates

• But it is not relevant for signal detection

• Another approach is needed!



Discrete-time NFT of a noisy signal

We consider noisy samples of a deterministic signal,

q[n] := q(tn) + ν[n], n = 0, 1, . . . ,D− 1,

where ν[n] is i.i.d. circular symmetric white Gaussian noise

Discretization of the scattering problem:

ϕ[n+ 1] =

[
1 ϵq[n]z−1

−ϵq∗[n] z−1

]
ϕ[n], z = e2sϵ

We will investigate the first two moments of ϕ[D], from which
the discrete-time NFT is defined as in the c-t case (skipped)



Real-augmented model I

We now rewrite the iteration for the discrete wave-vector:

ϕ[n+ 1] =

[
1 ϵq[n]z−1

−ϵq∗[n] z−1

]
ϕ[n]

=

[
1 ϵq(tn)z−1+ϵν[n]z−1

−ϵq∗(tn)−ϵν∗[n] z−1

]
ϕ[n]

=(Ac[n] + νr[n]L
c+ν i[n]M

c)ϕ[n],

where

Ac[n] :=
[

1 ϵq[n]z−1

−ϵq∗[n] z−1

]
, Lc :=ϵ

[
0 z−1

−1 0

]
,

Mc :=jϵ
[
0 z−1

1 0

]
,

and νr[n] := ℜν[n], ν i[n] := ℑν[n].



Real-augmented model II

Now, we separate the real and imaginary parts into the vector

x[n] :=
[
ℜϕ[n]
ℑϕ[n]

]
.

The update for x[n] is

x[n+ 1] = (A[n] + νr[n]L+ ν i[n]M)x[n],

where

A[n] := c2r{Ac[n]}, L := c2r{Lc}, M := c2r{Mc},

and
c2r{X} :=

[
ℜX −ℑX
ℑX ℜX

]
.



Mean and variance of the real-augmented model

Wang and Balakrishnan (2002): Let µ[n] := E{x[n]} denote
the mean and V[n] := E{x[n]x[n]T} the variance of the
real-augmented wave-vector, respectively. Then,

µ[n+ 1] = A[n]µ[n],

V[n+ 1] = A[n]V[n]A[n]T +
σ2

2
(LV[n]LT +MV[n]MT),

where σ2 = E[|ν[n]|2] is the variance of the noise.

• This result is exact for any noise level!

• Actual distribution? Spatial evolution?



Numerical example
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u(τ) = 4 exp(−τ2 + 6jτ2 + 2jτ), σ2 = 0.72
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Conclusion

• Presented an exact expression for the mean and variance of
the wave-vector that defines the discrete-time NFT

• No perturbation theory has been harmed deriving this result

• Actual distribution? Spatial evolution of the noise?

• Noise in the wave-functions is not (always) Gaussian

• Paper submitted to ITG Int. Conf. Syst. Commun. Coding

The End
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