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Dedication: In honor of Thomas Cover 

Thomas Cover – 1938-2012 

“There are a lot of simple and shocking statements that come out of 

probability and statistics. It is the existence of these as yet unfound 

statements that drives my interest in the field. 



Summary 

 

 Gaussian Interference Channel - standard form 

 Brief history 

 Z-Interference  channel 

 Symmetric Interference channel 

 

 



Standard Gaussian Interference Channel 
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Symmetric Gaussian Interference Channel 
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Z-Gaussian Interference Channel 



The possibilities: 

 

         Things that we can do with interference: 

 

1.   Ignore (take interference as noise (IAN) 

2.   Avoid (divide the signal space (TDM/FDM)) 

3.   Partially decode both interfering signals 

4.   Partially decode one, fully decode the other 

5.   Fully decode both (only good for strong inter-                                                           
ference, a≥1) 

 

 

 



Brief  history 

 Carleial (1975): Very strong interference does not 

reduce capacity  (a2  ≥ 1+P) 

 

 Sato (1981), Han and Kobayashi (1981): Strong 

interference (a2 ≥ 1) :  IFC behaves like 2 MACs 

 

 Motahari, Khandani (2009), Shang, Kramer and 

Chen (2009), Annapureddy, Veeravalli (2009):  

    Very weak interference  (2a(1+a2P) ≤ 1) : 

     Treat interference as noise  (IAN) 



History (continued) 

 Sason (2004): Symmetrical superposition to beat 

TDM – found part of optimal choice for α 

 

 Etkin, Tse, Wang (2008): capacity to within 1 bit,  

good heuristical choice of αP=1/a2 



Summary: Z interference Channels 

 Z-Gaussian Interference Channel as a degraded 
interference channel 

 

 Discrete Memoryless Channel as a band limited 
channel 

 

 Multiplex Region: growing Noisebergs 

 

 Overflow Region: back to superposition 

 

 

 



Degraded Gaussian Interference Channel 



Differential capacity 

Discrete memoryless channel as a band limited channel 



Gaussian Broadcast Channel 



Superposition coding 
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Multiple Access Channel 



Degraded Interference Channel 

- One Extreme Point 



Degraded Interference Channel 

- Another Extreme Point 



Intermediary Points (Multiplex Region)  



Admissible region for (, h) 



Intermediary Point (Overflow Region) 



Admissible region 
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The Z-Gaussian Interference Channel Rate Region 
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Admissible region 
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The Z-Gaussian Interference Channel Rate Region 
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Remarks 

 This is Han-Kobayashi region for Gaussian 

signaling (Zhao et al., ISIT-2012) 

 

 Simple 2-D parameter space: (, h) 

 

 Need entropy power-like inequality to 

establish capacity region  



Symmetric Gaussian Interference Channel 
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Symmetric Interference Channels 

 Discrete time channel seen as a band limited 

channel – differential capacity 

 

 Concave envelopes 

 

 Symmetric and Asymmetric Superposition 

 

 Phase transitions in parameter space 

 



Differential capacity 

Discrete time channel seen as a band limited channel 



Interference channel: Spectra at Y1 and Y2 

     At Y1                               At Y2   
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Interference Channel: TDM/FDM: 
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Concave Envelope 

IAN vs TDM/FDM, a2=0.25 

Tangent points TDM 
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Multiplex domination 

IAN vs TDM/FDM, a2=0.5 
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Interference as Noise and TDM/FDM 
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Rate Sum for IAN and TDM/FDM 

 Insert 3D plot 
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Superposition: partially decoding 

          At Y1                           At Y2                        
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Point where Symmetric Superposition  

starts beating TDM/FDM 
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Rate Sum, a2=0.05: Need convexification 
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   Rate sum for P=1000, 0≤a2≤1 
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Symmetric superposition: 
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Symmetric Superposition (continued): 

Optimal choice for α = α1 = α2 :  

 Case 1: 

 If 
1−𝑎2

𝑎4
≤ 𝑃 ≤

1−𝑎6

𝑎6 1−𝑎2
(𝑆𝑎𝑠𝑜𝑛′𝑠𝐵𝑎𝑛𝑑) 

               then set ∝ 𝑃 = 𝑎2 1 + 𝑎2𝑃 − 1; 

 

 Case 2: 

 If  𝑃 ≥
1−𝑎6

𝑎6 1−𝑎2
(𝐴𝑏𝑜𝑣𝑒𝑆𝑎𝑠𝑜𝑛′𝑠𝐵𝑎𝑛𝑑) 

               then set ∝ 𝑃 =
1−𝑎2

𝑎2 1+𝑎2
.    Note: Invariant with P 

 

 

 



Symmetric Superposition (continued): 

 In Sason’s Band: 

 𝑅1+𝑅2 ≤ log
𝑎2 1+𝑃+𝑎2𝑃

1−𝑎2+𝑎4(1+𝑎2𝑃)
  

 

 Above Sason’s Band: 

 𝑅1+𝑅2 ≤
1

2
 log

1+𝑎2
2
1+𝑃+𝑎2𝑃

4𝑎2
  



The hummingbird function: 

α1 
α2 

Rate Sum 



The shroud function 
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Flapping wings 
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Asymmetric-Superposition vs TDM/FDM 
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Phase Transitions in Weak Interference 
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Note: Transitional regions due to convexification along P not included. 



Pairwise Phase Transitions  

Sym-Sup vs. TDM 
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A pleasant resemblance 



Asymptotically as P  ∞ 

0 < a2 < 0.087  --  symmetric superposition is best 

0.087 < a2 < 1 – asymmetric superposition is  best  



As before: Need convexification along P 



Final remarks 

 Powerful tool: Concave envelopes to transition from     

one mode to another: time sharing between modes 

 

 Shown a full taxonomy of phase transitions in (a2, P) 

           parameter space with 0< a2 <1, P>0:  

 4 pure modes (IAN, TDM, Symmetric Superposition, 

           and Asymmetric Superposition)  and  

 4 transitional regions (IAN vs. TDM, TDM vs. Sym-Sup, 

           TDM vs. Asym-Sup, and Sym-Sup vs. Asym-Sup) 

 



Final remarks 

 Working to show this is Gaussian Han-Kobayashi 

Region 

 

 Future directions:   Full achievable region 

                            Show Gaussian signaling is best 

                            Converse (capacity region) 

 

 Look at general parameter space (P1, P2, a, b) 



 Many thanks! 

   


