

Communication Rates for Phase Noise Channels

Gerhard Kramer¹ & Hassan Ghozlan² with contributions by Luca Barletta¹ ¹Technische Universität München, Germany ²University of Southern California, CA, USA

Talk at Spanish IT Chapter Doctoral School San Sebastian, Spain July 3, 2015

Outline

- 1) Models
- 2) Information rates: high-SNR bounds
- 3) Information rates: numerical methods
- 4) Examples

The guy who did most of the work

Phase noise affects all oscillators, e.g., for radio and light (laser) communication

- Phase noise statistics depend on the application/receiver
 - phase-locked loops (PLLs) residual noise: von Mises/Tikhonov distribution
 - satellite (DVB-S2): white Gaussian process filtered by IIR filters
 - fiber-optic lasers: Wiener process

The continuous-time Wiener phase-noise model is

$$R(t) = X(t) \cdot e^{j\Theta(t)} + N(t)$$

where $\Theta(t)$ is a Wiener process $\Theta(t) = \Theta(0) + \int_{0}^{t} W(\tau) d\tau$ and N(t), W(t) are white Gaussian, $\Theta(0)$ uniform on $[0,2\pi)$

NB: both white processes defined via integral (filter) equation

Wiener Phase Noise Statistics

Autocorrelation function for white noise*

$$E[N(t_1)N^*(t_2)] = \sigma_N^2 \,\delta(t_1 - t_2)$$
$$E[W(t_1)W^*(t_2)] = 2\pi\beta \,\delta(t_1 - t_2)$$

• Autocorrelation & PSD function of U(t)=exp(j Θ (t)) $R_U(t_1, t_2) = E[U(t_1)U^*(t_2)] = \exp(-\pi\beta|t_2 - t_1|)$ $S_U(t) = \frac{1}{2} \frac{\beta/2}{\beta}$

$$S_U(f) = \frac{1}{\pi} \frac{\beta/2}{\left(\beta/2\right)^2 + f^2}$$

PSD is Lorentzian: β is "full-width at half-maximum" or twice the "half-width at half-maximum"

Lorentzian PSD

- β T_{symb}=0.1 where T_{symb} is the symbol (or sampling) time
- PSD and f are normalized
- PSD is for multiplicative noise: convolution of spectra
- Infinite bandwidth expansion*

Some Literature on (Wiener) Phase Noise in Communications

- 1980s early 1990s; attention was on optical (coherent detection for single-mode fiber + laser phase noise)
 - 1986: Jeromin-Chan, Kazovsky, Salz
 - 1988: Foschini-Vannucci, F-V-Greenstein*, Okoshi-Kikuchi, Wu-Wu
 - 1989: Dallal-Shamai, F., Garret-Jacobsen, Greenstein-V.-F., Linke
 - 1990: Castagnozzi, Cimini-Foschini, Dallal-Shamai, Barry-Lee, Garret, Kazovsky-Toguz, Tsao
 - 1991-94: Azizoglu-Humblet, Dallal-Shamai, Nassar-Soleymani
 - 2000: Peleg-Shamai-Galan
- Analysis is difficult due to filtering and memory

- Why focus on Wiener phase noise?
 - a single parameter (the noise variance) process with two important characteristics: continuous-time and memory
 - gives insight on behavior of other filtered processes
- For simplicity, we consider receiver phase noise only; there is usually also transmitter phase noise
- Wireless: phase noise power is often considered small Common approach: ignore, or treat discrete-time phase noise*
- Question: when are these approaches accurate?

A commonly* used discrete-time model

$$Y_k = X_k \cdot e^{j\Theta_k} + N_k$$

for k=1,2,...,n where

- $\{\Theta_k\}$ is discrete time Wiener with $\Theta_k = \Theta_{k-1} + W_k$
- $\{W_k\}$ and $\{N_k\}$ are white Gaussian processes

- Is this a good model?
- Quick Answer: yes, if βT_{symb} is small*
- Refined Answer: yes, if βT_{symb} small and SNR not too large
- Reason: to discretize one must filter which converts phase noise into both phase and amplitude noise

- Receiver (integrate & dump): $Y(t) = \int_{t-\Delta}^{t} [X(\tau)e^{j\Theta(\tau)} + N(\tau)]d\tau$
- Samples for square pulse shape* (with $\Delta = T_{symb}$)

$$Y_{k} = X_{k} \cdot (\Delta F_{k}) \cdot e^{j\Theta_{k}} + N_{k}$$
$$F_{k} = \frac{1}{\Lambda} \int_{(k-1)\Delta}^{k\Delta} e^{j(\Theta(t) - \Theta_{k})} dt$$

where $\{\Theta_k\}$ is discrete-time Wiener with $E[|W_k|^2]=2\pi\beta\Delta$; $\{F_k\}$ is an i.i.d. process; F_k and Θ_k are dependent

Oversampling*

Oversampling (OS) turns out to be important at high SNR**

• OS with
$$\Delta = T_{symb}/L$$
:
 $Y_k = X_{[k/L]} \cdot (\Delta F_k) \cdot e^{j\Theta_k} + N_k$

where N_k has factor L less power than with L=1

NB: this type of OS requires much "free bandwidth" around the main carrier; not a good fit for spectral efficiency!

2) Information Rates: High-SNR Bounds

Full Model

- If L=constant then C ~ log log SNR (needs a proof!)
- If L~SNR^{1/2} (or SNR^{1/3}) then* C \geq ½log(SNR) for large SNR Model with ΔF_k =1
- If L=constant then C~½log(SNR) for large SNR
- If L~SNR^{1/2} then^{**} C \geq 3/4log(SNR) for large SNR^{**}

Model with $\Delta F_k = 1$ • L~SNR^{α} then*

 $C \le (1 + \alpha)/2 \log(SNR)$

for large SNR

Examples:
 α =0, ½

Full Model

- Iower bound**
- no upper bound yet (other than trivial "1")

* Barletta ITW 2015; ** Barletta ISIT 2015

15

- 3) Information Rates: Numerical Methods Information theory specifies rates for reliable communication
 - Let $X=X_1X_2...X_n$ and $Y=Y_1Y_2...Y_{nL}$
 - We wish to compute I(X;Y) for large n where

$$I(X;Y) = \mathsf{E}\left[\log\frac{\rho(X,Y)}{\rho(X)\rho(Y)}\right]$$

<u>Problem 1</u>: p(y|x) is unknown (or hard to compute) <u>Problem 2</u>: X_k are discrete but Y_k are continuous

- Method 1: use an auxiliary channel lower bound*
- Method 2: discretize Θ_k and track with graphical model

- 1) Auxiliary Channel Lower Bound on Information Rate
 - The mutual information I(X;Y) is lower bounded by

$$I(X;Y) = \mathsf{E}\left[\log\frac{p(X,Y)}{p(X)p(Y)} \cdot \frac{q(Y)}{q(Y|X)} \cdot \frac{q(Y|X)}{q(Y)}\right]$$
$$= D\left(p(X,Y) \| p(Y) \cdot q(X|Y)\right) + \mathsf{E}\left[\log\frac{q(Y|X)}{q(Y)}\right] \ge \mathsf{E}\left[\log\frac{q(Y|X)}{q(Y)}\right]$$

- Interpretation: choose a q(y|x) that is easy to compute
 - simulate long sequence of XY via actual model p(x,y)
 - compute q(y|x) and $q(y) = \sum p(x) q(y|x)$
 - compute the last expectation above as a lower bound

2) Graphical Models

- Example for 3 symbols, OS factor L=3
- For the plots, we consider L=1,2,4,8,16 and discretize the phase to S= 16,32,64 states

4) Examples

Parameters:

- Rectangular and cosine-squared pulse shapes
- QPSK, 16-PSK, and 16-QAM
- Excessively large* linewidth: β T_{symb}=0.125
 Large* linewidth: β T_{symb}=0.0125
- Large linewidths are chosen to simplify simulations.
- Observations:
 - the same qualitative behavior occurs for any linewidths and high SNR
 - the information rates are quite good even for such linewidths

* Critique: both much larger than for many popular oscillators, but new applications (wireless & optical MIMO, machine-to-machine) are emerging where cheap oscillators are needed

Technische Universität München

- Lower bounds for 16-PSK
- β T_{symb}=0.0125
- Rectangular pulse shape
- S=64

- $\gamma^2 = 2\pi \beta T_{symb}$
- Baud-rate model with L=1, F_k=1
- MTR model*: Discrete-time OS, matched filter, L=16, F_k=1
- NB: L=16 achieves log₂(M) bits/symbol; M = modulation size
- S=128; except
 S=64 for 16-QAM
 (due to complexity)

- Upper and lower bounds for rectangular pulse*
- $f_{HWHM} = 0.0125$ means $\gamma = 0.4$
- Baud-rate sampling
- Baud rate sampling cannot achieve 4 bits per symbol; so we need OS

Summary

- OS is important at high SNR for any linewidth. The required OS rate depends on the (1) linewidth, (2) SNR, (3) pulse shape
- For Wiener phase noise: the required L seems to grow as the third root of the SNR (can we do better? relate to S_U(f)~1/f² ?)
- Many papers use an approximate discrete time model even at high SNR. Exercise caution: accurate models have amplitude variations also, especially at high SNR
- Lots of basic, fun, open problems*. For example, find (a good bound on) the differential entropy of

$$F_1 = \frac{1}{\Delta} \int_0^\Delta e^{j\Theta(t)} dt$$

Extra Slides

Research Activities at LNT

ПП