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Phase noise affects all oscillators, e.g., for radio and light (laser) 
communication

§  Phase noise statistics depend on the application/receiver

§  phase-locked loops (PLLs) residual noise: von Mises/Tikhonov distribution

§  satellite (DVB-S2): white Gaussian process filtered by IIR filters

§  fiber-optic lasers: Wiener process

1) Models
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n  The continuous-time Wiener phase-noise model is 
  
 
where Θ(t) is a Wiener process 
 
 
and N(t), W(t) are white Gaussian, Θ(0) uniform on  [0,2π)

n  NB: both white processes defined via integral (filter) equation
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R(t)= X(t) ⋅e jΘ(t ) +N(t)

Θ(t)=Θ(0)+ W(τ ) dτ
0

t

∫
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Wiener Phase Noise Statistics

n  Autocorrelation function for white noise* 

n  Autocorrelation & PSD function of U(t)=exp(jΘ(t))

n  PSD is Lorentzian: βis “full-width at half-maximum” 
or twice the “half-width at half-maximum”  

RU t1,t2( ) = E U t1( )U * t2( )!" #$= exp −πβ t2 − t1( )

SU f( ) =
1

π
β 2

β 2( )2 + f 2

E N t1( )N* t2( )!" #$=σ N
2 δ t1 − t2( )

E W t1( )W * t2( )!" #$= 2πβ δ t1 − t2( )

* Generalized process defined by an integral equation: a filter
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Lorentzian PSD

• βTsymb=0.1 where 
Tsymb is the symbol 
(or sampling) time

•  PSD and f are 
normalized

•  PSD is for 
multiplicative 
noise: convolution 
of spectra

•  Infinite bandwidth 
expansion*

* Causes aliasing and “spectral loss”
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Wiener Process Sample Paths
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§  1980s - early 1990s; attention was on optical (coherent 
detection for single-mode fiber + laser phase noise)
–  1986: Jeromin-Chan, Kazovsky, Salz

–  1988: Foschini-Vannucci, F-V-Greenstein*, Okoshi-Kikuchi, Wu-Wu

–  1989: Dallal-Shamai, F., Garret-Jacobsen, Greenstein-V.-F., Linke

–  1990: Castagnozzi, Cimini-Foschini, Dallal-Shamai, Barry-Lee, Garret, 
Kazovsky-Toguz, Tsao

–  1991-94: Azizoglu-Humblet, Dallal-Shamai, Nassar-Soleymani

–  2000: Peleg-Shamai-Galan

§  Analysis is difficult due to filtering and memory

8* Studies oversampling

Some Literature on (Wiener) Phase Noise in Communications
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§  Why focus on Wiener phase noise?

–  a single parameter (the noise variance) process with two 
important characteristics: continuous-time and memory

–  gives insight on behavior of other filtered processes

§  For simplicity, we consider receiver phase noise only; 
there is usually also transmitter phase noise

§  Wireless: phase noise power is often considered small 
Common approach: ignore, or treat discrete-time phase noise*

§  Question: when are these approaches accurate?

9* Lots of recent papers 
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A Discrete Time Model

n  A commonly* used discrete-time model 
 
 
for k=1,2,…,n where

n  {Θk} is discrete time Wiener with Θk = Θk-1 + Wk

n  {Wk} and {Nk} are white Gaussian processes
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Yk = Xk ⋅ e
jΘk +Nk

* Most papers since 1994; almost all wireless papers  
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Re-Evaluation

n  Is this a good model?

n  Quick Answer: yes, ifβTsymb is small*

n  Refined Answer: yes, if βTsymb small and SNR not too large

n  Reason: to discretize one must filter which converts phase 
noise into both phase and amplitude noise

Xk
Source SinkEncoder Decoder

Yk

Nk

ejΘk

M Ḿ

* Fine for many situations
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Discretization (2nd try)

n  Receiver (integrate & dump):

n  Samples for square pulse shape* (with Δ=Tsymb) 
 
 
 
 
where {Θk} is discrete-time Wiener with E[|Wk|

2]=2πβΔ; 
{Fk} is an i.i.d. process; Fk and Θk are dependent

Yk = Xk ⋅ ΔFk( ) ⋅ e jΘk +Nk

Fk =
1
Δ

e j Θ( t )−Θk( ) dt
(k−1)Δ

kΔ

∫

Y t( ) = X (τ )e jΘ(τ ) +N(τ )"# $%dτt−Δ

t

∫
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* Pulse shaping is interesting, e.g., peaky or bandlimited pulses
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Oversampling*

n  Oversampling (OS) turns out to be important at high SNR**

n  OS with Δ=Tsymb/L: 
 
 
where Nk has factor L less power than with L=1

n  NB: this type of OS requires much “free bandwidth” around 
the main carrier; not a good fit for spectral efficiency!

Yk = X k /L!" #$
⋅ ΔFk( ) ⋅ e jΘk +Nk

* FGV (1988); **Ghozlan & Kramer (2013/2014) 
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Full Model

n  If L=constant then C ~ log log SNR (needs a proof!)

n  If L~SNR1/2 (or SNR1/3) then* C ≥ ½log(SNR) for large SNR

Model with ΔFk=1

n  If L=constant then C~½log(SNR) for large SNR

n  If L~SNR1/2 then** C ≥ ¾log(SNR) for large SNR**

Ghozlan & Kramer (ISIT 2013*/2014**) 

X⎡k/L⎤

Source SinkEncoder Decoder
Yk

Nk

(ΔFk) e
jΘk

M Ḿ

2) Information Rates: High-SNR Bounds
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Model with ΔFk=1

n  L~SNRα then* 

C≤(1+α)/2 log(SNR)  

for large SNR

n  Examples: 
α=0, ½

Full Model
n  lower bound**
n  no upper bound 

yet (other than 
trivial “1”)

* Barletta ITW 2015; ** Barletta ISIT 2015 

ΔFk=1
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Information theory specifies rates for reliable communication

§  Let X=X1X2...Xn and Y=Y1Y2...YnL 

§  We wish to compute I(X;Y) for large n where

 
 
 
 
Problem 1: p(y|x) is unknown (or hard to compute)

Problem 2: Xk are discrete but Yk are continuous

§  Method 1: use an auxiliary channel lower bound*

§  Method 2: discretize Θk and track with graphical model

3) Information Rates: Numerical Methods

16

I(X;Y )=E log
p X,Y( )

p X( )p Y( )
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* Arnold et al. (IT Transactions 2006) 
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1) Auxiliary Channel Lower Bound on Information Rate

n  The mutual information I(X;Y) is lower bounded by

n  Interpretation: choose a q(y|x) that is easy to compute

n  simulate long sequence of XY via actual model p(x,y)

n  compute q(y|x) and q(y) = ∑ p(x) q(y|x)

n  compute the last expectation above as a lower bound

I(X;Y ) = E log
p X,Y( )

p X( ) p Y( )
⋅
q Y( )
q Y X( )

⋅
q Y X( )
q Y( )

"

#
$
$

%

&
'
'

= D p X,Y( ) p Y( ) ⋅q(X Y )( )+E log
q Y X( )
q Y( )

"
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2) Graphical Models

n  Example for 3 symbols, OS factor L=3

n  For the plots, we consider L=1,2,4,8,16 and 
discretize the phase to S= 16,32,64 states 
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Parameters: 

§  Rectangular and cosine-squared pulse shapes

§  QPSK, 16-PSK, and 16-QAM

§  Excessively large* linewidth: βTsymb=0.125 
Large* linewidth: βTsymb=0.0125

§  Large linewidths are chosen to simplify simulations.

§  Observations:

§  the same qualitative behavior occurs for any linewidths and high SNR

§  the information rates are quite good even for such linewidths

4) Examples

19

* Critique: both much larger than for many popular oscillators, 
but new applications (wireless & optical MIMO, machine-to-machine) 
are emerging  where cheap oscillators are needed
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n  Lower bounds 
for 16-QAM

n  βTsymb=0.125

n  Rectangular 
pulse shape
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n  Lower bounds 
for 16-QAM

n  βTsymb=0.125

n  Cosine-squared 
pulse shape
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n  Lower bounds 
for 16-PSK

n  βTsymb=0.0125

n  Rectangular 
pulse shape

n  S=64
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n  Lower bounds for 
rectangular pulse

n  γ2=2πβTsymb

n  Baud-rate model 
with L=1, Fk=1

n  MTR model*: 
Discrete-time OS, 
matched filter, 
L=16, Fk=1

n  NB: L=16 achieves 
log2(M) bits/symbol; 
M = modulation size

n  S=128; except 
S=64 for 16-QAM 
(due to complexity)

* Martalo-Tripoli-Raheli (ITA 2013) 
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n  Upper and lower 
bounds for 
rectangular pulse*

n  fHWHM=0.0125 
meansγ=0.4

n  Baud-rate sampling

n  Baud rate sampling 
cannot achieve 4 
bits per symbol; 
so we need OS

* Curves courtesy of Luca Barletta 
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Summary
§  OS is important at high SNR for any linewidth. The required 

OS rate depends on the (1) linewidth, (2) SNR, (3) pulse shape

§  For Wiener phase noise: the required L seems to grow as the 

third root of the SNR (can we do better? relate to SU(f)~1/f2 ?)

§  Many papers use an approximate discrete time model even at 

high SNR. Exercise caution: accurate models have amplitude 

variations also, especially at high SNR

§  Lots of basic, fun, open problems*. For example, find (a good 

bound on) the differential entropy of

* Several consequences for OFDM ! 

F1 =
1
Δ

e jΘ t( ) dt
0

Δ

∫
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Extra Slides
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