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source 1: X =

probabilities Px (-)

Example O
(3/8 1/2 1/8

a b ¢ ) symbols

a b symbols
source 2: X' =

1/2 1/8 3/8 )probabilities Px (")

Two standpoints: Blx 4 X’ (under renaming
and permutation
Bx=x P )

A

concept of information- spectra !
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B What is the information-spectrum?
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probability

A information-spectra for X and X’
1/ l self-lnformatlon
A ! %
318
1/8 ; *

T lo ! ] 1
1 —> O

1 1og,(8/3) 3 52 Pr(X)’ %2 Py (X7

B One information-spectrum for one source

I\ lt is easy to check that the information-spectra
are the same for sources X and Xx’
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1.i.d. sequence
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0110
0111
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1001
1010
1011
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1101

1110
1111

probabilities non i.i.d.sequence probabilities
()4 { 1010 (3
B ) ot (§)°3
O TN 0100  (3)°3
(1)2(2)? 3 o110  (3)%(2)?
OF » o (3
(1222 renaming oo (3)*(3)?
3°3? X=x’' oot (NG
1(2)3 . 1000  3(3)°
(33 U L (3%
(1)2(2)? | 1001 (3)%(3)
$*%? What source o111 (:i;)zz(%a)2
) 1
33 is x'atall? 10 sl
(3)%(%)? 1110 (3)%(3)
172\3
33 Far from standard! 11 3(3)
%(%)3 0101 %(% ;
(2) 0011 (%)
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B\ Let us depict again the information-spectra
for these sources X and X'

probability | | ,
) information-spectra for X and X

"4

self-information

v <

1 1

lo , lo
52 px(X) 52 Px/(X')

1.1.d. non-i.i.d.

I\t is easy to check that both coincide again!
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“U' Thus

B The information spectra remain the same
under renaming and permutation !!
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Remark 1(very import observation!):

uniform distribution

<

A (of size M)
T
1 23 oo oo M

A

one-point spectrum
(at log M)

— lOg
log M 2PX(X)
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Il. Asymptotic Information-Spectra
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Bl general source X = { X"},

alphabety is countably infinite
X" e X"™is a block source of length

PFOHability Px~(-) is the probability dist. of X"
information-spectrum
of X

X normalized

self-information

L, "
— 10
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—ameed | SR

n — large
4 :
2)Markov source

3)ergordic source A

|}
AEP t
H(X)

1) i.i.d. source

n —

(Asymptotic
Equi-Partition)

................ one-point spectrum
N

entropy rate
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Example 2

4)mixed source

Pxn(x) = a1 Pxn(x) + aa Pxr (X)

X;L . lld ~ P2 —
H(P)) # H(P,) || n—ee
&%)
a1
DR two-point
--------------------- spectrum

-

-
-
-
-
-
-
-
-
-
----------------

H(P) H(P)

entropy rates
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B Quesiotn: How to define “AEP” for general

sources”?
‘ to this end

Information-spectrum approach is useful!

Let me try to show it!
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B Fundamental tools for information-spectra

q| lim-sup in probability
p- limsup Z,, = inf {oz\ lim Pr{Z, > a} = O}

q lim-inf in probability
p- liminf Z,, = sup {ﬁ\ lim Pr{Z, < 8} = O}

n—aoo

probability dist. of Z,

A_

0. @) .
# {Zn}nzl IS a sequence of
real random variables

1 1
P- l}nfgloféf Zin p- lim sup 2,

N — 00
|5
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lim-sup and lim-inf in probabilities

p-limsup(Z, +V,) < p-limsupZ, + p-limsupV,
D- {i;II_lji::{l)f(Zn +V,) > p- 1£Hi>£f Zn + D- 12&5 V.,
p-limsup(Z, +V,) > p-limsupZ, + p- IHELEf V.
- {i;II_lji:;})f(Zn +V,) < p- li?;n Soljp Ly + P- %Iiio%f Va
- l%nnl) io%f Lo < D- liTI:SOJp L,
p-limsup(—2,) = —p—q%nzoréf Z

p-limsup Z,, = p-liminf Z,, = c<—=p- lim Z,, = c

(limit in probability)
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B For general source X = {X"}>

spectral lim-sup: HFH(X) = p-1j -1
1‘ P P (X)=p 1711nsupn og o (X

L .. .1 1
1 spectral lim-inf:  H(X) = p-liminf ~log P (X7

information-spectrum of X
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Il. AEP, Strong Converse,
and Information-Spectra
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{IDefinition19] (strong converse property)

A general source X is said to satisty

the strong converse property if, with

any given rate i, the optimal coding
always yields either lim ¢, =1 or lim &, =0
where = is the decoding error =~
probability.

{IDefinition 2 §| (generalized AEP)

A general source X is said to satisfy AEP if
there exists a set 7, € X" such that Px-(7;) — 1
and Pxn(x) = exp|—n(H(X) £ ¢€)] for Vx € T;;

(Ve >0 )

19
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{ITheorem 19

one-point spectrum

strong converse

H(X) = H(X) (E) oot %
theorem -"" > ﬁ
theorem
generalized-"" CAEP
20
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ergodic sources

general sources

" spectrum

21

one-point
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Ill. Source Coding, and
Information-Spectra

22

2010%FE7H20H X EH



B Fixed-length source coding

encoder decoder

X" > Pn —>@—> Yy —— X7 = wn(gpn(Xn))

MnE{1727 7Mn}

* coding rate ZﬁlogMn
e error probability : en = Pr{X" # X"}

. . . 1 |
*X IS achievable < limsup - log M,, <R, lim &, =0

7 — 00 100

(we want here to make R as small as possible)

23
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IDefinition 39 £R¢(X) = inf{ R|R is achievable}

9Thorem 2 9| (Han & Verdu,1993)

B Optimal coding rate : R¢(X) = H(X)

information-spectrum of X

2010%FE7H20H X EH



V. Intrinsic Randomness
and Information-Spectra

25
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B Uniform random number generation (intrinsic randomness)

1
Pxn (X7
POn
uniform random
.~ humber
______ >
1 1
> 10g2 N

26
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Formal description (1): intrinsic randomness

--------------
-
-
-
'ﬂ
4

. @ Upy,, : uniform (on M,,)
! random variable

encoder X" =pu(X")
. @divergence:

X" > Pn @
PHQ szlog_

={1,2,--- , M,}

...
-
-
L.
-
DI
iy
~
-a
-
=

- .1
* random number generation rate - — log M,
. _ 1 o
e randomness distance : pn = D(X"||Un,)

®* pis achievable < hmmf—logM > R, lim p, =0

n—oo M, N — OO

(we want here to make i as large as possible)

27
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YDefinition4 9 S (X) = sup{R|R is achievable}

S Theorem 3 94| (Vembu & Verdu,1995)

B Intrinsic randomness : S (X) = H(X)

information-spectrum of X

28
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V. Resolvabillity and
Information-Spectra

29
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B Arbitrary random number generation (resolvability)

uniform random
number

-
-
-
-
-
-
-
-
-
-
-
-
-
-

30
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Formal description (2): resolvability

encoder X = {X"};2 (target) IS given
UMn > Pn @ ----------------- ‘
an Spn(UMn) )

;@ Upy :uniform (on M,,)
' random variable

. @variational distance

* random number coding :
1
rate log M Z ’pz T qu,

Orandomness distance o, =d(X™, X ”)

Q..
-~
-~
-
-
-.-
= -
i
-
-
--.
i
-~
~
~
SN
-

1
* »is achievable & limsup — log M, <R, lim o, =0

Nn— 00 1= 00

(we want here to make R as small as possible)

2010%FE7H20H X EH



Definiton5Yq S5.(X) = inf{R|R is achievable}

9THeorem 4 9| (Han &Verdu,1993)

B Resolvability :  S,.(X) =H(X)

information-spectrum of X
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VI. Folklore, and Information-Spectra

33
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Let us consider the following “folklore:”

The encoder output ¢, (X™) working at the optimal

rate for a source X =1{X"},2; looks like almost
completely random with n — oc.

@ Question: How to formally define the “class of

sources” and “ notion of almost completely random.”

v

@ In order to solve this problem, we need

Theorems 1, 2, 3 (previous), and Theorem 5 (next).

34
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9Three information sources in coding|

source encoder ©n decoder ¥, reproduced source

@ {—1+@
X X X

source output encoder output decoder output

# X={X"}2: (source1)
HX={X"}2, (X" =p.(X")) (source 2)
B X ={X"}22, (X" =a(en(X™)) (source 3)

35
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1Theorem 59 (invariance of information-spectra)

In the process of source coding with decoding
error probability ¢, — 0 (n — o0), three
information-spectra of x. x X asymptotically

have the same form.

information- spectra of the same form

source output X™ encoder output X" decoder output X"
36
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f[Corollary 1 4 (preservation of strong converse property)

In the process of source coding with decoding

error probability ¢, — 0 (n — o0), the strong
converse property (= AEP) is preserved at

the same position.

one-point information- spectra of the same form

.
-----
.....
sunt®
wnn®
wnet®
we®
we®
---
----
we®
ws®
s®
.
.
.
.
.
.
.
.
.
.
.
*
.
.
.
.
o
.

source output X" encoder output X" decoder output Xn

37
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YDefinition 69Levy distance between prob. dist.s)

The notion "asymptotically the same form” in Theorem 5:

1 1 1 1
lim L | —lo ,— lo = =0
n— o0 (n § Pxn(X™) ; PXn(X”))

@ L(U,V)Is called Levy distance:= the infimum of
all » >0 such that, for all reals =,

Pr{U<z—pu}—pup<Pr{V <o} <Pr{U<z+pu}t+u

38
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YDefinition 7 q (the notion "almost completely random”)

A general sourceZ = {Z"}°° ,is said to be
almost completely random with size M,
if it holds that

1
lim —D(Z"||Up, ) =0,

n—oo M,

where p(.||.) IS the divergence, and the
limit:

1
lim — log M,,

n—oo N,

exists.

39
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§| Theorem 6 §] (Folklore: Han, 2005)

The encoder output ¥»(X"™) working at the optimal
rate for a “"general” source X ={X"1°, IS

almost completely random if and only if X
satisfies the strong converse property (=AEP).

@®@Remark: A “general” source X ={X"};2, affords

*any” nonstationary memory structure, which
includes, as very special cases, all ergodic sources.

40
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Hint for the proof:

1) part= : Use

2) part =: g

Theorem 1 ( H(X) = H(X))
Theorem 2 (R¢(X) =H(X))
Theorem 5 ( invariance theorem)

Theorem 2 (R¢(X)=H
Theorem 3 (S*(X) =H(X))

41
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I Folklore looks like a navel of the
world of Information-Spectra J,

/ Sr(X) = H(X)
resolvabllity
R+(X) = H(X) .

optimal L —
Cod%ng intrinsic
rate randomness

Invariance

strong theorem

converse
\ H(X) = H(X) /

42
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VIl. Reliability Function,
and Information Spectra

43
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B Fixed-length source coding (cont.)

encoder decoder

X" ] Pu] (M| ¥ | 7= Y (on(X))

= {1727 7Mn}
exponentially decaying
: 1 error probability

e coding rate : - log My,

N En fi e~ T
eerror probability : en =Pr{X" # X"} g

1 1v 1

* Ris m-achievable < limsup —log My, < R, lim 51og6_ >

( we want to make R as small as possible )

44
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I Reliability function for source coding

YIDefinition 8 I R, (r|X)= inf{ R|R is r-achievable}

YTheorem 7 9 (Reliability function: Han, 2000)

Re(r|X) = s%p{R —o(R)|lo(R) <7}

1 1

where, o(R) = liminf — log , ,
n—oo M
information- Pr {5 log 7 = R}

(Xm) =
spectrum ..

o e o)

11 1
— 10

45

2010%FE7H20H X EH



Hint for the proof (direct part):

Prob{[R, R+7)} < e~ "(R)

- individual prob ~ e "%

error prob.

1 | 1
— 10
i “o(R) >

* # of sequences Iin[R, R+ v)
< e o (R) jomnR o on(R=0(R)) (o(R) <)

*#of total sequencess sup eMEo(R)
R:o(R)<r
46

2010%FE7H20H X EH



Remark 2 (large deviation):

B The argument used here is called
“Information-spectrum slicing,” which is
a kind of typical large deviation technigues;
the slicing would be intuitively
understandable.

B The “informaton-spectrum slicing” argument

IS applicable also to the problems in random
number generation, rate-distortion theory, and
hypothesis testing, channel coding, etc.

47
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Remark 3 :

I ltis a tradition, given a rate R, to
compute the optimal error probabilty €

I Here, given an error probability €, we
compute the optimal rate R . This approach
would be easier.

48
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Example 3 (Longo & Sgarro, 1979)

@LetX = (X, X5,---) beani.i.d. subjecttor
on a finite alphabet x

® Define wR—{@eP( )| > Qa)log

reX )

inf D(Q|[P) = D(Qr||P)

>R} and

o | sanov’s theorem  @r:Projectionof P
o(R) = D(Qr|P) g

| Theorem 7 S
R.(r|X)=  sup  H(Q).

Q:D(Q||P)<r

49
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Example 4

@® Let X =(X,,X,,---) beani.i.d. subject to
P = (p1,p2,--+) on a countably infinite
alphabet x = {1,2,---1, where

C
i+ 1)(log(i +1))4
(heavy tail distribution; finite entropy)

pz-:( (1=1,2,---).

|} Cramer’s theorem (with rate function 1(z))
o(R)= inf I(zx) =0 (for all R)

x> R
_@any finite rate is not enough

~U¢ Theorem 7 " for exponentially decaying

error probability

R.(r|X) = 400 (for all r > 0)

50
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Example 5 (nonstationary and nonergodic source)
@® Consider a subset S,, ¢ {0,1}" such that|s,,| = 2"
(O < a< 1)7 and fix X0, X1 € {07 1}71 — Sn with xg # X1
® Define the probability distribution:

-
-
-
-
-
-
-
s =
-
L d

- three-point

. spectrum
9—2an for X €5, 4 R
9—3an for x=xy,
Pxn(x) = ] —2—an _9—3an  fyy X = X T
0 f S, U : " T —>
or x&8,U{x1,X0} 0 o 5o

~§
~
L.
---------
-

I Cramer’s theorem and Sanov theorem do not work !
(0 for R <0,

B a for 0< R <2a, R, X:{O‘ for r>a,
o(R) 4_ < Ja  for 2a < R < 3a, ,*=> v A) 0 for O<r=o
| too for 3a0 < R ol S
o | Theorem 7 ’
direct calculation > T

51 87
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VIII. Hypothesis Testing, and
Information-Spectra

52
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B Hypothesis testing

@X ={X"}>,and X = {X }>, are
general sources

{H - X (null hypothesis)
H : X (alternative hypothesis) A

@acceptance region A, :
@decision rule:

|f X EAna OUtpUtH .
{ if x ZA, output /7 -

53
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@ error probabilities:

un =Pr{X" ¢ A,} (type | error probability)
A\, =Pr{X" € A,} (type Il error probability)

® Let B.(r|X]||X) denote the supremum of
rates i such that 1, <e ™", A\, < e nE

mo

(we want to make R as large as possible)
- fixed

54

2010%FE7H20H X EH



fiTheorem 8 9§ (Testing power function: Han, 2000)

Be(r[X|[X) = inf{R + n(R)|n(R) < r}

wher 1 1
ere n(R) = liminf — log

(L log B2 < R

!

| ~Radon-Nikodym derivative
information-

spectrum

1. Pxn(X™) normalized
_ 1og €-=======--

n- ° Pgn(X7) log likelihood-ratio

55
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Hint for the proof (direct part):
Px([R—7,R)) < =)

A

type |

" likelihood-ratio ~ ¢~"F
error prob, c

~Pxn([R =7, R))-e "
< e—nn(R) e—nR ~ e—n(R—H?(R)) (U(R) < fr)
<

o~ (R+n(R))

56
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Example 6 (Hoeffding, 1965)

® Let X = {x"}>° X = {X"}>°, be i.i.d. subject to
P,P, on a f|n|te alphabet x

@ Deflne/{R— T Q ePX) ZQ 10%—(x) R and

\ reX $)

inf D(Q|[P) = D(Qr||P)

QEKR | |
ll Sanov’s theorem @ :Projection ot P
P
n(R) = D(Qr||P)
ll Theorem 8 KR
BelriXIX) =, df,  D@IIP)

57
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Example 7 (Gaussian sources)

@®@letx = {x"1>, X={X"1>= bei.id. sources
subject to Gaussian distributions N (x,0?), N(&, ?):

1 _ (z—r)? 1 _@
Pﬁ(x) — \/ﬂ()’e 202, Pﬁ(x) — \/%0_6 2o

.U,Cramer’s theorem

n(R) = inf I(x) = min{[a — R]T, o (R—a) } (a — D(P,@HPE))

<R 2(/43 —E)2

.U, Theorem 8 B.(r|X||X)
_ 1
B (r|X||X) = (vr — Va)*1[r < d

- T

58
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Example 8 (nonstationary and nonergodic source)

@ Let Px. be the source (null) as specified as in
Example 6, and £’x be another source
(alternative) defined by P (x) = 27 (vx € {0,1}").

l

I Cramer’s theorem and Sanov theorem do not work |

but we can directly calculate:
+o00 for R <1-3a,

Ja for 1—-3a< R<1-2a,

n(R) = o  for 1 -2a< R<1,
0 for 1 < R.

|} Theorem 8

1 —a for r > «,

Be(ﬂXHX) - { 1 for 0<r<a.

59
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IX. Generalized Hypothesis Testing,
and Information-Spectra

60
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B Generalized hypothesis testing

@ X = {X"}72,is a generalsource,and
G = 1Gnj,21is a sequence of nonnegative
measures

{ I -X (nul hypothesis)

Ap

H : G (alternative measure)

@ acceptance region A, :
@ decision rule:

|f X GAna OUtpUtH .
{ if x g_fAn,outputﬁ :

61
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@ error probability (measure):

i = Pr{X" ¢ A,} (type | error probability)
An = Gr(Ay) (type Il measure )

® Let B.(rX||G) denote the supremum of
rates? suchthat #n < e ™™ A, < e

(we want to make R as large as possible)
r:fixed

62
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fiITheorem 9 4] (generalized testing power
function: Han,1998)

B(r(X||G) = nf{R + g (R)|ng(R) < r}

1 1

where nz(R) = liminf — log
e p 1

Radon-Nikodym derivative

63
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B Hypothesis testing and source coding

@ As an alternative measure G = {G,};2,
consider the counting measure C = {C.}72,
defined by C,,(A,) = | A,

lJ, then

@ we can establish one-to-one correspondence
between source coding and hypothesis testing

\

64
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source coding hypothesis testing

indiff tl
@x”.deiiﬁ;‘ y
correctly acceptance
decoded set region
decoding error probability — type | error probability
# of correctly decoded : type Il measure
seqguences g
UThus

@® one-to-one correspondence between

hypothesis testing and source coding holds:

65
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Therefore, we have a formula connecting
souece coding and hypothesis testing:

9Theorem10 ( Han,1998) 9

Re(r|X) = —=B.(r|X||C)

The proof:

_ 1

An

1.1
Thus, liminf —log — = — limsupry,,

n—oo 1 )\n n— 00

which means R.(r|X) = —B.(r|X||C)

66
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9 Theorem 11: another proof of Theorem 7

Re(r|X) = s%p{R —o(R)|lo(R) <7}

The proof:

It is easy to check that 7z(R) = o(—R).
Then, Theorem 9 implies

B (rX||C) = — s%p{R —o(R)|o(R) <7}

Finally, use Theorem 10.

67
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In a similar way, we have formulas
connecting source coding and hypothesis
testing:

Ry (X) = —B(X||C) = H(X)
Ry(e|X) = =By (e|X][C)

inf{R|F(R) < ¢}

n—oo

. 1 1
where F(R) =limsup Pr {E log Pron (X7 > R}

68
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I Hypothesis testing and the world of
Information-spectra ‘

/ generalized
/ hypothesis

the world of testing

ergodic sources /

source coding

\ hypothesis testing

69
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Conclusion

Information-spectrum approach
provides
conceptually insightful viewpoints
iIn musing on Information Theory!

70
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Thank you !

71
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